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1. Przykład (Interpretacja fizyczna). Przypomnijmy, że prędkość średnią uzyskaną przez poruszający
się obiekt określamy jako stosunek przebytej drogi do czasu, w którym ta droga została przebyta.
Niech funkcja f(t) przedstawia drogę przebytą przez poruszający się obiekt od ustalonego momentu
do chwili t. Wtedy iloraz f(t0+h)−f(t0)

h
oznacza prędkość średnią uzyskaną między chwilą t0 a chwilą

t0 + h. Przechodząc z tym ilorazem do granicy przy h → 0 otrzymujemy prędkość chwilową w
chwili t0. Zatem pochodna funkcji f(t) w punkcie t0, to prędkość chwilowa tego obiektu w chwili
t0. Ogólniej, jeśli funkcja f(t) przedstawia zależność jakiejś wielkości od czasu, to pochodna f(t0)
oznacza prędkość chwilową zmiany tej wielkości w chwili t0.

2. Lej w ziemi (lub dolina) ma kształt stożka o przekroju osiowym w kształcie trójkąta prostokątnego.
Do leja wpływa woda w tempie π metrów sześciennych na minutę. Obliczmy prędkość podnoszenia
się poziomu wody w chwili, gdy ten poziom osiągnął 9 metrów. Oznaczmy przez h(t) poziom wody
w leju w chwili t (czas mierzymy w minutach od momentu, gdy woda zaczęła się dostawać do leja).
Ilość wody w leju w chwili t możemy wyrazić na dwa sposoby, stąd wynika równość πt = 13πh(t)

3,
więc h(t) = 3

√
3t oraz h′(t) = 3

3( 3
√
3t)2
= 1
( 3
√
3t)2
. W chwili t0, gdy h(t0) = 9 = 3

√
3t0, mamy więc

h′(t0) = 1
( 3
√
3t0)2
= 1
81(m/min).

3. Definicja. Jeśli pochodna funkcji f w punkcie x0 istnieje i jest liczbą, to prosta przechodząca przez
punkt (x0, f(x0)) i mająca współczynnik kierunkowy równy f ′(x0) nazywa się prostą styczną do
wykresu funkcji f w punkcie (x0, f(x0)).

4. Wniosek. Niech f : (a, b) → R będzie funkcją różniczkowalną w punkcie x0 ∈ (a, b). Prosta styczna
w punkcie (x0, f(x0)) do wykresu funkcji f ma równanie y = f ′(x0)(x− x0) + f(x0).
Dowód. Równanie to przedstawia prostą, która przechodzi przez punkt (x0, f(x0)) oraz ma współ-
czynnik kierunkowy równy f ′(x0).

5. Przykład. Znajdziemy równanie prostej stycznej do wykresu funkcji f(x) = ln(1 + x) w punkcie
o odciętej x0 = 0. Obliczamy kolejno f(0) = 0, f ′(x) = 1

1+x , f
′(0) = 1. Zatem prosta styczna ma

równanie y = f ′(0)(x − 0) + f(0) = x. Warto porównać ten wynik z ważną granicą lim
x→0

ln(1+x)
x
= 1.

Licznik jest wartością funkcji w x, a mianownik jest wartością funkcji liniowej, której wykresem jest
styczna.

6. Przykład. Znajdziemy równanie prostej stycznej do wykresu funkcji f(x) = x lnx w punkcie (e, e).
Obliczamy kolejno f(e) = e, f ′(x) = ln x + 1, f ′(e) = 2. Zatem prosta styczna ma równanie y =
f ′(e)(x− e) + f(e) = 2(x− e) + e, czyli y = 2x− e.
W pobliżu punktu styczności punkty prostej stycznej leżą blisko punktów wykresu. Można tę wła-
sność wykorzystać do obliczania przybliżonych wartości funkcji.

7. Wniosek. Wzór przybliżony na wartości funkcji f w pobliżu punktu x0 (przy oznaczeniach, j.w.):
f(x0 + h) ≃ f(x0) + f ′(x0) · h. Wyrażenie f ′(x0) · h (jest to funkcja liniowa zmiennej h) nazywa się
różniczką funkcji f w punkcie x0.

