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1. Definicja. Niech A oznacza macierz kwadratową stopnia n. Wyznacznikiem macierzy A nazywamy
liczbę det(A) = |A| określoną w sposób następujący:
1. Jeśli n = 1, A = (a11), to det(A) = a11.
2. Jeśli n ­ 2, to det(A) = a11 det(A11) − a12 det(A12) + a13 det(A13) − ... + (−1)1+na1n det(A1n) =
n∑
j=1

(−1)1+ja1j det(A1j), gdzie A1j oznacza macierz powstałą z macierzy A przez skreślenie pierwszego

wiersza i j−ej kolumny.

2. Przykład. det
(
a11 a12
a21 a22

)
=

∣∣∣∣∣ a11 a12a21 a22

∣∣∣∣∣ = a11a22 − a12a21.
3. Przykład.

∣∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣∣ = aei+ bfg + cdh− gec− dbi− ahf .
4. Metoda Sarrusa obliczania wyznacznika macierzy stopnia 3. Powyższy przykład można zapamiętać
w sposób następujący: do A dopisujemy z prawej strony jej pierwszą i drugą kolumnę, a następnie
obliczamy sumę iloczynów wyrazów na opadających liniach i odejmujemy sumę iloczynów wyrazów
na liniach wznoszących się. Zamiast dopisywać kolumny, można dopisać dwa pierwsze wiersze u dołu.

5. Przykład.

∣∣∣∣∣∣∣
2 5 3
1 6 0
3 1 4

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
2 5 3
1 6 0
3 1 4

∣∣∣∣∣∣∣
2
1
3

5
6
1
= 2 · 6 · 4+5 · 0 · 3+3 · 1 · 1− 3 · 6 · 3− 1 · 0 · 2− 4 · 1 · 5 = −23.

6. Przykład. det(D(a1, a2, ..., an)) = a1 · a2 · ... · an, w szczególności det(In) = 1.

7. Twierdzenie. Własności wyznacznika. Dla dowolnej kwadratowej macierzy A stopnia n:

(a) Rozwinięcie Laplace’a wzdłuż dowolnego wiersza: det(A) =
n∑
j=1

(−1)k+jakj det(Akj), gdzie Akj

oznacza macierz powstałą z macierzy A przez skreślenie k−ego wiersza i j−ej kolumny.
(b) Jeśli macierz A′ powstała z macierzy A przez pomnożenie jednego z wierszy przez liczbę a, to
det(A′) = a det(A).

(c) Jeśli macierz A′ powstała z macierzy A przez zamianę dwóch wierszy, to det(A′) = − det(A).
(d) Jeśli macierz A′ powstała z macierzy A przez dodanie jednego wiersza pomnożonego przez liczbę
do innego wiersza, to det(A′) = det(A).

(e) det(AT ) = det(A).

(f) Wyznacznik macierzy trójkątnej (dolnej lub górnej) jest równy iloczynowi jej wyrazów stojących
na przekątnej głównej.

(g) (twierdzenie Cauchy’ego) det(AB) = det(A) det(B).

(h) det(A) ̸= 0 ⇐⇒ A jest nieosobliwa ⇐⇒ r(A) = n ⇐⇒ A−1 istnieje. Wtedy det(A−1) =
(det(A))−1.

(i) det(A) = 0 ⇐⇒ wiersze macierzy A tworzą układ liniowo zależny (tzn. jeden z nich jest
kombinacją liniową pozostałych).

8. Uwaga. Z własności e) wynika, że rozwinięcie Laplace’a można wykonywać wzdłuż dowolnej kolumny.
Również własności b), c) i d) mają swoje odpowiedniki dla kolumn.

9. Przykład. Obliczymy wyznaczniki:

a)

∣∣∣∣∣∣∣∣∣
0 4 0 5
1 0 −1 2
0 3 0 −2
0 0 −6 0

∣∣∣∣∣∣∣∣∣ =
rozw.L.wzd.Ikol.

−

∣∣∣∣∣∣∣
4 0 5
3 0 −2
0 −6 0

∣∣∣∣∣∣∣ =
rozw.L.wzd.IIIw.

−6
∣∣∣∣∣ 4 5
3 −2

∣∣∣∣∣ =def −6(−23) = 138,
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b)

∣∣∣∣∣∣∣∣∣
2 3 −1 1
−2 −3 3 2
4 6 −2 3
2 1 3 −2

∣∣∣∣∣∣∣∣∣
w1 + w2

−2w1 + w3
−w1 + w4

=

∣∣∣∣∣∣∣∣∣
2 3 −1 1
0 0 2 3
0 0 0 1
0 −2 4 −3

∣∣∣∣∣∣∣∣∣ =
r.L.wzd.Ikol.

