
Egzamin z Wdm2, I termin, I część, 13.06.2025 N
U góry na każdej kartce napisz swoje imię, nazwisko oraz literę N.
Pisz czytelnie i jasno. Uzasadniaj swoje stwierdzenia. Załączaj rachunki.

1. (8p.) Niech an =
√
n4 + 4− n2 dla n ∈ N.

(a) Znadź granicę lim
n→∞
an lub wykaż, że ta granica nie istnieje.

(b) Zbadaj zbieżność szeregu
∞∑
n=1

an.

(c) Zbadaj zbieżność szeregu
∞∑
n=1

(−1)nan.

(d) Zbadaj zbieżność szeregu
∞∑
n=1

nan.

Rozwiązanie.
(a)
√
n4 + 4− n2 = (

√
n4+4−n2)(

√
n4+4+n2)√

n4+4+n2
= 4√

n4+4+n2
→ 0, bo licznik jest stały, a mianownik dąży do

nieskończoności.

(b) Niech bn = 1
n2
. Wtedy an

bn
= 4n2√

n4+4+n2
= 4√

1+ 4
n4
+1
→ 2. Ta granica jest liczbą różną od zera,

zatem z drugiego kryterium porównawczego wynika, że szereg
∑∞
n=1 an jest zbieżny.

(c) I sp. Wyrazy an są dodatnie, zatem an = |(−1)nan|. Powyżej wykazaliśmy, że szereg modułów∑∞
n=1 |(−1)nan| jest zbieżny, zatem jest też zbieżny szereg

∑∞
n=1(−1)nan. II sp. Teza wynika z kry-

terium Leibniza: Ciąg (an) maleje, bo licznik jest stały, a mianownik
√
n4 + 4 + n2 rośnie (a licznik

i mianownik są dodatnie) oraz jest ograniczony z dołu przez liczbę 0. Zatem z kryterium Leibniza
wynika, że szereg

∑∞
n=1(−1)nan jest zbieżny.

(d) Niech cn = 1n , wtedy
nan
cn
= 4n2√

n4+4+n2
→ 2 (znaleźliśmy tę granicę już wyżej). Jest ona liczbą różną

od zera, szereg harmoniczny
∑∞
n=1

1
n
jest rozbieżny, więc z I kryterium porównanwczego wynika, że

szereg
∑∞
n=1 nan jest rozbieżny.

2. (26p.) Niech f(x) = 2+lnx
x
.

(a) Znajdź granice funkcji f na krańcach przedziałów (lub przedziału) określoności.

(b) Napisz równania wszystkich asymptot wykresu funkcji f .

(c) Oblicz pochodne pierwszego i drugiego rzędu funkcji f i wypełnij tabelkę zmienności.

(d) Naszkicuj część wykresu funkcji f zawartą w kwadracie {(x, y) : −1 ¬ x, y ¬ e}.
Możesz skorzystać z przybliżeń e−1 ≃ 0.37, e−1/2 ≃ 0.61, e1/2 ≃ 1.65, e ≃ 2.72, e2 ≃ 7.39.

(e) Napisz równanie prostej p stycznej do wykresu funkcji f w jego punkcie przegięcia.

(f) Oblicz pole powierzchni obszaru ograniczonego od dołu osią odciętych, a od góry wykresem i
prostą p.

(g) Wykaż, że dla dowolnych liczb u,w takich, że 1 ¬ u < w, zachodzi nierówność 2+lnu2+lnw >
u
w
.

Rozwiązanie.

(a) Dziedziną funkcji f jest przedział D = (0,+∞). limx→0+ f(x) = limx→0+ 2+lnxx = −∞, bo licznik
dąży do −∞, a mianownik dąży do zera od strony dodatniej. (Stosowanie reguły de l’Hospitala w
tym miejscu jest błedem, bo jej założenie nie jest spełnione – można ją stosować tylko do przypadków
[ ∗±∞ ] i [

0
0 ]). limx→∞ f(x) = limx→∞

2+lnx
x
[+∞+∞ ] =H

limx→∞ 1x = 0.



(b) Z punktu (a) wynika, że są dwie asymptoty: pionowa o równaniu x = 0 oraz pozioma w +∞
(która jest szczególnym przypadkiem ukośnej) o równaniu y = 0.