8. Przykład. Obliczymy przybliżoną wartość
√
17. Niech f(x) =

√
x i niech x0 = 16. Wtedy f(x0) =

4, f ′(x0) = 1
2
√
16
= 18 , zatem z powyższego wzoru otrzymujemy przybliżenie

√
17 ≃ 4 + 18(17− 16) =

4.125. Przybliżenie z kalkulatora wynosi 4.1231056...

9. Twierdzenie Fermata. Jeżeli funkcja f : (a, b) → R jest różniczkowalna w punkcie c ∈ (a, b) i
przyjmuje w c swoją wartość największą (lub najmniejszą), to f ′(c) = 0.
Dowód. Niech h > 0. Wtedy f(c+h) ¬ f(c) (gdy f(c) jest wartością największą). Zatem f(c+h)−f(c)

h
¬

0. W granicy przy h dążącym do 0 ten znak się zachowa, otrzymujemy więc, że lim
h→0+

f(c+h)−f(c)
h

¬ 0.

Podobnie, f(c+h)−f(c)
h

­ 0, gdy h ¬ 0, a zatem lim
h→0−

f(c+h)−f(c)
h

­ 0. Jeśli więc pochodna funkcji f w c
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istnieje, to musi być równa 0. Interpretacja geometryczna tego twierdzenia jest następująca: jeśli w
najwyższym punkcie wykresu istnieje styczna, to ta styczna jest pozioma.

10. Wniosek. Niech f będzie funkcją ciągłą na przedziale [a, b] i różniczkowalną w (a, b). Wtedy funkcja f
przyjmuje swoją wartość największą albo na krańcu przedziału albo w punkcie zerowania pochodnej.
To samo dotyczy wartości najmniejszej.

Dowód. Z twierdzenia Weierstrassa wynika, że funkcja f przyjmuje swoją wartość największą w
pewnym punkcie przedziału [a, b]. Ta wartość jest przyjęta albo na krańcu przedziału albo wewnątrz.
Jeśli wewnątrz, to z twierdzenia Fermata wynika, że w punkcie zerowania pochodnej.

11. Znajdziemy wartość najmniejszą i wartość największą funkcji f(x) = 3x5 − 15x4 − 5x3 + 30x2 + 7
na przedziale [−2, 2]. Obliczamy pochodną: f ′(x) = 15x4 − 60x3 − 15x2 + 60x = 15x(x3 − 4x2 − x+
4) = 15x(x − 4)(x − 1)(x + 1). Miejscami zerowania pochodnej są liczby −1, 0, 1, 4. Do przedziału
[−2, 2] należą spośród nich −1, 0, 1. Obliczamy więc wartości funkcji f w tych punktach oraz na
krancach przedziału: f(−2) = −169, f(−1) = 24, f(0) = 7, f(1) = 20, f(2) = −57. Zatem wartością
najmniejszą na przedziale [−2, 2] jest najmniejsza z tych wartości, czyli liczba −169 = f(−2), a
wartością największą jest liczba 24 = f(−1).

12. Twierdzenie Rolle’a. Jeśli funkcja f jest ciągła na przedziale [a, b], różniczkowalna na przedziale (a, b)
oraz spełnia równość f(a) = f(b), to jej pochodna w pewnym punkcie c ∈ (a, b) ma wartość 0.
Dowód. Jeśli funkcja f jest stała, to jej pochodna jest równa 0 w każdym punkcie. Jeśli nie jest
stała, to z twierdzenia Weierstrassa wynika, że funkcja f przyjmuje swoją wartość największą lub
swoją wartość najmniejszą w pewnym punkcie c przedziału (a, b). Z twierdzenia Fermata wynika, że
f ′(c) = 0.

13. Twierdzenie Lagrange’a o wartości średniej. Jeżeli f : [a, b] → R jest funkcją ciągłą w przedziale
[a, b] i różniczkowalną w przedziale (a, b), to istnieje taki punkt c ∈ (a, b), że f ′(c) = f(b)−f(a)

b−a .

