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1. Definicja. Dwa układy równań nazywają się równoważne wtedy i tylko wtedy, gdy mają te same
zbiory rozwiązań.

2. Przypomnijmy, że wcześniej wprowadziliśmy trzy rodzaje operacji elementarnych na wierszach ma-
cierzy: I. pomnożenie wybranego wiersza przez liczbę różną od zera. II. zamiana dwóch wierszy
miejscami. III. dodanie jednego wiersza pomnożonego przez liczbę do innego wiersza.

3. Twierdzenie. Operacje elementarne zastosowane do macierzy rozszerzonej układu równań liniowych
prowadzą do macierzy układu równoważnego z układem danym (czyli mającego te same rozwiązania).

4. Uwaga. Na kolejnym stosowaniu operacji elementarnych polega następująca metoda eliminacji
Gaussa.

1. Wybieramy jedną z kolumn odpowiadających zmiennym, a w niej niezerowy wyraz i wiersz, w
którym on leży.
2. Przy pomocy operacji I doprowadzamy do tego, że wybrany wyraz jest równy 1.
3. W pozostałych wierszach przy pomocy operacji III uzyskujemy zera w wybranej kolumnie (elimi-
nujemy wybraną zmienną z pozostałych równań).
4. Wybieramy nową (jedną spośród jeszcze niewybranych) kolumnę odpowiadającą nowej zmiennej
i w niej niezerowy wyraz leżący w nie wybranym jeszcze wierszu.
5. Przy pomocy operacji I doprowadzamy do tego, że wybrany wyraz jest równy 1.
6. We wszystkich oprócz ostatnio wybranego wierszach przy pomocy operacji III uzyskujemy zera w
wybranej kolumnie.
7. Jeśli istnieją jeszcze niewybrane kolumny odpowiadające zmiennym, zawierające niezerowe wyrazy
w jeszcze niewybranych wierszach, to wracamy do punktu 5.
8. Jeśli wśród niewybranych wierszy jest wiersz postaci 0 = b, i b ̸= 0, to układ równań nie ma rozwią-
zań (jest sprzeczny). Jeśli takiego wiersza nie ma, przenosimy niewybrane zmienne na prawą stronę
i traktujemy jako parametry, po czym z otrzymanego układu równań odczytujemy rozwiązanie.

5. Przykład. Rozwiążemy kilka układów równań liniowych.

a)


x − 2y + z = 4,
x + y + z = 1,
2x − 3y + 5z = 10,
5x − 6y + 8z = 19.

Macierzą rozszerzoną jest [A,B] =


1 −2 1 4
1 1 1 1
2 −3 5 10
5 −6 8 19

. Wybiera-
my wyraz w pierwszej kolumnie i pierwszym wierszu, następnie wykonujemy kolejne kroki algorytmu

eliminacji niewiadomych (wybrane wyrazy będą podkreślone):


1 −2 1 4
1 1 1 1
2 −3 5 10
5 −6 8 19

 (−1)w1 + w2(−2)w1 + w3
(−5)w1 + w4

∼


1 −2 1 4
0 3 0 −3
0 1 3 2
0 4 3 −1

 w2/3 ∼

1 −2 1 4
0 1 0 −1
0 1 3 2
0 4 3 −1


2w2 + w1

(−1)w2 + w3
(−4)w2 + w4

∼


1 0 1 2
0 1 0 −1
0 0 3 3
0 0 3 3

 w3/3
w4/3

∼


1 0 1 2
0 1 0 −1
0 0 1 1
0 0 1 1


(−1)w3 + w1

(−1)w3 + w4

∼


1 0 0 1
0 1 0 −1
0 0 1 1
0 0 0 0

. Ponieważ nie ma już niezerowych wyrazów
możliwych do wybrania, zapisujemy układ w postaci równań (przy czym pomijamy ostatnie rów-

nanie 0=0). Otrzymujemy


x = 1,
y = −1,
z = 1.

Zatem jedynym rozwiązaniem jest wektor (1,−1, 1). Dany

układ jest więc oznaczony.
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b)


x − y + z − 2s + t = 9,
2x + 4y − z + s + 3t = 1,
x + 2y + 4z + 2t = 1.

