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1. Przykład. Obliczymy pole części płaszczyzny ograniczonej osią odciętych i wykresem funkcji sinus
na przedziale [0, π]. Oznaczmy przez P (x) pole obszaru ograniczonego z dołu osią odciętych, z góry
wykresem funkcji sinus na przedziale [0, x], x ∈ [0, π], a z prawej prostą złożoną z punktów o odciętej
x. Z definicji pochodnej wynika, że P ′(x) = lim

h→0
P (x+h)−P (x)

h
. Oznaczmy przez H+(h) największą

wartość sin z gdy z leży między x a x+h, a przez H−(h) najmniejszą wartość sin z gdy z leży między
x a x+h. Wyrażenie w liczniku – to pole paska szerokości h zakończonego u góry kawałkiem wykresu
funkcji sin. To pole jest zawarte między liczbami h ·H−(h) a h ·H+(h). Zatem iloraz P (x+h)−P (x)h

jest
zawarty między liczbami H−(h) i H+(h). Z ciągłości funkcji sinus wynika, że gdy h dąży do 0, to
obie liczby H−(h), H+(h) dążą do sinx, więc P ′(x) = sinx. Zatem P (x) jest jedną z funkcji postaci
cosx + C, gdzie C oznacza dowolną stałą. Pole będzie opisywać ta, która w punkcie 0 przyjmuje
wartość 0, tzn. P (x) = − cosx − (− cos 0) = 1 − cosx. Zatem pole, które obliczamy, jest równe
P (π) = 2.

Zwróćmy uwagę na to, że rozwiązanie otrzymaliśmy w dwóch krokach: najpierw znaleźliśmy funkcję
o pochodnej sinx, a potem pole obliczyliśmy jako jej przyrost.

Podobnie można postąpić z innymi funkcjami ciągłymi. Pierwszy krok prowadzi do definicji całki
nieoznaczonej, drugi do definicji całki oznaczonej.

2. Definicja. Funkcja F nazywa się funkcją pierwotną funkcji f określonej na przedziale otwartym I
wtedy i tylko wtedy, gdy dla każdego punktu x ∈ I spełniona jest równość F ′(x) = f(x). Jeśli f
jest określona na przedziale domkniętym [a, b], to żądamy, aby F ′+(a) = f(a), F

′
−(b) = f(b) oraz

F ′(x) = f(x) dla wszystkich x ∈ (a, b).

3. Przykład. Funkcja− cosx jest funkcją pierwotną funkcji sin x, bo dla każdej liczby x zachodzi równość
(− cosx)′ = sinx.

4. Twierdzenie. Dwie funkcje pierwotne funkcji f na przedziale różnią się o stałą.

5. Definicja. Zbiór funkcji pierwotnych danej funkcji f oznaczamy symbolem
∫
f(x)dx i nazywamy

całką nieoznaczoną funkcji f .

6. Przykład.
∫
sinxdx = − cosx+ C. Symbol C oznacza tu dowolną stałą.

7. Twierdzenie. Każda funkcja ciągła na przedziale posiada funkcję pierwotną.

8. Twierdzenie. Własności całki nieoznaczonej.
a) Dla dowolnej liczby a i dowolnej funkcji ciągłej f zachodzi równość

∫
af(x)dx = a

∫
f(x)dx.

b) Dla dowolnych funkcji ciągłych f, g zachodzi równość
∫
f(x) + g(x)dx =

∫
f(x)dx+

∫
g(x)dx.

9. Przykład. Wiele całek można obliczyć zgadując, a następnie sprawdzając wynik i ewentualnie wpro-
wadzając odpowiednie poprawki.∫
6x2 − 2x+ 6dx = 2x3 − x2 + 6x+ C,

∫
sin 2xdx = −12 cos 2x+ C,

∫
2xex

2
dx = ex

2
+ C.

Można również stosować następujące twierdzenie.

10. Twierdzenie. Zachodzą równości:

1.
∫
adx = ax+ C, 2.

∫
xadx = x

a+1

a+1 + C dla a ̸= −1. 3.
∫
1
x
dx = ln |x|+ C.

4.
∫
exdx = ex + C. 5.

∫
sinxdx = − cosx+ C. 6.

∫
cosxdx = sinx+ C.

7.
∫

1
cos2 xdx = tg x+ C. 8.

∫
1
sin2 xdx = − ctg x+ C. 9.

