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1. Definicja (Heinego granicy funkcji w punkcie). Niech a < x0 < b będą liczbami rzeczywistymi i
niech f oznacza funkcję określoną na zbiorze zawierającym (a, x0) ∪ (x0, b). Niech g będzie liczbą
rzeczywistą lub jednym z symboli −∞,+∞. Mówimy, że funkcja f ma w punkcie x0 granicę równą
g wtedy i tylko wtedy, gdy dla każdego ciągu (xn) punktów xn ∈ (a, x0) ∪ (x0, b) zbieżnego do x0
zachodzi równość lim

n→∞
f(xn) = g. Piszemy wtedy lim

x→x0
f(x) = g.

2. Uwaga. Funkcja f może (ale nie musi) być określona w punkcie x0. Nawet jeśli f ma wartość w
punkcie x0, to ta wartość nie ma wpływu na jej granicę, bo w definicji granicy rozpatrujemy tylko
ciągi o wyrazach różnych od x0.

3. Przykład. lim
x→2

2x3−x+4
x2+x = 3, bo dla dowolnego ciągu punktów xn ̸= 2 zbieżnego do 2, ciąg

2x3n−xn+4
x2n+xn

ma granicę 3 (por. tw. o operacjach algebraicznych dla ciągów).

4. Przykład. lim
x→4

x2−x−12√
x−2 = 28, bo dla dowolnego ciągu punktów xn ̸= 4 zbieżnego do 4, limn→∞

x2n−xn−12√
xn−2 =

lim
n→∞

(xn−4)(xn+3)(
√
xn+2)

xn−4 = 28.

5. Przykład. lim
x→0

sinx
x
= 1, bo dla x ∈ (−π2 , 0) ∪ (0,

π
2 ) zachodzi nierówność

√
1− x2 ¬ sinx

x
¬ 1, zatem

dla dowolnego ciągu xn → 0 o wyrazach różnych od 0, począwszy od pewnego miejsca, zachodzą
nierówności

√
1− x2n ¬ sinxnxn ¬ 1, z twierdzenia o trzech ciągach wynika więc, że

sinxn
xn
→ 1.

6. Definicja (Heinego granicy funkcji w nieskończoności). Niech a będzie liczbą rzeczywistą i niech f
oznacza funkcję określoną na zbiorze zawierającym przedział (a,+∞). Niech g będzie liczbą rzeczy-
wistą lub jednym z symboli −∞,+∞. Mówimy, że funkcja f ma w +∞ granicę równą g wtedy i
tylko wtedy, gdy dla każdego ciągu (xn) punktów xn ∈ (a,∞) rozbieżnego do +∞ zachodzi równość
lim
n→∞
f(xn) = g. Piszemy wtedy lim

x→+∞
f(x) = g.

7. Przykład. lim
x→+∞

3−2x
x+4 = −2, bo dla dowolnego ciągu xn →∞ o wyrazach różnych od −4, z twierdzenia

o operacjach algebraicznych wynika więc, że 3−2xn
xn+4

→ −2.

8. Definicja (Heinego granicy funkcji w minus nieskończoności). Niech a będzie liczbą rzeczywistą i
niech f oznacza funkcję określoną na zbiorze zawierającym przedział (−∞, a). Niech g będzie liczbą
rzeczywistą lub jednym z symboli −∞,+∞. Mówimy, że funkcja f ma w −∞ granicę równą g wtedy
i tylko wtedy, gdy dla każdego ciągu (xn) punktów xn ∈ (−∞, a) rozbieżnego do −∞ zachodzi
równość lim

n→∞
f(xn) = g. Piszemy wtedy lim

x→−∞
f(x) = g.

Granicę funkcji można określić inaczej. Poniżej podaję tylko przypadek szczególny granicy właściwej
w punkcie. W podobny sposób można zdefiniować granice w innych przypadkach.

9. Twierdzenie (definicja Cauchy’ego granicy funkcji w punkcie). Niech a < x0 < b oraz g będą liczbami
rzeczywistymi i niech f oznacza funkcję określoną na zbiorze zawierającym (a, x0)∪(x0, b). Przy tych
założeniach lim

x→x0
f(x) = g wtedy i tylko wtedy, gdy ∀ε>0∃δ>0∀x [0 < |x− x0| < δ ⇒ |f(x)− g| < ε].

W poniższym twierdzeniu, analogicznym do twierdzenia dla ciągów, stosujemy umowę dotyczącą
działań na symbolach nieskończonych.