Macierzą rozszerzoną jest

 1 −1 1 −2 1 9
2 4 −1 1 3 1
1 2 4 0 2 1

.
Stosujemy eliminację Gaussa:

 1 −1 1 −2 1 9
2 4 −1 1 3 1
1 2 4 0 2 1

 2w2 + w1 ∼
 5 7 −1 0 7 112 4 −1 1 3 1
1 2 4 0 2 1

 (−5)w3 + w1(−2)w3 + w2 ∼

 0 −3 −21 0 −3 6
0 0 −9 1 −1 −1
1 2 4 0 2 1

 w1/(−3) ∼
 0 1 7 0 1 −2
0 0 −9 1 −1 −1
1 2 4 0 2 1


(−2)w1 + w3

∼

 0 1 7 0 1 −2
0 0 −9 1 −1 −1
1 0 −10 0 0 5

. Wracamy do postaci z
równaniami i otrzymujemy układ


y + 7z + t = −2,
− 9z + s − t = −1,

x − 10z = 5,
z którego wyznaczamy

wartości ”podkreślonych” zmiennych: y = −7z − t − 2, s = 9z + t − 1, x = 10z + 5. Zatem roz-
wiązaniem jast każdy wektor postaci (10z + 5,−7z − t − 2, z, 9z + t − 1, t), w którym liczby z, t są
dowolne (jest to tzw. rozwiązanie ogólne). Rozwiązań jest nieskończenie wiele, a do ich opisu potrzeba
dwóch parametrów. Dany układ jest nieoznaczony. Rozwiązania szczególne otrzymujemy wstawiając
za parametry z, t dowolne liczby. Na przykład, gdy wstawimy z = 1, t = 0 otrzymujemy rozwiązanie
(15,−9, 1, 8, 0), a gdy wstawimy z = 0, t = 1 otrzymujemy rozwiązanie (5,−3, 0, 0, 1).

c)


x + 2y + z + t = 7,
2x − y − z + 4t = 2,
5x + 5y + 2z + 7t = 1.

Macierzą rozszerzoną jest

 1 2 1 1 7
2 −1 −1 4 2
5 5 2 7 1

. Stosuje-
my eliminację Gaussa:

 1 2 1 1 7
2 −1 −1 4 2
5 5 2 7 1

 w1 + w2
(−2)w1 + w3

∼

 1 2 1 1 7
3 1 0 5 9
3 1 0 5 −13


(−1)w2 + w3

∼

 1 2 1 1 7
3 1 0 5 9
0 0 0 0 −22

. Przerywamy operacje, bo ostatni wiersz odpowiada równaniu sprzecznemu
0 = −22. Zatem dany układ jest sprzeczny, tzn. nie ma rozwiązań.

6. Twierdzenie Kroneckera-Capelli’ego. Rozpatrzmy układm równań liniowych z n niewiadomymi i jego
postać macierzową AX = B. Jeśli r([A,B]) > r(A), to układ ten jest sprzeczny. Jeśli r([A,B]) = r(A),
to układ ma rozwiązanie ogólne zależące od n− r(A) parametrów.
Idea dowodu. Przypomnijmy, że rząd macierzy jest równy liczbie schodków w jej postaci schod-
kowej. Zauważmy, że gdy doprowadzimy do postaci schodkowej macierz rozszerzoną, a następnie
usuniemy ostatnią kolumnę, to otrzymamy postać schodkową macierzy wspołczynników. Zatem, jeśli
r([A,B]) > r(A), to znaczy, że postacie schodkowe macierzy [A,B] i A różnią się liczbą schodków
i że postać schodkowa macierzy [A,B] ma ostatni schodek w ostatniej kolumnie. Z tego wynika, że
układ równań jest sprzeczny (równanie odpowiadające wierszowi ze schodkiem jest sprzeczne). Jeśli
r([A,B]) = r(A), to schodka w ostatniej kolumnie nie ma i układ ma rozwiązania zależące od n−r(A)
parametrów, bo tylu potrzeba, aby wyznaczyć wartości r(A) zmiennych odpowiadających schodkom.