Dowód. Teza wynika z twierdzenia Rolle’a zastosowanego do funkcji f(x)− f(b)−f(a)
b−a · x.

Interpretacja geometryczna tego twierdzenia jest następująca: dla funkcji różniczkowalnej na prze-
dziale (a, b) i ciągłej na przedziale [a, b] prosta styczna w pewnym punkcie c ∈ (a, b) jest równoległa
do prostej łączącej punkty końcowe wykresu.

14. Wniosek. Niech f : I → R oznacza funkcję różniczkowalną w przedziale otwartym I. Wtedy:
a) jeśli f ′(x) = 0 dla każdego x ∈ I, to funkcja f jest stała.
b) jeśli f ′(x) > 0 dla każdego x ∈ I, to funkcja f jest rosnąca.
c) jeśli f ′(x) < 0 dla każdego x ∈ I, to funkcja f jest malejąca.
d) jeśli f jest niemalejąca na I, to f ′(x) ­ 0 dla każdego x ∈ I.
e) jeśli f jest nierosnąca na I, to f ′(x) ¬ 0 dla każdego x ∈ I.
Dowód a). Gdyby funkcja f nie była stała, to dla pewnych dwóch punktów a, b ∈ I mielibyśmy
f(b) ̸= f(a), ale wtedy istniałby taki punkt c leżący między a i b, że f ′(c) = f(b)−f(a)

b−a ̸= 0, co jest
sprzeczne z założeniem. Dowody punktów b, c są podobne, pozostawiam je jako ćwiczenie.

Dowód d). Jeśli istnieje taki punkt c ∈ I, że f ′(c) < 0, to dla dodatnich h dostatecznie bliskich 0,
wartość ilorazu różnicowego f(c+h)−f(c)

h
też musi być ujemna. Z tego wynika, że dla tych h zachodzi

nierówność f(c+ h) < f(c), co jest sprzeczne z założeniem, że f jest niemalejąca. Dowód punktu e)
jest podobny, pozostawiam go jako ćwiczenie.

15. Uwaga. Punkty a), b) i c) powyższego Wniosku są prawdziwe również dla funkcji ciągłych na prze-
dziale [a, b] i różniczkowalnych na (a, b).

16. Przykład. Implikacji w punkcie b) nie można odwrócić. Funkcja f(x) = x3 jest rosnąca na całym
zbiorze R, ale jej pochodna w punkcie x = 0 jest równa 0.



Wprowadzenie do matematyki II, wykład 5, pochodna 2, 17.03.2025 3

17. Przykład. Niech f(x) = x2 dla x ∈ R. Wtedy f ′(x) = 2x, zatem f ′(x) > 0 dla x > 0 oraz f ′(x) < 0
dla x < 0. Wynika z tego, że funkcja x2 jest rosnąca na przedziale [0,+∞) oraz jest malejąca na
przedziale (−∞, 0]. Oczywiście zgadza się to z naszymi wiadomościami ze szkoły.

18. Przykład. Znajdziemy przedziały monotoniczności funkcji f(x) = x lnx. Dziedziną jest przedział
(0,+∞). Obliczamy pochodną: f ′(x) = lnx + 1. Zatem f ′(x) > 0 ⇐⇒ lnx + 1 > 0 ⇐⇒ lnx >
−1 ⇐⇒ x > e−1. Podobnie, f ′(x) < 0 ⇐⇒ x ∈ (0, e−1). Zatem funkcja f jest rosnąca na
przedziale [e−1,+∞) oraz jest malejąca na przedziale (0, e−1].

19. Uwaga. Twierdzenie Lagrange’a i powyższy wniosek dotyczą funkcji określonych na przedziale. Funk-
cja h(x) = 1

x
ma wszędzie ujemną pochodną, ale nie jest funkcją malejącą. Dokładniej: h male-

je na przedziale (−∞, 0) oraz maleje na przedziale (0,+∞), ale nie maleje na swojej dziedzinie
Dh = (−∞, 0) ∪ (0,+∞) (bo np. −1 < 1, a h(−1) = −1 < 1 = h(1).