2

∣∣∣∣∣∣∣
0 2 3
0 0 1
−2 4 −3

∣∣∣∣∣∣∣ =Sarrus −8,

c)

∣∣∣∣∣∣∣∣∣
3 1 −2 −5
2 −6 6 −10
25 5 40 5
−4 1 −2 7

∣∣∣∣∣∣∣∣∣
w4 + w1

=

∣∣∣∣∣∣∣∣∣
−1 2 −4 2
2 −6 6 −10
25 5 40 5
−4 1 −2 7

∣∣∣∣∣∣∣∣∣
1
2w2
1
5w3
= 10

∣∣∣∣∣∣∣∣∣
−1 2 −4 2
1 −3 3 −5
5 1 8 1
−4 1 −2 7

∣∣∣∣∣∣∣∣∣
w1 + w2
5w1 + w3
−4w1 + w4

=

10

∣∣∣∣∣∣∣∣∣
−1 2 −4 2
0 −1 −1 −3
0 11 −12 11
0 −7 14 −1

∣∣∣∣∣∣∣∣∣ 11w2 + w3−7w2 + w4

= 10

∣∣∣∣∣∣∣∣∣
−1 2 −4 2
0 −1 −1 −3
0 0 −23 −22
0 0 21 20

∣∣∣∣∣∣∣∣∣w4 + w3= 10
∣∣∣∣∣∣∣∣∣
−1 2 −4 2
0 −1 −1 −3
0 0 −2 −2
0 0 21 20

∣∣∣∣∣∣∣∣∣ 12w3=

20

∣∣∣∣∣∣∣∣∣
−1 2 −4 2
0 −1 −1 −3
0 0 −1 −1
0 0 21 20

∣∣∣∣∣∣∣∣∣ 21w3 + w4
= 20

∣∣∣∣∣∣∣∣∣
−1 2 −4 2
0 −1 −1 −3
0 0 −1 −1
0 0 0 −1

∣∣∣∣∣∣∣∣∣ = 20(−1)
4 = 20. W ostatnim kroku sko-

rzystaliśmy z tego, że wyznacznik macierzy trójkątnej jest równy iloczynowi wyrazów z przekątnej.

10. Przykład. Niech A =
(
2 1
3 2

)
. Obliczymy wyznacznik det(A10) nie podnosząc macierzy A do potęgi.

Mianowicie, na mocy twierdzenia Cauchy’ego det(A10) = (det(A))10 = 110 = 1.

Wyznacznik ma sens geometryczny.

11. Pole równoległoboku na płaszczyźnie R2 rozpiętego na wektorach (a, b), (c, d) jest równe wartości
bezwzględnej wyznacznika, którego wierszami są dane wektory. Na przykład pole równoległoboku

rozpiętego na wektorach (1, 2), (2,−1) jest równe | det
(
1 2
2 −1

)
| = | − 5| = 5.

12. Objętość równoległościanu w przestrzeni R3 rozpiętego na wektorach (a1, a2, a3), (b1, b2, b3), (c1, c2, c3)
jest równa wartości bezwzględnej wyznacznika, którego wierszami są dane wektory. Na przykład ob-
jętość równoległościanu rozpiętego na wektorach (1, 1, 1), (2, 1, 0), (0,−1,−2) jest równa

| det

 1 1 1
2 1 0
0 −1 −2

 | = 0. Czy to możliwe, żeby ten równoległościan miał zerową objętość? Zauważ-
my, że jest on zawarty w płaszczyźnie: wszystkie trzy dane wektory spełniają równanie x−2y+z = 0.

13. Omówimy teraz jeszcze jedną metodę rozwiązywania układów równań liniowych. Można ją stosować
w tych samych przypadkach, co metodę macierzową. Podaje ona gotowe wzory na rozwiązania układu,
ale na ogół jest bardzo pracochłonna.

14. Twierdzenie Cramera. Niech dany będzie układ n równań liniowych z n niewiadomymi
a11x1 + a12x2 + ...+ a1nxn = b1,
a21x1 + a22x2 + ...+ a2nxn = b2,
.................................................
an1x1 + an2x2 + ...+ annxn = bn

i niech A oznacza jego macierz współczynników. Wtedy:

a) Jeśli det(A) ̸= 0, to dany układ równań ma dokładnie jedno rozwiązanie (w1, w2, ..., wn) dane
wzorami wk = detAkdetA dla k = 1, 2, ..., n, gdzie symbol Ak oznacza macierz otrzymaną z macierzy A
poprzez zastąpienie jej k−tej kolumny przez kolumnę wyrazów wolnych układu równań.
b) Jeśli det(A) = 0 i detAk ̸= 0 dla pewnego k, to układ jest sprzeczny.
c) Jeśli det(A) = 0 i detAk = 0 dla wszystkich k = 1, ..., n, to układ jest sprzeczny albo nieoznaczony.
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15. Przykład. Rozwiążemy układ równań


2x − y + z = 0,
x + 4y + 3z = 20,
−3x + 4y + 2z = 9.