7. Symbolem Rn będziemy oznaczać zbiór wszystkich ciągów n−elementowych o wyrazach rzeczywi-
stych. Zbiór ten nazywamy przestrzenią Rn, a jego elementy – wektorami. Wektory można dodawać i
mnożyć przez liczby (skalary). Wektor (0, 0, ..., 0) oznaczamy po prostu przez 0 i nazywamy wektorem
zerowym.

8. Podobnie, można dodawać i mnożyć przez liczby macierze ustalonego rozmiaru m × n. Dodawać i
mnożyć przez liczby można też wielomiany, a także różne funkcje.
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9. Wprowadzimy teraz pojęcie, którego przykładami szczególnymi są podane powyżej przykłady.

10. Definicja. Przestrzenią liniową (nad R) nazywamy dowolny zbiór V z określonym dodawaniem (tzn,
dla każdych dwóch elementów v, w zbioru V określony jest element v+w ∈ V nazywany ich sumą) i
mnożeniem przez liczby rzeczywiste (tzn, dla każdego elementu v ∈ V i dowolnej liczby rzeczywistej
a określony jest element av ∈ V ), jeśli spełnione są warunki:
a) dodawanie jest przemienne, tzn. v + w = w + v dla dowolnych v, w ∈ V ,
b) dodawanie jest łączne, tzn. (v + w) + z = v + (w + z) dla dowolnych v, w, z ∈ V ,
c) istnieje element zerowy 0 ∈ V taki, że v + 0 = 0 + v = v dla dowolnego v ∈ V ,
d) każdy element v ∈ V posiada element przeciwny, tzn. dla każdego elementu v ∈ V istnieje taki
element v′ ∈ V , że v′ + v = 0,
e) mnożenie jest rozdzielne względem dodawania elementów V , tzn. a(v+w) = aw+av dla dowolnych
v, w ∈ V oraz a ∈ R,
f) mnożenie jest rozdzielne względem dodawania liczb, tzn. (a+b)v = av+bv dla dowolnych a, b ∈ R
i dowolnego elementu v ∈ V ,
g) zachodzi łączność mnożenia przez liczby: a(bv) = (ab)v dla dowolnych a, b ∈ R i dowolnego
elementu v ∈ V ,
h) zachodzi równość 1v = v dla dowolnego elementu v ∈ V .
Elementy zbioru V nazywamy wektorami (przestrzeni V ), a liczby rzeczywiste – skalarami. Prze-
strzenie liniowe nazywa się także przestrzeniami wektorowymi.

11. Przykład. Zbiór Rn, n ∈ N ze zwykłym dodawaniem wektorów i mnożeniem ich przez liczby jest
przestrzenią liniową.

12. Przykład. ZbiórM(m×n) macierzy ze zwykłym dodawaniem macierzy i mnożeniem ich przez liczby
jest przestrzenią liniową.

13. Przykład. Niech k oznacza liczbę naturalną. Zbiór R[x]k wielomianów stopni ¬ k zmiennej x jest
przestrzenią liniową ze względu na naturalne dodawanie wielomianów i mnożenie ich przez liczby.

14. Przykład. Niech I ⊂ oznacza dowolny przedział. Zbiór C(I) funkcji ciągłych na przedziale I jest
przestrzenią liniową ze względu na naturalne dodawanie funkcji i mnożenie ich przez liczby.

15. Definicja. Niech a1, ..., ak będą liczbami rzeczywistymi, a v1, ..., vk wektorami przestrzeni V . Sumę

a1v1+a2v2+...+akvk =
k∑
j=1

ajvj nazywamy kombinacją liniową wektorów v1, ..., vk ze współczynnikami

a1, ..., ak.

16. Przykład. Wielomian 7x4+5x3+2x2+10 ∈ R[x]4 jest kombinacją liniową wielomianów x4, x3, x2, x, 1
o współczynnikach 7, 5, 2, 0, 10; jest też kombinacją liniową wielomianów x4 + x2, x3 − x2 + x, x− 2
o współczynnikach 7, 5,−5.