(c) Obliczamy pochodne: f ′(x) = −1+lnx
x2
, f ′′(x) = 1+2 lnx

x3
.

Badamy, gdzie przyjmują wartości dodatnie: f ′(x) > 0⇔ −1+lnx
x2
> 0⇔ 1 + ln x < 0⇔

lnx < −1⇔ lnx < ln(e−1)⇔ 0 < x < e−1 ⇔ x ∈ (0, 1
e
);

f ′′(x) > 0⇔ 1+2 lnx
x3
> 0⇔ 2 lnx > −1⇔ x > e−1/2 ⇔ x ∈ ( 1√

e
,+∞).

Wypełniamy tabelkę:

x (0, 1
e
) 1
e
(1
e
, 1√
e
) 1√

e
( 1√
e
,+∞)

f ′(x) + 0 − − e2 −
f ′′(x) − − 0 +
f(x) e 3

√
e
2

(d) Korzystając z tabelki szkicujemy wykres:

(e) Ponieważ punkt przegięcia wykresu ma współrzędne ( 1√
e
, 3
√
e
2 ), a f

′( 1√
e
) = − e2 , to styczna ma

równanie y = − e2(x−
1√
e
) + 3

√
e
2 = −

ex
2 + 2

√
e i jest wykresem funkcji l(x) = − ex2 + 2

√
e.

(f) Chodzi o obszar ograniczony z góry zarówno wykresem, jak i znalezioną styczną, to znaczy o
obszar położony zarówno pod wykresem, jak i pod styczną. Wykres i styczna przecinają się w punkcie
przegięcia o odciętej 1√

e
. Znajdujemy odcięte punktu przecięcia wykresu z osią odciętych: x = 1

e2
i

punktu przecięcia stycznej z osią odciętych: x = 4√
e
. Dla wygody na powyższym rysunku styczna

w punkcie przegięcia jest naszkicowana aż do przecięcia z osią odciętych. Zatem nasz obszar składa
się z dwóch części; jednej pod wykresem na przedziale [ 1

e2
, 1√
e
] i drugiej pod styczną na przedziale

[ 1√
e
, 4√
e
], a jego pole jest równe P =

∫ 1/√e
1/e2 f(x)dx+

∫ 4/√e
1/
√
e l(x)dx =

∫ 1/√e
1/e2

2+lnx
x
dx+

∫ 4/√e
1/
√
e
−ex
2 +2
√
edx =

(2 lnx+ ln
2 x
2 )|

1/
√
e

1/e2 + (−
ex2

4 + 2x
√
e)|4/

√
e

1/
√
e = 3−

15
8 + 2 +

1
4 = 3

3
8 .

(g) Dana nierówność jest równoważna z nierównością f(u) > f(w) i jest prawdziwa, bo funkcja f
maleje na [1,+∞) (zob. tabelka zmienności lub wykres).

3. (7p.) Dwa wysokie budynki o pionowych ścianach stoją w pewnej odległości naprzeciwko siebie. Na
ścianie pierwszego budynku w punkcie A na wysokości 10 metrów nad ziemią przyczepiono nitkę
długości 20 metrów, której drugi koniec jest umocowany w punkcie B naprzeciwko u podnóża ściany
drugiego budynku. Od B do A wspina się po nitce żuk z prędkością jednego metra na minutę. U
podnóża ściany pierwszego budynku dokładnie pod punktem A świeci żarówka.

(a) Oblicz położenie i prędkość poruszania się cienia żuka na ścianie drugiego budynku w t minut
po wyruszeniu żuka z punktu B.

(b) W którym miejscu znajduje się żuk, gdy prędkość jego cienia jest osiem razy większa od pręd-
kości żuka?



Rozwiązanie. (a) Oznaczmy przez D punkt
u podnóża ściany pierwszego budynku, przez
Z(t) położenie żuka w t minut po
wyruszeniu z punktu B, a przez C(t)
położenia cienia żuka w chwili t. Niech h(t)
oznacza wysokość punktu C(t) nad ziemią.
W ciągu t minut żuk przebył t metrów, więc
punkt Z(t) leży w odległości t od B i 20− t
od A. Trójkąty ADZ(t) oraz BC(t)Z(t) są
podobne, więc h(t)

t
= 10
20−t . Zatem

h(t) = 10t
20−t , h

′(t) = 200
(20−t)2 .

