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1. Zasady zaliczania przedmiotu, terminy konsultacji oraz notatki z wykładów i zadania znajdują się na
stronie www.mimuw.edu.pl/∼konarski/kognitywistyka. Na wszelkie pytania oraz prośby o wskazówki
do zadań domowych czekam pod adresem: konarski@mimuw.edu.pl

2. Definicja. Zbiorem liczb naturalnych na tych zajęciach będziemy nazywać zbiór liczb całkowitych
dodatnich, tzn. N = {1, 2, 3, ...}.

3. Definicja. Ciągiem nieskończonym nazywamy dowolną funkcję określoną na zbiorze liczb naturalnych,
tzn. przyporządkowanie każdej liczbie naturalnej pewnej liczby rzeczywistej. Ciągiem skończonym
nazywamy funkcję określoną na zbiorze liczb naturalnych postaci {1, 2, ..., k} dla pewnej liczby k ∈ N.

4. Uwaga. Wartość ciągu a w punkcie n ∈ N nazywa się n−tym wyrazem ciągu i jest zwykle oznaczana
symbolem an. Sam ciąg oznacza się często symbolem (an).

5. Definicja. Ciąg (an) nazywa się ciągiem rosnącym wtedy i tylko wtedy, gdy dla każdej liczby natural-
nej n zachodzi nierówność an < an+1. Podobnie określa się ciąg malejący, nierosnący oraz niemalejący.
Każdy ciąg, który jest nierosnący lub niemalejący, nazywa się ciągiem monotonicznym.

6. Definicja. Ciąg (an) nazywa się ciągiem ograniczonym wtedy i tylko wtedy, gdy istnieją takie liczby
a, b ∈ R, że każdy wyraz an spełnia nierówność a ¬ an ¬ b.

7. Przykład. Niech an = 2n, bn = −3nn+1 , cn = 5+(−1)
n, dn = π, en = n4+

1
n
, f1 = 1, f2 = 1, fn+2 = fn+fn+1

dla n ∈ N. Ciągi (an) oraz (fn) są rosnące, ciąg (bn) jest malejący, ciąg (dn) jest stały. Pozostałe z
podanych ciągów nie są monotoniczne.

8. Definicja. Liczba g nazywa się granicą ciągu (an) wtedy i tylko wtedy, gdy dla każdej liczby rze-
czywistej ε > 0 istnieje taka liczba naturalna n0, że dla wszystkich n > n0 zachodzi nierówność
|an − g| < ε. Piszemy wtedy g = lim

n→∞
an.

9. Definicja. Jeśli istnieje taka liczba g, że lim
n→∞
an = g, to ciąg (an) nazywa się ciągiem zbieżnym, w

przeciwnym razie nazywa się ciągiem rozbieżnym.

10. Przykład. Sprawdzimy, posługując się definicją, że ciąg ( 1
n
) ma granicę 0. Nierówność | 1

n
−0| < ε jest

spełniona dla wszystkich n > 1
ε
, zatem wystarczy przyjąć jako n0 w definicji granicy ciągu dowolną

liczbę naturalną większą od 1
ε
. Wtedy dla wszystkich liczb n > n0 nierówność | 1n − 0| < ε zachodzi,

czyli warunek z definicji granicy jest spełniony.

11. Przykład. Ciąg (−3n
n+1) ma granicę −3, ciąg (π) ma granicę π, a ciągi (5 + (−1)

n), (n4 +
1
n
) oraz (2n)

są rozbieżne.

12. Twierdzenie. Ciąg (an) jest zbieżny wtedy i tylko wtedy, gdy jest zbieżny ciąg powstały z ciągu (an)
przez usunięcie skończenie wielu początkowych wyrazów.

13. Twierdzenie. Każdy ciąg ma co najwyżej jedną granicę.

14. Twierdzenie. Każdy ciąg zbieżny jest ograniczony.

15. Przykład. Ciągi (−3n
n+1) oraz (5 + (−1)

n) są ograniczone, a ciąg (2n) nie jest ograniczony.

16. Twierdzenie o operacjach algebraicznych na ciągach. Załóżmy, że ciągi (an) i (bn) są zbieżne i że
c ∈ R. Wtedy ciągi (an+1), (an + bn), (anbn), (can), (|an|) są zbieżne oraz:
lim an+1 = lim an, lim(can) = c · lim an, lim |an| = | lim an|,

lim(an + bn) = lim an + lim bn, lim(anbn) = lim an · lim bn,

Ponadto, jeśli wszystkie wyrazy ciągu (bn) oraz jego granica są różne od 0, to ciąg (anbn ) jest zbieżny
oraz lim(an

bn
) = lim anlim bn

. Wreszcie, jeśli dla każdej liczby naturalnej n zachodzi nierówność an ¬ bn, to
także lim an ¬ lim bn.
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17. Twierdzenie. Jeśli m jest dowolną liczbą rzeczywistą, a ciąg (an) o wyrazach dodatnich jest zbieżny
do granicy g, to ciąg (amn ) jest zbieżny do granicy g

m.

