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1. Definicja. Funkcja f określona na przedziale D nazywa się ciągła w punkcie x0 ∈ D wtedy i tylko
wtedy, gdy lim

x→x0
f(x) istnieje oraz lim

x→x0
f(x) = f(x0). Funkcja f nazywa się lewostronnie ciągła w

punkcie x0 ∈ D wtedy i tylko wtedy, gdy lim
x→x0−

f(x) istnieje oraz lim
x→x0−

f(x) = f(x0). Funkcja f

nazywa się prawostronnie ciągła w punkcie x0 ∈ D wtedy i tylko wtedy, gdy lim
x→x0+

f(x) istnieje oraz

lim
x→x0+

f(x) = f(x0).

2. Definicja. Funkcja f określona na przedziale D nazywa się ciągła na tym przedziale wtedy i tylko
wtedy, gdy f jest ciągła w każdym punkcie tego przedziału (a w punktach na krańcach jednostronnie
ciągła – o ile te krańce należą do przedziału).

3. Przykład. Funkcje 1
x
oraz tg x są ciągłe w każdym punkcie swoich dziedzin.

4. Twierdzenie (własności funkcji ciągłych).
a. Suma, różnica, iloczyn, iloraz i złożenie funkcji ciągłych jest funkcją ciągłą.
b. Funkcja rosnąca i ciągła na przedziale (lub malejąca i ciągła) ma funkcję odwrotną, która też jest
funkcją ciągłą.
c. Wielomiany, funkcje trygonometryczne, logarytmiczne i wykładnicze są funkcjami ciągłymi.
d. Jeśli funkcja f jest ciągła na przedziale D oraz f(x0) > 0 dla pewnego x0 ∈ D, to istnieje taka
liczba δ > 0, że f(x) > 0 dla wszystkich x ∈ (x0 − δ, x0 + δ).

5. Wniosek. Jeśli ciąg (an) jest zbieżny do granicy a, a ciąg (bn) jest zbieżny do granicy b i nie jest
prawdą, że a = b = 0 ani że a = +∞, b = 0 ani a = 1, b = ±∞, to ciąg (abnn ) jest zbieżny do ab.
Dowód. Zapisujemy ”kłopotliwą potęgę” abnn jako potęgę o podstawie e: a

bn
n = e

bn ln an , teza wynika z
ciągłości funkcji wykładniczej i funkcji logarytmicznej.

6. Przykład. Znajdziemy granicę lim
n→∞
(1 + 2n−3

n2+5n+1)
4n: (1 + 2n−3

n2+5n+1)
4n = e4n ln(1+

2n−3
n2+5n+1

) → e8, bo

4n ln(1 + 2n−3
n2+5n+1) =

4n ln(1+ 2n−3
n2+5n+1

)
2n−3

n2+5n+1

· 2n−3
n2+5n+1 , a

ln(1+ 2n−3
n2+5n+1

)
2n−3

n2+5n+1

→ 1 i 4n(2n−3)
n2+5n+1 → 8.

7. Twierdzenie. Zbiór wartości funkcji ciągłej określonej na przedziale jest przedziałem lub zbiorem jed-
nopunktowym. Inaczej mówiąc, każda funkcja ciągła f na przedziale [a, b] ma następującą własność
Darboux: dla dowolnej liczby z leżącej między f(a) a f(b) istnieje taki punkt c ∈ [a, b], że f(c) = z.

8. Wniosek. Każdy wielomian w nieparzystego stopnia ma pierwiastek rzeczywisty.

Dowód. Jeśli w(x) = anxn+an−1xn−1+...+a0 jest wielomianem, a jego stopień jest liczbą nieparzystą
oraz np. an > 0, to lim

x→+∞
w(x) = lim

x→+∞
xn(an+

an−1
x
+ ...+ a0

xn
) = +∞ oraz lim

x→−∞
w(x) = lim

x→−∞
xn(an+

an−1
x
+ ...+ a0

xn
) = −∞. Z tego wynika, że dla pewnych punktów x0, x1 mamy w(x0) < 0, w(x1) > 0.

