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1. Przyktad (Interpretacja fizyczna). Przypomnijmy, ze predkosé $rednia uzyskana przez poruszajacy
sie obiekt okreslamy jako stosunek przebytej drogi do czasu, w ktorym ta droga zostata przebyta.
Niech funkcja f(t) przedstawia droge przebyta przez poruszajacy sie obiekt od ustalonego momentu
do chwili ¢t. Wtedy iloraz M oznacza predkos¢ $rednia uzyskang miedzy chwila ¢y a chwila
to + h. Przechodzac z tym ilorazem do granicy przy h — 0 otrzymujemy predkos¢ chwilows w
chwili 9. Zatem pochodna funkeji f(¢) w punkcie tg, to predkosé chwilowa tego obiektu w chwili
to. Ogolniej, jesli funkcja f(t) przedstawia zaleznosé jakiejs wielkosci od czasu, to pochodna f(ty)
oznacza predkosé chwilowa zmiany tej wielkosci w chwili £.

2. Lej w ziemi (lub dolina) ma ksztalt stozka o przekroju osiowym w ksztalcie trojkata prostokatnego.
Do leja wptywa woda w tempie m metréw szesciennych na minute. Obliczmy predko$é podnoszenia
sie poziomu wody w chwili, gdy ten poziom osiagnal 9 metréw. Oznaczmy przez h(t) poziom wody
w leju w chwili ¢ (czas mierzymy w minutach od momentu, gdy woda zaczela sie dostawaé do leja).
Ilo$¢ wody w leju w chwili ¢ mozemy wyrazi¢ na dwa sposoby, stad wynika réwnosé nt = %Fh(t>3,
wiec h(t) = /3t oraz h'(t) = 3(9/3@ = ({5/%)2. W chwili ¢, gdy h(ty) = 9 = /3tp, mamy wiec

)2
B (ty) = W = é(m/min).

3. Definicja. Jesli pochodna funkcji f w punkcie z( istnieje i jest liczbg, to prosta przechodzaca przez
punkt (zo, f(x¢)) i majaca wspélezynnik kierunkowy réowny f'(zg) nazywa sie prosta styczng do
wykresu funkcji f w punkcie (xq, f(z0)).

4. Wniosek. Niech f : (a,b) — R bedzie funkcja rézniczkowalna w punkcie zy € (a,b). Prosta styczna
w punkcie (g, f(x9)) do wykresu funkeji f ma rownanie y = f'(xo)(z — xo) + f(x0).

Dow6d. Réwnanie to przedstawia prosta, ktora przechodzi przez punkt (zg, f(zo)) oraz ma wspot-
czynnik kierunkowy réwny f’(xo).

5. Przykltad. Znajdziemy réwnanie prostej stycznej do wykresu funkcji f(z) = In(1 + z) w punkcie
o odcietej g = 0. Obliczamy kolejno f(0) = 0, f'(x) = 1J%x,f’(O) = 1. Zatem prosta styczna ma
réwnanie y = f'(0)(x — 0) + f(0) = z. Warto poréwnaé ten wynik z wazng granica i@)w = 1.
Licznik jest wartoscig funkcji w x, a mianownik jest wartoscia funkcji liniowej, ktorej wykresem jest
styczna.

6. Przyklad. Znajdziemy réwnanie prostej stycznej do wykresu funkcji f(z) = xlnz w punkcie (e, e).
Obliczamy kolejno f(e) = e, f'(x) = Inz + 1, f'(e) = 2. Zatem prosta styczna ma réwnanie y =
flle)(x—e)+ fle) =2(x —e) +e, czyliy =2 —e.

W poblizu punktu stycznosci punkty prostej stycznej lezg blisko punktéw wykresu. Mozna te wia-
snos¢ wykorzysta¢ do obliczania przyblizonych wartosci funkcji.