∫
1
1+x2dx = arctg x+ C.
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Każda z powyższych równości zachodzi na dowolnym przedziale zawartym w dziedzinie funkcji pod-
całkowej. Na przykład symbol

∫
1
x
dx = ln |x|+ C oznacza zbiór wszystkich tych funkcji f , które na

półprostej (−∞, 0) są postaci f(x) = ln(−x) + C1 (gdzie C1 jest dowolną stałą) oraz na półprostej
(0,+∞) są postaci f(x) = ln(x) + C2 (gdzie C2 jest dowolną stałą). Należy zwrócić uwagę na to,
że stałe C1, C2 nie muszą być równe. Dowód każdej z równości polega na sprawdzeniu, że pochodna
prawej strony jest funkcją podcałkową po lewej.

11. Przykład.
1.
∫
(x+ 3ex)dx =

∫
xdx+ 3

∫
exdx = x

2

2 + 3e
x + C.

2.
∫
x
√
x+2
x
dx =

∫ √
xdx+ 2

∫
1
x
dx = 23

√
x3 + 2 ln |x|+ C.

12. Twierdzenie (o całkowaniu przez podstawienie). Dla dowolnej funkcji ciągłej f i dowolnej funkcji

różniczkowalnej g zachodzi równość
∫
f(g(x))g′(x)dx =

∫
f(t)dt|t=g(x), w której po prawej stronie

po obliczeniu całki należy wstawić g(x) zamiast t.

13. Przykład. Obliczymy całki:
a)
∫ √
2x+ 5dx = 12

∫
(2x+5)′

√
2x+ 5dx = 12

∫ √
tdt|t=2x+5 = (12 ·

2
3

√
t3+C)|t=2x+5 = 13

√
(2x+ 5)3+C,

b)
∫
x2

1+x3dx =
1
3

∫
3x2
1+x3dx =

1
3

∫
(1+x3)′ 11+x3dx =

1
3

∫
1
t
dt|t=1+x3 = (13 ln |t|dt|)t=1+x3 =

1
3 ln |1+x

3|+C

oraz c)
∫
3 ln2 x−1
x
dx =

∫
ln′ x(3 ln2 x−1)dx =

∫
(3t2−1)dt|t=lnx = (t3−t+C)|t=lnx = ln3 x− lnx+C.

14. Uwaga. Całkować przez podstawienie można też ”w drugą stronę”:
∫
f(x)dx =

∫
f(g(t))g′(t)dx|t=g−1(x)

pod warunkiem, że istnieje ciągła funkcja odwrotna do funkcji g. Ten warunek jest spełniony np.
wtedy, gdy g jest ciągła i rosnąca lub ciągła i malejąca.

15. Przykład. Obliczymy całkę
∫ √
1− x2dx stosując podstawienie x = sin t, t ∈ [−π2 ,

π
2 ]. Funkcja sinus

określona na przedziale [−π2 ,
π
2 ] posiada funkcję odwrotną arcsin. Zatem z powyższej Uwagi wy-

nika, że
∫ √
1− x2dx =

∫
sin′(t) ·

√
1− sin2 tdt =

∫
cos2 tdt =

∫
cos 2t+1
2 dt =

1
4 sin 2t +

t
2 + C =

1
4 sin 2 arcsinx+

arcsinx
2 + C.

16. Twierdzenie (o całkowaniu przez części). Dla dowolnych funkcji różniczkowalnych f, g zachodzi rów-

ność
∫
f ′(x)g(x)dx = f(x)g(x)−

∫
f(x)g′(x)dx.

17. Przykład.
a)
∫
xexdx =

∫
(ex)′xdx = ex · x−

∫
ex · x′dx = ex · x− ex + C,

b)
∫
lnxdx =

∫
x′ lnxdx = x lnx−

∫
x · 1
x
dx = x lnx− x+ C.

18. Definicja. Jeśli funkcja f : [a, b] → R ma funkcję pierwotną F , to liczba
∫ b
a
f(x)dx = F (x)|ba =

F (b)− F (a) nazywa się całką oznaczoną funkcji f na przedziale [a, b].

19. Przykład. a)
∫ 1
0
x2dx = 13x

3|10 = 13 − 0 =
1
3 . b)

∫ 1
−1
x3dx = 14x

4|1−1 = 14 −
1
4 = 0.

20. Twierdzenie. Własności całki oznaczonej:

a) liniowość:
∫ b
a
cf(x)dx = c

∫ b
a
f(x)dx, c ∈ R oraz

∫ b
a
(f(x)± g(x))dx =

∫ b
a
f(x)dx±

∫ b
a
g(x)dx,

b) addytywność:
∫ b
a
f(x)dx =

∫ c
a
f(x)dx+

∫ b
c
f(x)dx, c ∈ [a, b].
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21. Przykład. Obliczymy całkę
∫ 1
−1
|x|dx korzystając z addytywności całki oznaczonej:

∫ 1
−1
|x|dx =

∫ 0
−1
|x|dx+∫ 1

0
|x|dx =

∫ 0
−1
− xdx+

∫ 1
0
xdx = −x22 |

0
−1 +

x2

2 |
1
0 =

1
2 +

1
2 = 1.