Wielomian w jest funkcją ciągłą, więc ma własność Darboux, zatem w pewnym punkcie leżącym
pomiędzy wspomnianymi punktami ma wartość 0. Gdy an < 0, to dowód jest podobny.

9. Twierdzenie Weierstrassa. Funkcja ciągła na przedziale domkniętym i ograniczonym przyjmuje w
pewnych punktach tego przedziału swoją wartość najmniejszą i swoją wartość największą. Dokład-
niej, jeżeli funkcja f jest ciągła na przedziale [a, b], to istnieją takie punkty c, d ∈ [a, b], że dla
wszystkich x ∈ [a, b] zachodzą nierówności f(c) ¬ f(x) ¬ f(d).

10. Założenia o przedziale oraz funkcji są konieczne, o czym świadczą przykłady funkcji ciągłej f(x) = x

określonej na (niedomkniętym) przedziale (0, 1) i funkcji nieciągłej g(x) =
{
|x| dla x ∈ (−1, 0) ∪ (0, 1),
1/2 dla x ∈ {−1, 0, 1}

określonej na przedziale domkniętym [−1, 1]. Obie te funkcje nie przyjmują swoich wartości najwięk-
szych i najmniejszych.
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11. Przypomnienie. Niech D ⊂ R będzie dowolnym podzbiorem i niech f : D → R będzie funkcją okre-
śloną na D. Wtedy D nazywa się dziedziną funkcji f , elementy dziedziny nazywają się argumentami
funkcji f . Wykresem funkcji f nazywa się zbiór punktów płaszczyzny postaci (x, f(x)), gdzie x ∈ D
jest dowolnym argumentem funkcji f .

12. Przykład. Wykresem funkcji liniowej f(x) = ax+b jest linia prosta. Współczynnik kierunkowy a jest
równy stosunkowi przyrostu wartości funkcji f na przedziale do długości tego przedziału. Mierzy on
szybkość wzrostu (lub malenia, jeśli jest ujemny) funkcji f . Pochodna, o której teraz będzie mowa,
pełni podobną rolę w odniesieniu do znacznie bardziej ogólnych funkcji niż funkcja liniowa.

13. Definicja. Niech a < x0 < b będą liczbami i niech f oznacza funkcję określoną na zbiorze zawierają-
cym (a, b). Pochodną f ′(x0) funkcji f w punkcie x0 nazywamy granicę lim

h→0
f(x0+h)−f(x0)

h
. Stosuje się

też oznaczenie df
dx
(x0).

14. Przykład. Obliczymy z definicji pochodną funkcji f(x) = x2 w punkcie x0 = 1: f ′(1) = lim
h→0

(1+h)2−12
h

=

lim
h→0

2h+h2
h
= lim
h→0
(2 + h) = 2.

15. Uwaga. Pochodna funkcji f w punkcie x może nie istnieć, może też być równa +∞ lub −∞. Jeśli
pochodna istnieje i jest liczbą, to funkcja f nazywa się wtedy różniczkowalna w punkcie x. Funkcja
f : (a, b) → R nazywa się różniczkowalna w przedziale (a, b), jeśli jest różniczkowalna w każdym
punkcie tego przedziału. Jeśli funkcja f jest różniczkowalna w przedziale (a, b), to przyporządkowanie
x 7→ f ′(x) określa funkcję pochodną f ′ funkcji f .

16. Twierdzenie (o pochodnych funkcji elementarnych).
1. (xa)′ = axa−1 dla a ∈ R i dla dowolnego punktu x z dziedziny funkcji xa;
2. (sinx)′ = cosx dla x ∈ R;
3. (cosx)′ = − sinx dla x ∈ R;
4. (ex)′ = ex dla x ∈ R;
5. (lnx)′ = 1

x
dla x > 0.