7. Wniosek. Wzér przyblizony na wartosci funkeji f w poblizu punktu zg (przy oznaczeniach, j.w.):
flzo+ h) >~ f(xo) + f'(x0) - h. Wyrazenie f'(zo) - h (jest to funkcja liniowa zmiennej h) nazywa si¢
rozniczky funkeji f w punkcie xg.

8. Przyktad. Obliczymy przyblizong warto$¢ v/17. Niech f(z) = /2 i niech 2o = 16. Wtedy f(z¢) =

4, f'(xg) = 27% = &, zatem z powyzszego wzoru otrzymujemy przyblizenie V17 ~ 4 4 £(17 — 16) =

4.125. Przyblizenie z kalkulatora wynosi 4.1231056...

9. Twierdzenie Fermata. Jezeli funkcja f : (a,b) — R jest rézniczkowalna w punkcie ¢ € (a,b) i
przyjmuje w ¢ swoja warto$¢ najwieksza (lub najmniejsza), to f’(¢) = 0.

. . . . . fleth)=f(c)
Dowdd. Niech h > 0. Wtedy f(c+h) < f(c) (gdy f(c) jest wartoscia najwieksza). Zaterﬁ m
h

Podobnie, w > 0, gdy h < 0, a zatem li%l_w > 0. Jedli wiec pochodna funkcji f w ¢

N
S/

0. W granicy przy h dazacym do 0 ten znak sie zachowa, otrzymujemy wiec, ze th(I)1+
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istnieje, to musi by¢ réwna 0. Interpretacja geometryczna tego twierdzenia jest nastepujaca: jesli w
najwyzszym punkcie wykresu istnieje styczna, to ta styczna jest pozioma.

Whiosek. Niech f bedzie funkcja ciagla na przedziale [a, b] i rézniczkowalna w (a, b). Wtedy funkcja f
przyjmuje swoja warto$¢ najwieksza albo na krancu przedziatu albo w punkcie zerowania pochodnej.
To samo dotyczy warto$ci najmniejsze;j.

Dowdd. Z twierdzenia Weierstrassa wynika, ze funkcja f przyjmuje swoja wartos¢ najwieksza w
pewnym punkcie przedziatu [a, b]. Ta warto$¢ jest przyjeta albo na krancu przedziatu albo wewnatrz.
Jesli wewnatrz, to z twierdzenia Fermata wynika, ze w punkcie zerowania pochodne;j.

Znajdziemy warto$¢ najmniejsza i warto$é najwieksza funkcji f(z) = 3x° — 152% — 52® + 302® + 7
na przedziale [—2,2]. Obliczamy pochodna: f'(z) = 15z* — 6023 — 152% + 60z = 15x(23 — 42® — z +
4) = 15z(x — 4)(z — 1)(z + 1). Miejscami zerowania pochodnej sa liczby —1,0, 1,4. Do przedziatu
[—2,2] naleza sposréd nich —1,0,1. Obliczamy wiec wartosci funkeji f w tych punktach oraz na
krancach przedziatu: f(—2) = —169, f(—1) = 24, f(0) = 7, f(1) = 20, f(2) = —57. Zatem wartoscia
najmniejsza na przedziale [—2,2] jest najmniejsza z tych wartosci, czyli liczba —169 = f(—2), a
wartoscia najwieksza jest liczba 24 = f(—1).

Twierdzenie Rolle’a. Jesli funkcja f jest ciagla na przedziale [a, b], r6zniczkowalna na przedziale (a, b)
oraz spelnia réwnosé f(a) = f(b), to jej pochodna w pewnym punkcie ¢ € (a,b) ma wartosé 0.

Dowodd. Jedli funkcja f jest stata, to jej pochodna jest rowna 0 w kazdym punkcie. Jedli nie jest
stata, to z twierdzenia Weierstrassa wynika, ze funkcja f przyjmuje swoja warto$¢ najwieksza lub
swoja warto$¢ najmniejsza w pewnym punkcie ¢ przedziatu (a,b). Z twierdzenia Fermata wynika, ze

(c) = 0.