20. Definicja. Mówimy, że funkcja f : (a, b) → R ma w punkcie c ∈ (a, b) minimum (odpowiednio
maksimum) lokalne wtedy i tylko wtedy, gdy istnieje taka liczba δ > 0, że f(c) jest najmniejszą
(odpowiednio największą) wartością funkcji f na przedziale (c− δ, c+ δ). Lokalne minima i lokalne
maksima obejmuje się wspólną nazwą: lokalne ekstrema.

21. Uwaga. Z twierdzenia Fermata wynika, że zerowanie pochodnej w punkcie jest warunkiem koniecznym
istnienia ekstremum lokalnego funkcji różniczkowalnej w tym punkcie.

22. Twierdzenie (warunek dostateczny istnienia ekstremum). Funkcja różniczkowalna f : (a, b)→ R ma
w punkcie c ∈ (a, b) ekstremum lokalne jeśli f ′(c) = 0 oraz funkcja f ′ zmienia w c znak. Dokładniej,
jeśli istnieje taka liczba δ > 0, że f ′(x) ¬ 0 dla x ∈ (c − δ, c) oraz f ′(x) ­ 0 dla x ∈ (c, c + δ), to
funkcja f ma w c minimum lokalne, a jeśli istnieje taka liczba δ > 0, że f ′(x) ­ 0 dla x ∈ (c− δ, c)
oraz f ′(x) ¬ 0 dla x ∈ (c, c+ δ), to funkcja f ma w c maksimum lokalne.

23. Przykład. Funkcja f(x) = x3 − 3x ma w punkcie c1 = −1 maksimum lokalne, a w punkcie c2 = 1
minimum lokalne, bo jej pochodna f ′(x) = 3x2−3 jest dodatnia na przedziałach (−∞,−1), (1,+∞)
i jest ujemna na przedziale (−1, 1), zatem w punkcie c1 zmienia znak z dodatniego na ujemny, a w
punkcie c2 z ujemnego na dodatni.

Następujące twierdzenie jest uogólnieniem twierdzenia Lagrange’a o wartości średniej.

24. Twierdzenie Cauchy’ego. Jeżeli funkcje ciągłe f, g : [a, b]→ R są różniczkowalne na (a, b), przy czym
g(a) ̸= g(b) oraz g′(x) ̸= 0 dla każdego x ∈ (a, b), to istnieje taka liczba c ∈ (a, b), że f(b)−f(a)

g(b)−g(a) =
f ′(c)
g′(c) .

Dowód. Niech h(x) = f(x)− f(b)−f(a)
g(b)−g(a) ·g(x). Funkcja h jest ciągła na przedziale [a, b] i różniczkowalna w

(a, b), a ponadto ma równe wartości w punktach a i b: h(b)−h(a) = f(b)−f(a)− f(b)−f(a)
g(b)−g(a) (g(b)−g(a)) =

0. Zatem z twierdzenia Rolle’a wynika, że dla pewnej liczby c ∈ (a, b) zachodzi równość h′(c) = 0,
tzn. f ′(c) = f(b)−f(a)

g(b)−g(a) g
′(c). Dzieląc stronami przez liczbę g′(c) (różną od 0 z założenia) otrzymujemy

tezę.

Z twierdzeniem Cauchy’ego można związać następującą intuicję. Zapiszmy parę funkcji f(x), g(x)
jako jedną funkcję wektorową (f(x), g(x)). Taka funkcja opisuje na przykład położenie punktu na
płaszczyźnie w chwili x (funkcje f(x), g(x) oznaczają wtedy współrzędne kartezjańskie). Wtedy wek-
tor [f ′(x), g′(x)] jest wektorem prędkości poruszającego się punktu. Zatem równość z tezy oznacza,
że w pewnej chwili wektor prędkości jest równoległy do kierunku łączącego punkt początkowy z
punktem końcowym.