Dowód. 2. (sinx)′ = lim
h→0

sin(x+h)−sin(x)
h

= lim
h→0

sin(x+h2+
h
2 )−sin(x+

h
2−
h
2 )

h
= lim
h→0

2 sin(h2 ) cos(x+
h
2 )

h
= lim
h→0

sin(h2 )
h
2
cos(x+

h
2 ) = cosx, bo pierwszy czynnik dąży do 1(ważne granice), a drugi do cosx (ciągłość funkcji cos).
Podobnie dowodzi się 3.

4. (ex)′ = lim
h→0

ex+h−ex
h
= lim
h→0
ex · (e

h−1)
h
= ex (ważne granice).

5. (lnx)′ = lim
h→0

ln(x+h)−lnx
h

= lim
h→0

ln x+h
x

h
= lim
h→0

ln(1+h
x
)

h
x

· 1
x
= 1
x
(znowu ważne granice).

1. Niech a ∈ R będzie dowolną liczbą. (xa)′ = (ea lnx)′ = lim
h→0

ea ln(x+h)−ea ln x
h

= lim
h→0
ea lnx · ea ln(1+

h
x )−1
h

=

lim
h→0
ea lnx · eln(1+

h
x )−1

ln(1+h
x
)
· ln(1+

h
x
)

h
x

1
x
= ea lnx · 1 · 1 · 1

x
= ax · 1

x
= axa−1 (dwa razy ważne granice).

17. Wniosek. 1. c′ = 0 dla dowolnej stałej c ∈ R.2. (ax)′ = ax ln a dla a > 0, a ̸= 1.3. (loga x)′ = 1
x ln a dla

a > 0, a ̸= 1.
Dowód. 1. Niech c(x) = c, wtedy c′(x) = lim

h→0
c(x+h)−c(x)

h
= lim
h→0

c−c
h
= lim
h→0

0
h
= 0. 2, 3. Ćwiczenie.

18. Twierdzenie. Funkcja różniczkowalna w punkcie x jest ciągła w punkcie x.

Dowód. Skoro funkcja f jest różniczkowalna w punkcie x, to granica f ′(x) = lim
h→0

f(x+h)−f(x)
h

istnieje i

jest liczbą. Zatem lim
h→0
(f(x+h)−f(x)) = lim

h→0
h· f(x+h)−f(x)

h
= 0·f ′(x) = 0. Zatem lim

h→0
f(x+h) = f(x),

czyli lim
z→x
f(z) = f(x).
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19. Twierdzenie (o arytmetycznych własnościach pochodnej). Niech dane będą funkcje f, g : (a, b)→ R,
różniczkowalne w punkcie x ∈ (a, b) i niech c ∈ R. Wtedy:
1. (f ± g)′(x) = f ′(x)± g′(x);
2. (cf)′(x) = c · f ′(x);
3. (fg)′(x) = f ′(x)g(x) + f(x)g′(x);
4. jeśli g(x) ̸= 0, to

(
f
g

)′
(x) = f

′(x)g(x)−f(x)g′(x)
(g(x))2 .

Dowód równości 1 i 3, dwie pozostałe zostawiam jako ćwiczenie.

1. (f +g)′(x) = lim
h→0

(f+g)(x+h)−(f+g)(x)
h

= lim
h→0

f(x+h)−f(x)+g(x+h)−g(x)
h

= lim
h→0

f(x+h)−f(x)
h

+ lim
h→0

g(x+h)−g(x)
h

=

f ′(x) + g′(x).

3. (fg)′(x) = lim
h→0

(fg)(x+h)−(fg)(x)
h

= lim
h→0

f(x+h)g(x+h)−f(x)g(x+h)+f(x)g(x+h)−f(x)g(x)
h

=

= lim
h→0

f(x+h)−f(x)
h

· g(x+ h) + lim
h→0
f(x)g(x+h)−g(x)

h
= f ′(x)g(x) + f(x)g′(x).