Twierdzenie Lagrange’a o wartosci $redniej. Jezeli f : [a,b] — R jest funkcja ciagta w przedziale

C o . e . . _ f(®)=f(a)
la, b] i rézniczkowalng w przedziale (a,b), to istnieje taki punkt ¢ € (a,b), ze f'(c) = Z5=2%.
Dowdd. Teza wynika z twierdzenia Rolle’a zastosowanego do funkeji f(z) — W - X

Interpretacja geometryczna tego twierdzenia jest nastepujaca: dla funkcji rézniczkowalnej na prze-
dziale (a,b) i ciaglej na przedziale [a, b] prosta styczna w pewnym punkcie ¢ € (a,b) jest rownolegla
do prostej taczacej punkty koncowe wykresu.

Wnhiosek. Niech f : I — R oznacza funkcje rézniczkowalng w przedziale otwartym I. Wtedy:
) jesli f'(z) = 0 dla kazdego x € I, to funkcja f jest stata.

) jesli f'(z) > 0 dla kazdego = € I, to funkcja f jest rosnaca.

c) jesli f'(z) < 0 dla kazdego x € I, to funkcja f jest malejaca.

d) jesli f jest niemalejaca na I, to f'(z) > 0 dla kazdego x € 1.

e) jesli f jest nierosnaca na I, to f'(x) < 0 dla kazdego = € I.

a
b

Dowéd a). Gdyby funkcja f nie byla stala, to dla pewnych dwoch punktéw a,b € I mielibySmy
f(b) # f(a), ale wtedy istniatby taki punkt ¢ lezacy miedzy a i b, ze f'(c) = W # 0, co jest
sprzeczne z zalozeniem. Dowody punktéw b, ¢ sa podobne, pozostawiam je jako ¢wiczenie.

Dowdd d). Jedli istnieje taki punkt ¢ € I, ze f'(c¢) < 0, to dla dodatnich h dostatecznie bliskich 0,
wartos¢ ilorazu réznicowego w tez musi by¢ ujemna. Z tego wynika, ze dla tych h zachodzi
nieréwnos¢ f(c+ h) < f(c), co jest sprzeczne z zalozeniem, ze f jest niemalejaca. Dow6d punktu e)
jest podobny, pozostawiam go jako ¢wiczenie.

Uwaga. Punkty a), b) i ¢) powyzszego Wniosku sa prawdziwe réwniez dla funkeji ciagltych na prze-
dziale [a, b] i rézniczkowalnych na (a, b).

Przyklad. Implikacji w punkcie b) nie mozna odwrécié. Funkcja f(x) = 23 jest rosnaca na catym
zbiorze R, ale jej pochodna w punkcie z = 0 jest réwna 0.
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Przyktad. Niech f(z) = 2? dla x € R. Wtedy f'(z) = 2z, zatem f'(x) > 0 dlaz > 0 oraz f'(z) <0
dla z < 0. Wynika z tego, ze funkcja z? jest rosngca na przedziale [0, +00) oraz jest malejaca na
przedziale (—oo, 0]. Oczywiscie zgadza si¢ to z naszymi wiadomosciami ze szkoty.

Przyktad. Znajdziemy przedzialy monotonicznosci funkeji f(z) = xIlnxz. Dziedzina jest przedziat
(0, +00). Obliczamy pochodna: f'(x) = Inx + 1. Zatem f'(x ) >0 < Inr+1>0 <= Inzx >
—1 <= =z > ¢! Podobnie, f'(z) < 0 <= =x € (0,e!). Zatem funkcja f jest rosnaca na
przedziale [e™!, +00) oraz jest malejaca na przedziale (0, e 1].

Uwaga. Twierdzenie Lagrange’a i powyzszy wniosek dotyczg funkcji okreslonych na przedziale. Funk-
cja h(z) = % ma wszedzie ujemna pochodna, ale nie jest funkcja malejaca. Doktadniej: A male-
je na przedziale (—o0,0) oraz maleje na przedziale (0,400), ale nie maleje na swojej dziedzinie

Dy, = (—00,0) U (0,400) (bonp. =1 < 1,a h(—1) = =1 < 1= h(1).