Zauważmy, że w układzie jest

tyle samo równań, co niewiadomych, można więc obliczyć wyznacznik macierzy współczynników,

czyli tzw. wyznacznik główny: det(A) =

∣∣∣∣∣∣∣
2 −1 1
1 4 3
−3 4 2

∣∣∣∣∣∣∣ = 19. Ponieważ det(A) ̸= 0, można skorzy-
stać ze wzorów Cramera. Obliczamy wyznaczniki macierzy A1, A2, A3: det(A1) =

∣∣∣∣∣∣∣
0 −1 1
20 4 3
9 4 2

∣∣∣∣∣∣∣ =
57, det(A2) =

∣∣∣∣∣∣∣
2 0 1
1 20 3
−3 9 2

∣∣∣∣∣∣∣ = 95, det(A3) =
∣∣∣∣∣∣∣
2 −1 0
1 4 20
−3 4 9

∣∣∣∣∣∣∣ = −19. Wyznaczamy wartości niewia-
domych x = det(A1)det(A) = 3, y =

det(A2)
det(A) = 5, z =

det(A3)
det(A) = −1. Zatem jedyne rozwiązanie, to (3, 5,−1).

16. Rozwiążemy układ równań


2y + (2− a)z = 1,

x + 2z = a,
x + 2ay − z = 6

w zależności od wartości parametru

a. Ponieważ liczba równań jest równa liczbie niewiadomych, to w przypadku, gdy macierz współ-

czynników będzie nieosobliwa, będzie można użyć wzorów Cramera. det(A) =

∣∣∣∣∣∣∣
0 2 2− a
1 0 2
1 2a −1

∣∣∣∣∣∣∣ =
−2a2 + 4a+ 6 = −2(a− 3)(a+ 1). Rozpatrzymy kolejno trzy przypadki.
I. a ̸= 3, a ̸= −1, wtedy układ ma jedno rozwiązanie, znajdziemy je ze wzorów Cramera: det(A1) =∣∣∣∣∣∣∣
1 2 2− a
a 0 2
6 2a −1

∣∣∣∣∣∣∣ = −2a3 + 4a2 − 2a + 24 = −2(a − 3)(a2 + a + 4), det(A2) =
∣∣∣∣∣∣∣
0 1 2− a
1 a 2
1 6 −1

∣∣∣∣∣∣∣ =
a2 − 8a + 15 = (a − 3)(a − 5), det(A3) =

∣∣∣∣∣∣∣
0 2 1
1 0 a
1 2a 6

∣∣∣∣∣∣∣ = 4a − 12 = 4(a − 3). Zatem x = det(A1)det(A) =

a2+a+4
a+1 , y =

det(A2)
det(A) =

a−5
−2(a+1) , z =

det(A3)
det(A) =

−2
a+1 , a więc gdy a ̸= 3, a ̸= −1, to jedynym rozwiązaniem

jest wektor (a
2+a+4
a+1 ,

a−5
−2(a+1) ,

−2
a+1) =

1
2(a+1)(2a

2 + 2a+ 8, 5− a,−4).
II. a = −1. Wtedy det(A) = 0 i det(A1) = 32 ̸= 0, zatem układ jest sprzeczny.
III. a = 3. W tym przypadku wszystkie wyznaczniki się zerują, więc twierdzenie daje nam tylko

informację, że układ nie jest oznaczony. Układ ma postać


2y − z = 1,

x + 2z = 3,
x + 6y − z = 6.

Rozwiązując

go stwierdzamy, że jest nieoznaczony i jego rozwiązaniem ogólnym jest (3− 2z, 12 +
1
2z, z), z ∈ R.