20. Przykład.
1. (x2 + lnx− 1)′ = (x2)′ + (lnx)′ − 1′ = 2x+ 1

x
;

2. (5x3)′ = 5(x3)′ = 5 · 3x2 = 15x2;
3. (x2 sinx)′ = (x2)′ sinx+ x2(sinx)′ = 2x sinx+ x2 cosx;
4. ( e

x

x
)′ = (e

x)′·x−ex·x′
x2

= e
x·x−ex
x2
= e

x(x−1)
x2
.

21. Niech f : X → Y, g : Y → Z będą dowolnymi funkcjami. Przypomnijmy, że złożeniem funkcji f oraz
g nazywamy funkcję g ◦ f określoną wzorem (g ◦ f)(x) = g(f(x)) dla x ∈ X. Funkcja g nazywa się
funkcją zewnętrzną, a funkcja f funkcją wewnętrzną.

22. Przykład. Jeśli f(x) = sin x, a g(x) = ex, to (g ◦ f)(x) = esinx, a (f ◦ g)(x) = sin(ex).

23. Twierdzenie (o pochodnej złożenia). Niech dana będzie funkcja f : (a, b)→ (c, d) różniczkowalna w
punkcie x ∈ (a, b) oraz funkcja g : (c, d)→ R różniczkowalna w punkcie f(x) ∈ (c, d). Wtedy funkcja
g ◦ f , określona wzorem (g ◦ f)(x) = g(f(x)), jest różniczkowalna w punkcie x oraz (g ◦ f)′(x) =
g′(f(x)) · f ′(x).

Dowód. (g ◦ f)′(x) = lim
h→0

(g◦f)(x+h)−(g◦f)(x)
h

= lim
h→0

g(f(x+h))−g(f(x))
h

= lim
h→0

g(f(x+h))−g(f(x))
f(x+h)−f(x) ·

f(x+h)−f(x)
h

=

g′(f(x)) · f ′(x).

24. Przykład. Znajdziemy funkcję pochodną funkcji
√
3x2 + x+ 1. Funkcją zewnętrzną jest g(x) =

√
x =

x1/2, a funkcją wewnętrzną f(x) = 3x2 + x + 1. Pochodne tych funkcji są równe: g′(x) = 12x
−1/2 =

1
2
√
x
, f ′(x) = 6x+ 1. Zatem (

√
3x2 + x+ 1)′ = (g ◦ f)′(x) = g′(f(x)) · f ′(x) = 1

2
√
3x2+x+1

· (6x+ 1).

25. Twierdzenie. Niech f : (a, b)→ (c, d) będzie ciągłą funkcją różnowartościową przekształcającą (a, b)
na (c, d), która ma pochodną w punkcie x ∈ (a, b) i to różną od 0. Wtedy funkcja f−1 jest różnicz-
kowalna w punkcie f(x) oraz (f−1)′(f(x)) = 1

f ′(x) .

26. Przykład. Funkcja tangens traktowana jako funkcja tg : (−π2 ,
π
2 ) → R ma funkcję odwrotną arcus

tangens, arctg : R → (−π2 ,
π
2 ). Mamy wtedy równość arctg(tg(x)) = x dla każdego x ∈ (−

π
2 ,
π
2 ).

Różniczkując ją stronami ze względu na zmienną x otrzymujemy równość arctg′(tg(x)) · tg′(x) = 1,
zatem arctg′(tg(x)) · 1

cos2 x = 1. Wynika z niej, że arctg
′(tg x) = cos2 x = cos2 x

cos2 x+sin2 x =
1

1+tg2 x .
Podstawiając t = tg x otrzymujemy równość arctg′(t) = 1

1+t2 , w której możemy zmienić t na x i
dostać arctg′(x) = 1

1+x2 .

27. Przykład. Funkcja sinus traktowana jako funkcja sin : [−π2 ,
π
2 ]→ [−1, 1] ma funkcję odwrotną arcus

sinus, arcsin : [−1, 1]→ (−π2 ,
π
2 ) oraz arcsin

′(x) = 1√
1−x2 . Sprawdzenie zostawiam jako ćwiczenie.