(b) Zauważmy, że h′(t) = 8⇔ t = 15 czyli
gdy żuk jest w trzech czwartych drogi.

4. (3pt.) Znajdź wszystkie punkty stacjonarne funkcji f(x, y) = y3+x2− 3y i zbadaj, w których z nich
f ma ekstrema lokalne (i jakie), a które są punktami siodłowymi.

Rozwiązanie.

Obliczamy gradient funkcji f i przyrównujemy do wektora zerowego: grad f(x, y) = (2x, 3y2 − 3) =
(0, 0)⇔ (x, y) = (0, 1), (0,−1). Są więc dwa punkty stacjonarne: P1 = (0, 1), P2 = (0,−1). Obliczamy

hesjan H(x, y) =

∣∣∣∣∣ 2 00 6y
∣∣∣∣∣ = 12y. Ponieważ H(0, 1) = 12 > 0 to w punkcie P1 = (0, 1) funkcja

f ma ekstremum lokalne, a ponieważ f ′′xx(0, 1) = 2 > 0, to jest to minimum lokalne. Ponieważ
H(0,−1) = −12 < 0, to P2 = (0,−1) jest punktem siodłowym.

5. (6pt.) Znajdź przynajmniej jedno maksimum lokalne i przynajmniej jedno minimum lokalne funkcji
F (x, y) = 4x− xy2 na okręgu G opisanym równaniem x2 + y2 = 4.
Rozwiązanie poprawione po konsultacjach dnia 27.08.

Wprowadzamy funkcję opisującą okrąg G: g(x, y) = x2 + y2 − 4. Określamy funkcję Lagrange’a
L(λ, x, y) = 4x−xy2−λ(x2+y2−4). Znajdujemy jej gradient i przyrównujemy go do wektora zerowe-

go: gradL(λ, x, y) = (−y2−x2+4,−y2−2λx+4,−2xy−2λy) = (0, 0, 0)⇔


x2 + y2 = 4,

−y2 − 2λx+ 4 = 0,
−2xy − 2λy = 0

⇔


x2 + y2 = 4,

−y2 − 2λx+ 4 = 0,
(x+ λ)y = 0.

Z trzeciego równania wynika, że albo y = 0 albo λ = −x.

Jeśli y = 0, to z pozostałych równań wyznaczamy x = ±2, λx = 2, więc dostajemy dwa punkty
stacjonarne: P1 = (1, 2, 0), P2 = (−1,−2, 0).
Jeśli λ = −x, to z pozostałych równań wynika, że x = 0, y = ±2. Dostajemy więc jeszcze dwa punkty
stacjonarne: P3 = (0, 0,−2), P4 = (0, 0, 2).

Obliczamy hesjan H(λ, x, y) =

∣∣∣∣∣∣∣
0 −2x −2y
−2x −2λ −2y
−2y −2y −2x− 2λ

∣∣∣∣∣∣∣ w dowolnym punkcie, a następnie jego war-
tości w punktach stacjonarnych:H(1, 2, 0) = 96, H(−1,−2, 0) = −96, H(0, 0,−2) = 0, H(0, 0, 2) = 0.
Ponieważ H(1, 2, 0) > 0, to w punkcie (2, 0) funkcja F ma maksimum lokalne na okręgu G, a ponie-
waż H(−1,−2, 0) < 0, to w punkcie (−2, 0) funkcja F ma minimum lokalne na okręgu G. Zauważmy,
że zastosowane twierdzenie nie daje informacji o punktach (0, 2), (0,−2).



Egzamin z Wdm2, I termin, II część, 13.06.2025 N

U góry na każdej kartce napisz swoje imię, nazwisko oraz literę N.
Pisz czytelnie i jasno. Uzasadniaj swoje stwierdzenia. Załączaj rachunki.

1. (14p.) Dane są macierze Aa =

 1 a+ 1 1
−a −2a −1
2− a 2 a

 , Ba =
 2a− 21− a
0

.
(a) Zbadaj, ile rozwiązań ma równanie macierzowe Aa ·X = Ba w zależności od wartości parametru
a.

(b) Podaj rozwiązanie ogólne w przypadku, w którym więcej niż jedna macierz X spełnia dane
równanie.