17. Przykład. Zbadamy, które z wektorów: u1 = (0, 0, 0), u2 = (1, 3, 5), u3 = (1,−3, 5) są kombinacjami
liniowymi wektorów v1 = (1, 1, 1), v2 = (1, 2, 3). Wektor u1 oczywiście jest kombinacją liniową, ze
współczynnikami równymi 0. Wektor u2 jest kombinacją liniową wtedy i tylko wtedy, gdy istnieją
liczby a, b ∈ R takie, że (1, 3, 5) = a(1, 1, 1)+ b(1, 2, 3), tzn. spełnione są równości a+ b = 1, a+2b =
3, a + 3b = 5. Bez trudu sprawdzamy, że liczby a = −1, b = 2 spełniają te warunki, zatem wektor
u2 jest kombinacją liniową wektorów v1, v2 o współczynnikach −1, 2. Dla wektora u2 = (1,−3, 5)
otrzymujemy w analogiczny sposób równania a+ b = 1, a+ 2b = −3, a+ 3b = 5, które tworzą układ
sprzeczny. Zatem wektor u2 nie jest kombinacją liniową wektorów v1, v2.

18. Definicja. Układ v1, ..., vk wektorów przestrzeni V nazywa się liniowo zależny, jeśli wektor zerowy da
się przedstawić jako kombinację liniową a1v1 + ...+ akvk, w której nie wszystkie współczynniki ai są
zerowe.
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19. Definicja. Układ v1, ..., vk wektorów przestrzeni V nazywa się liniowo niezależny, jeśli wektor zerowy
da się przedstawić jako kombinację liniową wektorów v1, ..., vk jedynie ze wszystkimi współczynnikami
równymi 0.

20. Przykład. Układ wektorów (1, 1), (1, 3), (2, 3) przestrzeni R2 jest liniowo zależny, bo zachodzi równość
(0, 0) = 3(1, 1) + (1, 3)− 2(2, 3), w której współczynniki nie są zerami.

21. Definicja. Niech V oznacza dowolną przestrzeń liniową. PodzbiórW ⊂ V nazywa się podprzestrzenią
liniową przestrzeni V wtedy i tylko wtedy, gdy suma dowolnych dwóch wektorów z W należy do W
oraz iloczyn dowolnego wektora zW przez dowolną liczbę należy doW . Jeśli te warunki są spełnione,
to zbiór W też można w naturalny sposób traktować jako przestrzeń liniową.

22. Przykład. Podzbiór R[x]1 (złożony z wielomianów liniowych) przestrzeni R[x]3 (złożonej z wielomia-
nów stopni niewiększych od 3) jest jej podprzestrzenią liniową, bo suma dowolnych dwóch wielo-
mianów liniowych jest wielomianem liniowym oraz iloczyn wielomianu liniowego przez skalar jest
wielomianem liniowym.

23. Przykład. Zbiór rozwiązań jednorodnego układu równań liniowych n zmiennych jest podprzestrzenią
liniową przestrzeni Rn (układ jest jednorodny, gdy wszystkie wyrazy wolne są zerami).

24. Przykład – definicja. Niech dany będzie dowolny układ v1, ..., vk wektorów przestrzeni V . Wtedy
zbiór lin(v1, ..., vk) wszystkich kombinacji liniowych wektorów v1, ..., vk jest podprzestrzenią liniową
przestrzeni V . Nazywa się ona przestrzenią rozpiętą na wektorach v1, ..., vk, a o układzie wektorów
v1, ..., vk mówimy, że rozpina tę przestrzeń.

25. Twierdzenie. Jeśli układ w1, w2, ..., wk wektorów przestrzeni V powstał z układu v1, v2, ..., vk przez
stosowanie operacji elementarnych na wektorach, to:
a) lin(w1, ..., wk) = lin(v1, ..., vk).
b) układ w1, w2, ..., wk jest liniowo zależny ⇐⇒ układ v1, v2, ..., vk jest liniowo zależny.

26. Przykład. Rozpatrzmy zbiór V rozwiązań równania x + 2y + 3z = 0. Jest to podprzestrzeń liniowa
przestrzeni R3. Zauważmy, że rozwiązania danego równania są postaci (−2y − 3z, y, z), y, z ∈ R i że
można je zapisać w postaci (−2y−3z, y, z) = y(−2, 1, 0)+z(−3, 0, 1). Wynika z tego, że podprzestrzeń
V jest rozpięta przez układ wektorów (−2, 1, 0), (−3, 0, 1), tzn. V = lin((−2, 1, 0), (−3, 0, 1)).