17. Przykład. Określimy, ile ma rozwiązań układ


(a+ 1)x − 2y + (a− 1)z = 1,
6x + (a− 6)y + 2z = a,
3x − 2y + z = 1

w za-

leżności od wartości parametru a ∈ R. Macierz rozszerzona układu jest równa a+ 1 −2 a− 1 1
6 a− 6 2 a
3 −2 1 1

. Obliczamy wyznacznik macierzy współczynników
det(A) =

∣∣∣∣∣∣∣
a+ 1 −2 a− 1
6 a− 6 2
3 −2 1

∣∣∣∣∣∣∣ = −2a2 + 8a− 8 = −2(a− 2)2. Z twierdzenia Cramera wynika, że
dla a ̸= 2 układ jest oznaczony (ma jedno rozwiązanie). Dla a = 2 układ ma macierz rozszerzoną
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 3 −2 1 16 −4 2 2
3 −2 1 1.

 (−2)w1 + w2
(−1)w1 + w3

∼

 3 −2 1 10 0 0 0
0 0 0 0

 i widać, że ma nieskończenie wiele rozwiązań.
Wracamy do przestrzeni liniowych.

18. Definicja. Niech dana będzie przestrzeń liniowa V . Układ wektorów v1, ..., vk ∈ V nazywa się bazą
przestrzeni V wtedy i tylko wtedy, gdy jest liniowo niezależny oraz rozpina V .

19. Przykład. Układ wektorów st : e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) jest bazą przestrzeni R3.
Układ ten rozpina R3, bo każdy wektor (a, b, c) można zapisać jako (a, b, c) = a(1, 0, 0) + b(0, 1, 0) +
c(0, 0, 1). Układ ten jest liniowo niezależny, bo wektor 0 = (0, 0, 0) można zapisać jako kombinację
liniową wektorów e1, e2, e3 jedynie tak (0, 0, 0) = 0(1, 0, 0) + 0(0, 1, 0) + 0(0, 0, 1). Układ st nazywa
się bazą standardową przestrzeni R3.

Analogicznie określa się bazę standardową w przestrzeni Rn dla dowolnej liczby naturalnej n.

20. Twierdzenie. a) Liczba wektorów dowolnej bazy przestrzeni V nie zależy od wyboru bazy. b) Każdy
liniowo niezależny układ wektorów przestrzeni V można dopełnić do bazy V .

21. Definicja. Liczba wektorów dowolnej bazy przestrzeni V nazywa się wymiarem przestrzeni V i jest
oznaczana symbolem dimV .

22. Uwaga (dodatek do definicji bazy). Za bazę przestrzeni zerowej (złożonej jedynie z wektora zerowego)
uważa się zbiór pusty. Zatem dim{0} = 0.

23. Przykład. dimRn = n (układ st:(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1) jest bazą).

24. Twierdzenie (własności bazy). Niech v1, ..., vk będzie układem wektorów przestrzeni V . Wtedy na-
stępujące warunki są równoważne:
a) układ v1, ..., vk jest bazą V ,
b) układ v1, ..., vk jest liniowo niezależny oraz k = dimV ,
c) układ v1, ..., vk rozpina V oraz k = dimV .
d) każdy wektor w ∈ V można jednoznacznie zapisać w postaci kombinacji liniowej wektorów
v1, ..., vk.

25. Przykład. dimR[x]3 = 4, bo każdy wielomian stopnia niewiększego od 3 można jednoznacznie zapisać
w postaci kombinacji liniowej a0+a1x+a2x2+a3x3 wielomianów 1, x, x2, x3. Podobnie, dimR[x]n =
n+ 1.

26. Przykład. Zbiór rozwiązań równania x+2y+3z = 0 jest podprzestrzenią wymiaru 2, bo jak zauwa-
żyliśmy poprzednio, każde rozwiązanie można jednoznacznie zapisać w postaci kombinacji liniowej
dwóch rozwiązań (−2, 1, 0) i (−3, 0, 1).

27. Przykład. Niech dane będą wektory v1, ..., vk przestrzeni Rn. Bazę podprzestrzeni W = lin(v1, ..., vk)
można uzyskać ustawiając te wektory jako wiersze macierzy, następnie sprowadzając tę macierz do
postaci schodkowej. Niezerowe wiersze macierzy schodkowej są liniowo niezależne i rozpinająW , więc
tworzą bazę W .

28. Przykład. Wymiar przestrzeni macierzy M(m× n) jest równy mn, bo każda macierz jednoznacznie
zapisuje się jako kombinacja liniowa macierzy z jedną jedynką i zerami na pozostałych miejscach.

29. Przykład. Zbiór rozwiązań układu równań liniowych jednorodnych zmiennych x1, ..., xn jest podprze-
strzenią liniową przestrzeni Rn. Jak wynika z twierdzenia Kroneckera-Capelli’ego, przestrzeń ta ma
wymiar n− r(A), gdzie A oznacza macierz współczynników tego układu.