18. Przykład. Ciąg ( 3
√
3n
n+1) ma granicę

3
√
3.

19. Twierdzenie o trzech ciągach. Załóżmy, że wyrazy ciągów (an), (bn) i (cn) spełniają warunek an ¬
bn ¬ cn dla wszystkich n ∈ N oraz, że ciągi (an) i (cn) są zbieżne do tej samej granicy g. Wtedy ciąg
(bn) też jest zbieżny do granicy g.
Dowód. Niech ε będzie dowolną liczbą dodatnią. Ponieważ lim

n→∞
an = g, więc dla wszystkich n więk-

szych od pewnej liczby n′0 zachodzą nierówności g − ε < an < g + ε. Podobnie, dla wszystkich n
większych od pewnej liczby n′′0 zachodzą nierówności g− ε < cn < g+ ε. Oznaczmy przez n0 większą
z liczb n′0, n

′′
0 (tzn. niech n0 = max(n

′
0, n
′′
0)). Wtedy dla wszystkich liczb n większych od n0 zachodzą

nierówności g − ε < an ¬ bn ¬ cn < g + ε, z których wynika, że lim
n→∞
bn = g.

20. Przykład. Ciąg (n+sinn3n+1 ) jest zbieżny do liczby
1
3 , bo dla wszystkich liczb naturalnych n zachodzą

nierówności n−13n+1 ¬
n+sinn
3n+1 ¬

n+1
3n+1 , a oba ciągi (

n−1
3n+1), (

n+1
3n+1) mają granicę

1
3 .

21. Wniosek 1. Jeśli a > 0, to lim n
√
a = 1.

Dowód. Załóżmy najpierw, że a ­ 1. Skorzystamy z następującej nierówności między średnią aryt-
metyczną a średnią geometryczną: dla dowolnych liczb dodatnich a1, ..., an zachodzi nierówność
1
n
(a1+ a2+ ...+ an) ­ n

√
a1 · a2 · ... · an, a równość ma miejsce jedynie wtedy, gdy a1 = a2 = ... = an.

Mianowicie, zastosujmy tę nierówność do liczb a, 1, ..., 1 (tzn. do układu złożonego z liczby a oraz
n− 1 jedynek). Otrzymujemy 1

n
(a+n− 1) ­ n

√
a, mamy więc nierówności 1 ¬ n

√
a ¬ 1

n
(a+n− 1), a

ponieważ ciąg ( 1
n
(a + n− 1)) ma granicę 1, z twierdzenia o trzech ciągach wynika, że lim

n→∞
n
√
a = 1.

Załóżmy teraz, że 0 < a < 1. Wtedy liczba b = 1
a
jest większa od 1, więc z udowodnionego powyżej

przypadku wynika, że lim
n→∞

n
√
b = 1. Zatem lim

n→∞
n
√
a = lim

n→∞
1
n√
b
= 1
lim n√

b
= 1.

22. Wniosek 2. lim n
√
n = 1. Dowód (podobny do powyższego) zostawiam jako ćwiczenie.

23. Definicja. Jeśli (nk) jest rosnącym ciągiem liczb naturalnych, a (an) ciągiem liczbowym, to ciąg (ank)
nazywa się podciągiem ciągu (an).

24. Uwaga. Podciąg danego ciągu (an), to ciąg otrzymany z ciągu (an) przez skreślenie pewnych jego
wyrazów i pozostawienie pozostałych w niezmienionym porządku.

25. Przykład. Dla dowolnego ciągu (an) jego podciągami są ciągi (a2n) oraz (a2n−1) złożone z wyrazów
ciągu (an) o numerach parzystych i nieparzystych odpowiednio.

26. Twierdzenie. Jeśli ciąg (an) jest zbieżny do granicy g, to każdy jego podciąg też jest zbieżny do g.

27. Przykład. Ciąg (an), an = 5+(−1)n jest rozbieżny, bo dwa jego podciągi mają różne granice: podciąg
(a2n) ma granicę 6, a podciąg (a2n−1) ma granicę 4.

28. Twierdzenie. Każdy ciąg monotoniczny i ograniczony jest zbieżny.

29. Wniosek. Jeśli |a| < 1, to lim an = 0.

30. Przykład. Niech an = n!
(2n+1)!! dla n ∈ N. Ciąg (an) jest od pewnego miejsca malejący i ograniczony

(więc zbieżny do pewnej granicy g) oraz zachodzi równość an+1 = an · n+12n+3 dla wszystkich n. Zatem
g = 12g, więc g = 0. Uwaga: (2n+ 1)!! = 1 · 3 · 5 · ... · (2n+ 1), (2n)!! = 2 · 4 · 6 · ... · (2n).