10. Twierdzenie (o nierównościach i działaniach algebraicznych na granicach). Niech a < x0 < b bę-
dą liczbami rzeczywistymi. Załóżmy, że funkcje f, g, h są określone na zbiorze A zawierającym
(a, x0) ∪ (x0, b). Wtedy:
a) Jeśli lim

x→x0
f(x) = c i lim

x→x0
g(x) = d oraz ∀x∈Af(x) ¬ g(x), to c ¬ d.

b) Jeśli lim
x→x0
f(x) = c = lim

x→x0
h(x) i ∀x∈Af(x) ¬ g(x) ¬ h(x), to lim

x→x0
g(x) = c.

c) Jeśli funkcje f i g mają granice w punkcie x0 i nie jest prawdą, że jedna z granic lim
x→x0
f(x), lim

x→x0
g(x)
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jest równa +∞, a druga −∞, to lim
x→x0
(f + g)(x) = lim

x→x0
f(x) + lim

x→x0
g(x).

d) Jeśli funkcje f i g mają granice w punkcie x0 i nie jest prawdą, że jedna z granic lim
x→x0
f(x), lim

x→x0
g(x)

jest równa 0, a druga +∞ lub −∞, to lim
x→x0
(f · g)(x) = lim

x→x0
f(x) · lim

x→x0
g(x).

e) Jeśli funkcje f i g mają granice w punkcie x0, lim
x→x0
g(x) ̸= 0 i co najwyżej jedna z granic

lim
x→x0
f(x), lim

x→x0
g(x) jest nieskończona, to lim

x→x0
f(x)
g(x) =

lim
x→x0

f(x)

lim
x→x0

g(x)
.

11. Twierdzenie (ważne nierówności). a) Zachodzą nierówności: 1 + x ¬ ex ¬ 1
1−x : lewa dla wszystkich

x ∈ R, prawa dla x < 1. b) Dla wszystkich x > −1 zachodzą nierówności: x1+x ¬ ln(1 + x) ¬ x.
Dowód. a) Dla x ¬ −1 lewa strona jest niedodatnia, a środkowa (czyli ex) dodatnia, zatem lewa
nierówność jest prawdziwa. Dla x > −1 ciąg ((1+ x

n
)n) jest rosnący, więc jego granica ex jest większa

od pierwszego wyrazu 1+ x. Zatem nierówność 1+ x ¬ ex zachodzi dla wszystkich liczb x ∈ R. Gdy
wstawimy do niej −x zamiast x, otrzymamy 1− x ¬ e−x, tzn. 1− x ¬ 1

ex
. Dla x < 1 ta nierówność

jest równoważna z ex ¬ 1
1−x . Prawa nierówność z punktu a) jest więc udowodniona. b) Logarytmując

stronami nierówności 1+x ¬ ex, ex ¬ 1
1−x otrzymujemy nierówności ln(1+x) ¬ x, x ¬ ln

1
1−x (zwrot

się zachował, bo logarytm naturalny jest funkcją rosnącą). Lewa z otrzymanych nierówności daje
prawą nierówność z punktu b). W prawej zastosujmy takie podstawienie, żeby 1 + y = 1

1−x . To jest
równoważne z x = y

1+y . Otrzymujemy więc
y
1+y ¬ ln(1 + y). Zmieniamy w niej y na x i dostajemy

lewą nierówność z punktu b).

12. Twierdzenie (o ważnych granicach). a) lim
x→0

sinx
x
= 1, b) lim

x→0
ex−1
x
= 1, c) lim

x→0
ln(1+x)
x
= 1.

13. Przykład. lim
x→∞
(1 + 1

x
)x = lim

x→∞
ex·ln(1+

1
x
) = e1 = e, bo x · ln(1 + 1

x
) = ln(1+

1
x
)

1
x

→ 1. Skorzystaliśmy tu
z ważnej granicy c) (bo 1

x
→ 0, gdy x→∞) oraz ciągłości funkcji wykładniczej ex (o której będzie

mowa na następnym wykładzie).

14. Przykład. Niech a > 0, a ̸= 1. Wtedy lim
x→0

ax−1
x
= lim
x→0

ex ln a−1
x ln a · ln a = ln a.

15. Przykład. Niech a > 0, a ̸= 1. Wtedy lim
x→0

loga(1+x)
x
= lim
x→0

ln(1+x)
(ln a)x =

1
ln a .

16. Przykład. lim
n→∞
n( n
√
2− 1) = lim

n→∞
e
1
n ln 2−1
1
n
ln 2
ln 2 = ln 2, bo lim

x→0
ex ln 2−1
x ln 2 ln 2 = ln 2.

17. Definicja. Niech x0 < b będą liczbami rzeczywistymi, niech f oznacza funkcję określoną na zbiorze
zawierającym (x0, b) oraz niech g oznacza liczbę lub jeden z symboli −∞,+∞. Mówimy, że funkcja f
ma w punkcie x0 prawostronną granicę równą g wtedy i tylko wtedy, gdy dla każdego ciągu punktów
xn ∈ (x0, b) zbieżnego do x0 zachodzi równość lim

n→∞
f(xn) = g. Piszemy wtedy lim

x→x0+
f(x) = g.