(c) Dla tej wartości parametru a, dla której zbiór rozwiązań jest przestrzenią liniową, znajdź bazę
ortogonalną tej przestrzeni.

Rozwiązanie.

(a,b) Równanie macierzowe jest równowązne z układem równań i rozwiążemy je tak, jak rozwiązywa-
liśmy układy równań z parametrem. Ponieważ macierz Aa jest kwadratowa, obliczamy jej wyznacznik
det(Aa) = a(a−1)2. Z twierdzenia o wzorach Cramera wynika, że dla a ̸= 1, a ̸= 0 jest jedno rozwią-

zanie. Gdy a = 0, to macierz rozszerzona układu jest równa (A0, B0) =

 1 1 1 −2
0 0 −1 1
2 2 0 0

 i po paru
operacjach elementarnych widać, że rozwiązań brak. Gdy a = 1, to (A1, B1) =

 1 2 1 0
−1 −2 −1 0
1 2 1 0

,
więc równanie macierzowe sprowadza się do jednego równania liniowego x+2y+z = 0, rozwiązania są

postaci X =

 −2y − zy
z

 = y
 −21
0

+z
 −10
1

, gdzie liczby y, z są dowolne. Jest to rozwiązanie
ogólne. Zatem dla a = 1 rozwiązań jest nieskończenie wiele.

(c) Zbiór rozwiązań układu równań liniowych jest przestrzenią liniową wtedy i tylko wtedy, gdy
kolumna wyrazów wolnych jest zerowa. W przypadku naszego układu ma to miejsce dla a = 2.

Bazą przestrzeni rozwiązań jest np. układ u =

 −21
0

 , v =
 −10
1

 znaleziony powyżej. Bazą
ortogonalną jest np. układ u1 =

 −21
0

 , v1 = v − ⟨u,v⟩⟨u,u⟩u =

 −10
1

 − 25
 −21
0

 =
 −

1
5
−25
1

 =
1
5

 12
−5

, więc bazą ortonormalną jest 1|u1|u1 = 1√
5

 −21
0

 , 1|v1|v1 = 1√
30

 12
−5

.)
2. (7p.) Przekształcenie liniowe f : R[x]2 →M(2× 2) dane jest wzorem

f(ax2 + bx+ c) =
(
a+ c a+ b
a+ b a+ c

)
dla dowolnego wielomianu ax2 + bx+ c oraz A : 1, x, x2 oznacza

bazę przestrzeni R[x]2, a B :
(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
bazę przestrzeni M(2× 2).



(a) Znajdź bazę jądra przekształcenia f .
(b) Znajdź wymiar obrazu przekształcenia f .
(c) Znajdź macierz M(f)BA.

Rozwiązanie.

(a) Wielomian ax2 + bx + c należy do jądra przekształcenia f wtedy i tylko wtedy, gdy macierz(
a+ c a+ b
a+ b a+ c

)
jest zerowa, tzn.

{
a+ c = 0,
a+ b = 0,

tzn. c = −a, b = −a, tzn. ax2 + bx + c = a(x2 −

x − 1), a ∈ R. Bazę jądra tworzy wielomian x2 − x − 1, bo każdy wielomian należący do jądra
jednoznacznie da się zapisać jako kombinacja liniowa tego wielomianu.

(b) Z twierdzenia o wymiarze jądra i obrazu wynika, że dim imf = dimR[x]2−dimker f = 3−1 = 2.
(c) Aby wypisać pierwszą kolumnę macierzy M(f)BA, należy wziąć pierwszy wektor bazy A, czyli 1 i

zapisać macierz f(1) jako kombinację liniową macierzy bazyB. Mamy f(1) =
(
1 0
0 1

)
=
(
1 0
0 0

)
+

(
0 0
0 1

)
, zatem pierwsza kolumna jest równa


1
0
0
1

. Podobnie zapisujemy obrazy wielomianów x

oraz x2 i dostajemy M(f)BA =


1 0 1
0 1 1
0 1 1
1 0 1

.)

3. (11p.) Macierz endomorfizmu g : R3 → R3 w bazie standardowej st jest równaM = 1
49

 41 −24 12
−24 −23 36
12 36 31

.
Dane są też wektory t = (3, 2, 6), u = (−6, 3, 2), v = (6, 3, 2), w = (2, 6,−3) ∈ R3.