Definicja. Méwimy, ze funkcja f : (a,b) — R ma w punkcie ¢ € (a,b) minimum (odpowiednio
maksimum) lokalne wtedy i tylko wtedy, gdy istnieje taka liczba § > 0, ze f(c) jest najmniejsza
(odpowiednio najwicksza) wartoscia funkeji f na przedziale (¢ — d, ¢ + 9). Lokalne minima i lokalne
maksima obejmuje sie wspolng nazwa: lokalne ekstrema.

Uwaga. Z twierdzenia Fermata wynika, ze zerowanie pochodnej w punkcie jest warunkiem koniecznym
istnienia ekstremum lokalnego funkcji rozniczkowalnej w tym punkcie.

Twierdzenie (warunek dostateczny istnienia ekstremum). Funkcja rézniczkowalna f : (a,b) — R ma
w punkcie ¢ € (a,b) ekstremum lokalne jesli f'(¢) = 0 oraz funkcja f’ zmienia w ¢ znak. Doktadniej,
jesli istnieje taka liczba 6 > 0, ze f'(x) < 0 dla z € (¢ — d,¢) oraz f'(z) > 0 dla x € (¢,c+ ), to
funkcja f ma w ¢ minimum lokalne, a jesli istnieje taka liczba § > 0, ze f'(z) > 0 dla z € (¢ — J,¢)
oraz f'(x) < 0dla z € (¢, ¢+ ), to funkcja f ma w ¢ maksimum lokalne.

Przyktad. Funkcja f(z) = 2® — 3z ma w punkcie ¢; = —1 maksimum lokalne, a w punkcie ¢, = 1
minimum lokalne, bo jej pochodna f’(z) = 3x? — 3 jest dodatnia na przedziatach (—oo, —1), (1, +00)
i jest ujemna na przedziale (—1,1), zatem w punkcie ¢; zmienia znak z dodatniego na ujemny, a w
punkcie ¢y z ujemnego na dodatni.

Nastepujace twierdzenie jest uogélnieniem twierdzenia Lagrange’a o wartosci Sredniej.

Twierdzenie Cauchy’ego. Jezeli funkcje ciagte f, g : [a,b] — R sa rézniczkowalne na (a, b), przy czym

g(a) # g(b) oraz ¢'(x) # 0 dla kazdego x € (a,b), to istnieje taka liczba ¢ € (a,b), ze ];Ezg f((a)) = g,éz)).

Dowdéd. Niech h(x) = f(x) —%-g(m). Funkcja h jest ciagta na przedziale [a, b] i r6zniczkowalna w

(a,b), a ponadto ma réwne wartoéci w punktach a i b: h(b)—h(a) = f(b)—f(a)—%(g(b)—g(a)) =

0. Zatem z twierdzenia Rolle’a wynika, ze dla pewnej liczby ¢ € (a,b) zachodzi réwnosé h'(c) = 0,

tzn. f'(c) = ggz;iﬁ: ((a)) g'(c). Dzielgc stronami przez liczbe ¢'(¢) (rézna od 0 z zatozenia) otrzymujemy
teze.

Z twierdzeniem Cauchy’ego mozna zwiazaé nastepujaca intuicje. Zapiszmy pare funkcji f(x), g(z)
jako jedna funkcje wektorowa (f(x),g(x)). Taka funkcja opisuje na przyklad polozenie punktu na
ptaszczyznie w chwili  (funkcje f(z), g(x) oznaczaja wtedy wspétrzedne kartezjanskie). Wtedy wek-
tor [f'(z), ¢'(x)] jest wektorem predkosci poruszajacego sie punktu. Zatem réwnosé z tezy oznacza,
ze w pewnej chwili wektor predkosci jest rownolegly do kierunku taczacego punkt poczatkowy z
punktem koncowym.