18. Definicja. Niech a < x0 będą liczbami rzeczywistymi, niech f oznacza funkcję określoną na zbiorze
zawierającym (a, x0) oraz niech g oznacza liczbę lub jeden z symboli −∞,+∞. Mówimy, że funkcja
f ma w punkcie x0 lewostronną granicę równą g wtedy i tylko wtedy, gdy dla każdego ciągu punktów
xn ∈ (a, x0) zbieżnego do x0 zachodzi równość lim

n→∞
f(xn) = g. Piszemy wtedy lim

x→x0−
f(x) = g.

19. Przykład. lim
x→0−

|x|
x
= −1, lim

x→0+
|x|
x
= 1; lim

x→1−
4x
x−1 = −∞, limx→1+

4x
x−1 = +∞.

20. Twierdzenie (o granicach jednostronnych). Niech a < x0 < b będą liczbami rzeczywistymi, niech
f oznacza funkcję określoną na zbiorze zawierającym (a, x0) ∪ (x0, b) oraz niech g oznacza dowolną
liczbę lub symnbol +∞ lub −∞. Wtedy funkcja f ma granicę w punkcie x0 wtedy i tylko wtedy,
gdy obie granice jednostronne w punkcie x0 istnieją i są równe: lim

x→x0−
f(x) = lim

x→x0+
f(x).
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21. Przykład. Granica lim
x→0
e1/x nie istnieje, bo lim

x→0−
e1/x = 0, a lim

x→0+
e1/x = +∞ i te granice jednostronne

są różne.

22. Definicja. Prosta o równaniu x = c nazywa się asymptotą pionową wykresu funkcji f wtedy i tylko
wtedy, gdy przynajmniej jedna z granic jednostronnych funkcji f w punkcie c jest równa +∞ lub
−∞.

23. Przykład. Prosta x = 0 jest asymptotą pionową wykresu funkcji f(x) = 1
x
oraz funkcji g(x) = lnx.

24. Definicja. Prosta o równaniu y = ax+ b nazywa się asymptotą ukośną wykresu funkcji f w +∞, gdy
lim
x→+∞

(f(x)− ax− b) = 0.

25. Definicja. Prosta o równaniu y = ax+ b nazywa się asymptotą ukośną wykresu funkcji f w −∞, gdy
lim
x→−∞

(f(x)− ax− b) = 0.

26. Twierdzenie. Prosta y = ax+ b jest asymptotą ukośną wykresu funkcji f w +∞ wtedy i tylko wtedy,
gdy a = lim

x→+∞
f(x)
x
oraz b = lim

x→+∞
(f(x) − ax). Prosta y = ax + b jest asymptotą ukośną wykresu

funkcji f w −∞ wtedy i tylko wtedy, gdy a = lim
x→−∞

f(x)
x
oraz b = lim

x→−∞
(f(x)− ax).

27. Przykład. Znajdziemy asymptoty wykresu funkcji f(x) = x2+x+1
|x|+1 . Obliczamy a = lim

x→+∞
f(x)
x
=

lim
x→+∞

x2+x+1
x(|x|+1) = limx→+∞

x2+x+1
x2+x = 1 oraz b = limx→+∞(f(x)−x) = limx→+∞(

x2+x+1
|x|+1 −x) = limx→+∞(

x2+x+1
x+1 −x) =

0. Zatem prosta o równaniu y = x jest asymptotą wykresu funkcji f(x) w +∞. Następnie w ten
sam sposób znajdziemy asymptotę w −∞. Obliczamy a = lim

x→−∞
f(x)
x
= lim
x→−∞

x2+x+1
x(−x+1) = −1 oraz

b = lim
x→−∞

(f(x) − (−x)) = lim
x→−∞

(x
2+x+1
−x+1 + x) = −2. Zatem prosta o równaniu y = −x + 2 jest

asymptotą wykresu funkcji f(x) w −∞.

28. Uwaga. Szczególnym przypadkiem asymptoty ukośnej jest asymptota pozioma. Prosta o równaniu
y = b jest asymptotą wykresu funkcji f w +∞ (odpowiednio w −∞) wtedy i tylko wtedy, gdy
lim
x→+∞

f(x) = b (odp. lim
x→−∞

f(x) = b).

29. Przykład. Wykres funkcji f(x) = 1+lnx1−lnx określonej na zbiorze (0, e)∪ (e,+∞) ma asymptotę poziomą
o równaniu y = −1, bo lim

x→+∞
1+lnx
1−lnx = −1.