(a) Dla każdego z wektorów t, u, v, w zbadaj, czy jest wektorem własnym macierzy M , a jeśli tak,
to jakiej wartości własnej odpowiada.

(b) Wybierz spośród wektorów t, u, v, w bazę ortogonalną przestrzeni R3.
(c) Znajdź macierz g w wybranej bazie ortonormalnej.
(d) Opisz sens geometryczny przekształcenia g.

Rozwiązanie.

(a) Obliczamy Mt =M

 32
6

 = 1
49

 41 −24 12
−24 −23 36
12 36 31


 32
6

 = 1
49

 14798
294

 =
 32
6

 = t, zatem t
jest wektorem własnym i odpowiada mu wartość własna 1. Podobnie postępujemy z wektorami u, v, w
i stwierdzamy, że wektory t, u są własne i odpowiadają wartości własnej 1, wektor w odpowiada
wartości własnej −1, a wektor v nie jest własny.
(b) Obliczając iloczyny skalarne ⟨t, u⟩, ⟨t, w⟩, ⟨u,w⟩ stwierdzamy, że wektory t, u, w stanowią bazę
ortogonalną.

(c) Bazą ortonormalną jest układ B : 17t,
1
7u,

1
7w. Wektory te również są wektorami własnymi macierzy

M z wartościami własnymi równymi odpowiednio 1, 1,−1. Zatem Macierz przekształcenia g w bazie

B jest więc równa

 1 0 0
0 1 0
0 0 −1

.



(d) Zatem przekształcenie g jest symetrią prostopadłą na płaszczyznę lin(t, u) = w⊥ opisaną równa-
niem 2x+ 6y − 3z = 0 (por. definicję symetrii w punkcie 41 wykładu 13).

4. (12p.) Dany jest wektor w = (0,−45 ,
3
5) ∈ R

3.

(a) Znajdź długość wektora w.

(b) Dopełnij w do bazy ortogonalnej przestrzeni R3 złożonej z wektorów tej samej długości.

(c) Znajdź macierz rzutu prostopadłego π na płaszczyznę w⊥ (prostopadłą do w) w znalezionej
bazie.

(d) Znajdź macierz rzutu π w bazie standardowej.

Rozwiązanie.

(a) |w| =
√
02 + (−45)2 + (

3
5)
2 = 1.

(b) Ponieważ pierwsza współrzędna wektora w jest równa 0, to wektor u = (1, 0, 0) jest prostopadły
do w i też ma długość 1. Trzeci wektor znajdujemy jako iloczyn wektorowy v = w × u = (0, 35 ,

4
5).

Zatem układ B : u = (1, 0, 0), v = (0, 35 ,
4
5), w = (0,

−4
5 ,
3
5) jest bazą ortonormalną R

3.

(c) Ponieważ π(u) = u, π(v) = v, π(w) = 0, to z pierwszej charakteryzacji macierzy przekształcenia

liniowego wynika, że M(π)B =

 1 0 00 1 0
0 0 0

.

(d) Niech C = M(id)stB =

 1 0 0
0 3
5 −

4
5

0 4
5

3
5

. Ponieważ baza B jest ortonormalna, to C jest macierzą
ortogonalną, więc C−1 = CT . Możemy też zapisać C = 15

 5 0 0
0 3 −4
0 4 3

.
Ze wzoru na macierz złożenia przekształceń wynika, że M(π)st = CM(π)BC

−1 = CM(π)BCT =

1
25

 5 0 0
0 3 −4
0 4 3


 1 0 00 1 0
0 0 0


 5 0 0
0 3 4
0 −4 3

 = 1
25

 25 0 0
0 9 12
0 12 16

.
5. (6p.) Niech A oznacza dowolną macierz kwadratową.

(a) Zbadaj, czy każdy wektor własny macierzy A jest również wektorem własnym macierzy A3.

(b) Zbadaj, czy każdy wektor własny macierzy A3 jest również wektorem własnym macierzy A.

(a) Tak, bo skoro pomnożenie przez macierz A nie zmienia kierunku wektora, to trzykrotne pomno-
żenie też nie zmienia.

(b) Nie, bo na przykład obrót płaszczyzny R2 o kąt 2π3 nie ma wektorów własnych, a jego trzykrotne
złożenie jest identycznością i wszystkie wektory są własne.