22. Twierdzenie o całkowaniu przez podstawienie dla całek oznaczonych. Dla dowolnej funkcji ciągłej f

i dowolnej funkcji różniczkowalnej g zachodzi równość
∫ b
a
f(g(x))g′(x)dx =

∫ g(b)
g(a)
f(t)dt.

23. Przykład.
∫ e
1

lnx
x
dx =

∫ e
1
ln′ x lnxdx =

∫ 1
0
ydy = y

2

2 |
1
0 =

1
2 .

24. Twierdzenie o całkowaniu przez części dla całek oznaczonych. Dla dowolnych funkcji różniczkowal-

nych f, g zachodzi równość
∫ b
a
f ′(x)g(x)dx = f(x)g(x)|ba −

∫ b
a
f(x)g′(x)dx.

25. Przykład.
∫ π
0
x cosxdx =

∫ π
0
x sin′ xdx = x sinx|π0 −

∫ π
0
sinxdx = 0− 2 = −2.

26. Twierdzenie. Jeśli funkcja f : [a, b] → R jest ciągła i przyjmuje tylko wartości nieujemne, to całka∫ b
a
f(x)dx jest równa polu obszaru ograniczonego od dołu osią odciętych, od góry wykresem funkcji

f , z lewej strony prostą x = a, a z prawej prostą x = b.

Dla dowodu w rozwiązaniu zadania o polu pod sinusoidą omawianym na początku wykładu wsta-
wiamy funkcję f zamiast funkcji sinus.

27. Przykład. Wyprowadzimy wzór na pole koła o promieniu 1. Obliczymy pole górnej połowy koła o
środku w punkcie (0, 0). Półkole to jest ograniczone z góry wykresem funkcji

√
1− x2, x ∈ [−1, 1], ob-

liczymy więc całkę
∫ 1
−1

√
1− x2dx. Całkę tę obliczymy jak w punkcie 15:

∫ 1
−1

√
1− x2dx = (14 sin 2t+

t
2)|
π/2
−π/2 =

π
2 . Zatem całe koło ma pole π.

28. Uwaga. Jeśli funkcja f : [a, b]→ R jest ciągła i przyjmuje wartości nieujemne na pewnych przedzia-

łach, a ujemne na innych, to interpretacja całki
∫ b
a
f(x)dx jako pole między wykresem funkcji f a

osią odciętych pozostaje prawdziwa, jeśli pola części leżących poniżej osi odciętych będziemy liczyć
ze znakiem minus.

29. Przykład.
∫ 2π
0
sinxdx = − cosx|2π0 = 0.

30. Twierdzenie. Jeśli funkcje d, g : [a, b] → R są ciągłe i dla każdego x ∈ [a, b] zachodzi nierówność

d(x) ¬ g(x), to całka
∫ b
a
g(x) − d(x)dx jest równa polu obszaru ograniczonego od dołu wykresem

funkcji d, od góry wykresem funkcji g, z lewej strony prostą x = a, a z prawej prostą x = b.

Dowód. Jeśli obie funkcje d, g przyjmują na [a, b] tylko wartości nieujemne, to pole obszaru między
ich wykresami otrzymamy odejmując pole pod wykresem d od pola pod wykresem g. Zatem wtedy
teza zachodzi. Jeśli pewne wartości funkcji d lub g są ujemne, to dodajemy do funkcji g i d taką
liczbę c, żeby obie te funkcje miały dodatnie wartości na przedziale [a, b]. Wykresy się przesuną do
góry, a pole obszaru zawartego pomiędzy nimi się nie zmieni. Różnica g(x)− d(x) też się nie zmieni,
zatem wtedy teza też zachodzi.

31. Uwaga. Pamiętamy, że prędkość chwilowa jest pochodną drogi po czasie. Teraz zauważmy, że wobec
tego droga jest funkcją pierwotną prędkości. Zatem przebytą drogę możemy ilustrować polem pod
wykresem prędkości. Podobnie ma się rzecz dla dowolnej funkcji i jej pochodnej.

Podamy teraz jeden z wielu przykładów zastosowań pomysłu omówionego powyżej.



Wprowadzenie do matematyki II, wykład 7, całka, 31.03.2025 4

32. Twierdzenie. Objętość bryły powstałej z obrotu wokół osi odciętych obszaru pod wykresem nieujem-

nej funkcji f na przedziale [a, b] jest równa V = π
∫ b
a
f(t)2dt.