31. Twierdzenie Bolzano - Weierstrassa. Każdy ciąg ograniczony zawiera podciąg zbieżny.
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32. Twierdzenie. Ciąg
((
1 + 1

n

)n)
jest rosnący i ograniczny, a więc zbieżny. Jego granica

e = 2, 718281828459045... jest liczbą niewymierną. Prawdziwe są ogólniejsze twierdzenia:

33. Twierdzenie. Jeśli ciąg (an) jest zbieżny do 0, to lim
n→∞
(1 + an)1/an = e.

34. Twierdzenie. Dla dowolnej liczby rzeczywistej x, lim
n→∞

((
1 + x

n

)n)
= ex.

35. Twierdzenie. Dla dowolnej liczb rzeczywistej x zachodzi równość lim
n→∞
(1 + x+ x

2

2! + ...+
xn

n! ) = e
x.

36. Definicja. Ciąg (an) nazywa się rozbieżny do +∞, jeśli dla każdej liczby rzeczywistej M istnieje
taka liczba naturalna n0, że dla wszystkich n > n0 zachodzi nierówność an > M . Piszemy wtedy
lim
n→∞
an = +∞.

37. Definicja. Ciąg (an) nazywa się rozbieżny do −∞, jeśli dla każdej liczby rzeczywistej M istnieje
taka liczba naturalna n0, że dla wszystkich n > n0 zachodzi nierówność an < M . Piszemy wtedy
lim
n→∞
an = −∞.

38. Twierdzenie. Jeśli lim
n→∞
an = +∞, to:

a) ciąg (an) jest ograniczony z dołu,
b) ciąg (−an) jest rozbieżny do −∞,
c) dla dowolnej liczby c > 0 ciąg (can) jest rozbieżny do +∞,
d) jeśli an ̸= 0 dla wszystkich n ∈ N, to lim

n→∞
1
an
= 0,

e) jeśli bn ­ an dla wszystkich n ∈ N, to lim
n→∞
bn = +∞ (tw. o dwóch ciągach).

39. Twierdzenie. Jeśli lim
n→∞
bn = 0 i bn ̸= 0 dla n ∈ N, to lim

n→∞
1
|bn| = +∞.

40. Umowa: (+∞) + (+∞) = +∞, (+∞) · (+∞) = (−∞) · (−∞) = +∞,
(−∞) + (−∞) = −∞, (+∞) · (−∞) = (−∞) · (+∞) = −∞,
c · (+∞) = (+∞) · c = +∞ dla c > 0, c · (−∞) = (−∞) · c = −∞ dla c > 0,
c · (+∞) = (+∞) · c = −∞ dla c < 0, c · (−∞) = (−∞) · c = +∞ dla c < 0,
1/(+∞) = 1/(−∞) = 0, −∞ < c < +∞ dla c ∈ R, −∞ < +∞.

41. Uwaga. Twierdzenie o operacjach algebraicznych na ciągach można teraz rozszerzyć na przypadek
ciągów rozbieżnych do granic nieskończonych.

42. Uwaga. Nie określamy działań: (+∞)− (+∞), 0 · (+∞), 1
0 , ,

0
0 , (+∞) + (−∞),

+∞
+∞ itp.,

bo nie da się ich określić tak, żeby twierdzenie o operacjach algebraicznych pozostało prawdziwe.

43. Twierdzenie. Niech a > 1 i c > 0 będą liczbami rzeczywistymi. Wtedy:
limnc = +∞, lim an = +∞, lim n

c

an
= 0, lim a

n

n! = 0, lim loga n
n
= 0.

Dowód. Dwie pierwsze równości oraz ostatnia wynikają bezpośrednio z definicji. Dowód trzeciej.
Najpierw sprawdzimy, czy ciąg (n

c

an
) jest malejący: (n+1)

c

an+1
< n

c

an
⇐⇒ (n+1)c

nc
< a ⇐⇒ ( (n+1)

n
)c < a

(*). Ponieważ limn→∞(
(n+1)
n
)c = 1, a a > 1, to począwszy od pewnej liczby naturalnej n0 nierówność

(*) jest spełniona. Oznacza to, że od pewnego miejsca ciąg (n
c

an
) jest maleący. Jest on ograniczony z

dołu, a więc zbieżny (tw. 27). Oznaczmy jego granicę przez g. W równości (n+1)
c

an+1
= (n+1)

c

a·nc ·
nc

an
lewa

strona dąży do g, a prawa do 1
a
· g. Zatem g = 1

a
· g, a więc g = 0 (bo a ̸= 1). Podobnie dowieść

można czwartą równość.