Dowód. Oznaczmy przez V (z) objętość części tej bryły zawartej między płaszczyznami x = a, x = z.
Wtedy V ′(z) = lim

h→0
V (z+h)−V (z)

h
. Różnica w liczniku jest objętością plasterka grubości h zawartego mię-

dzy płaszczyznami x = z, x = z+h. Dla każdej liczby h oznaczmy przez H−(h) i H+(h) odpowiednio
najmniejszą i największą wartość funkcji między z, a z+h. Wtedy różnica V (z+h)−V (z) jest zawar-
ta między πh ·H−(h)2 a πh ·H+(h)2, zatem iloraz V (z+h)−V (z)h

jest zawarty między liczbami π ·H−(h)2
a π ·H+(h)2. Z ciągłości funkcji f wynika, że gdy h → 0, to H−(h) → f(z) oraz H+(h) → f(z). Z
twierdzenia o trzech funkcjach wynika, że V (z+h)−V (z)

h
→ πf(z)2. Zatem V ′(z) = πf(z)2, a to oznacza,

że funkcja V (x) jest funkcją pierwotną funkcji πf(x)2. Ponadto funkcja V spełnia warunek V (a) = 0.

Zatem V (z) = π
∫ z
a
f(x)2dx, w szczególności V (b) = π

∫ b
a
f(x)2dx.

33. Przykład. Kula o promieniu R powstaje z obrotu obszaru pod wykresem funkcji f(x) =
√
R2 − x2,

zatem objętość tej kuli jest równa π
∫ R
−R
R2 − x2dx = π(R2x− 13x

3|R−R) = π 43R
3.

Oprócz całki z funkcji określonej na przedziale [a, b] rozpatruje się dwa rodzaje całek niewłaściwych.

34. Definicja.
∫ ∞
a
f(x)dx = lim

b→+∞

∫ b
a
f(x)dx,

∫ b
−∞
f(x)dx = lim

a→−∞

∫ b
a
f(x)dx (jeśli ta granica istnieje).

35. Definicja.
∫ ∞
−∞
f(x)dx =

∫ c
−∞
f(x)dx+

∫ ∞
c
f(x)dx dla dowolnej liczby c ∈ R, jeśli obie całki istnieją.

36. Definicja. Jeśli lim
x→a+
f(x) = ±∞, to

∫ b
a
f(x)dx = lim

h→0+

∫ b
a+h
f(x)dx, jeśli ta granica istnieje.

37. Podobnie definiuje się całkę niewłaściwą, gdy lim
x→a−
f(x) = ±∞.

38. Uwaga. Jeśli całka niewłaściwa istnieje i jest liczbą, to mówimy, że dana całka jest zbieżna. Jeśli
granica nie istnieje lub nie jest liczbą, to całka nazywa się rozbieżna.

39. Przykład.
∫ ∞
0
e−xdx = lim

b→+∞

∫ b
a
f(x)dx = lim

b→+∞
(1− e−b) = 1. Oznacza to, że funkcja

f(x) =
{
e−x dla x ­ 0,
0 dla x < 0

jest tzw. gęstością prawdopodobieństwa. Jest to gęstość tzw. rozkładu

wykładniczego.

40. Przykład.
∫ 1
0

1√
x
dx = lim

h→0+

∫ 1
h

1√
x
dx = lim

h→0+
(2− 2

√
h) = 2.

41. Przykład. Można wykazać, że
∫ ∞
−∞
e−x

2
dx =

√
π. Całka ta ma duże znaczenie w teorii prawdopodo-

bieństwa.

42. Twierdzenie. Kryterium całkowe zbieżnosci szeregu. Jeśli funkcja f : [1,∞)→ [0,∞) jest malejąca,

to szereg
∞∑
n=1

f(n) i całka
∫ ∞
1
f(x)dx są jednocześnie zbieżne lub jednocześnie rozbieżne.

43. Przykład. Zbadamy zbieżność szeregu
∞∑
n=1

1
na
, gdzie a > 0 jest daną liczbą (por. wykład 2, punkt 13).

Funkcja f(x) = 1
xa
jest malejąca na przedziale [1,∞) i przyjmuje tylko wartości nieujemne. Całka∫ ∞

1

1
xa
dx jest zbieżna, gdy a > 1 i jest rozbieżna, gdy 0 < a ¬ 1. Zatem szereg

∞∑
n=1

1
na
też jest zbieżny,

gdy a > 1 i jest rozbieżny, gdy 0 < a ¬ 1.


