The streaming k-mismatch problem

Raphaël Clifford

Tomasz Kociumaka

Ely Porat

SODA 2019

San Diego, California, January 7, 2019

Exact pattern matching

Given two strings: a **pattern** P (of length m) and a **text** T (of length n), find all fragments of T **matching** P.

Classic algorithms

Knuth, Morris, Pratt 1978, SIAM J. Comput. $\mathcal{O}(n+m)$ time $\mathcal{O}(m)$ space

Galil, Seiferas $\mathcal{O}(n+m)$ time $\mathcal{O}(1)$ space¹

¹Does not include read-only random access to P and T.

Exact pattern matching

Given two strings: a **pattern** P (of length m) and a **text** T (of length n), find all fragments of T **matching** P.

Classic algorithms

Knuth, Morris, Pratt 1978, SIAM J. Comput. $\mathcal{O}(n+m)$ time $\mathcal{O}(m)$ space

Galil, Seiferas $\mathcal{O}(n+m)$ time $\mathcal{O}(1)$ space¹

¹Does not include read-only random access to P and T.

Exact pattern matching

Given two strings: a pattern P (of length m) and a text T (of length n), find all fragments of T matching P.

Classic algorithms

Knuth, Morris, Pratt 1978, SIAM J. Comput.

 $\mathcal{O}(n+m)$ time

 $\mathcal{O}(m)$ space

Galil, Seiferas

 $\mathcal{O}(1)$ space¹

$$\mathcal{O}(n+m)$$
 time

^{1983,} J. Comput. Syst. Sci.

Exact pattern matching

Given two strings: a **pattern** P (of length m) and a **text** T (of length n), find all fragments of T matching P.

Classic algorithms

Knuth, Morris, Pratt 1978, SIAM J. Comput.

 $\mathcal{O}(n+m)$ time

 $\mathcal{O}(m)$ space

Galil, Seiferas 1983, J. Comput. Syst. Sci.

 $\mathcal{O}(n+m)$ time

 $\mathcal{O}(1)$ space¹

¹Does not include read-only random access to P and T.

Exact pattern matching

Given two strings: a **pattern** P (of length m) and a **text** T (of length n), find all fragments of T **matching** P.

Classic algorithms

Knuth, Morris, Pratt 1978, SIAM J. Comput.

 $\mathcal{O}(n+m)$ time

 $\mathcal{O}(m)$ space

Galil, Seiferas 1983, J. Comput. Syst. Sci.

 $\mathcal{O}(n+m)$ time

 $\mathcal{O}(1)$ space¹

 $^{^{1}}$ Does not include read-only random access to P and T.

- single sequential scan of the input data,
- online (partial answers after processing each symbol),
- small working space,
- real-time (worst-case per symbol processing time).

- single sequential scan of the input data,
- online (partial answers after processing each symbol),
- small working space,
- real-time (worst-case per symbol processing time).

- single sequential scan of the input data,
- online (partial answers after processing each symbol),
- small working space,
- real-time (worst-case per symbol processing time).

- single sequential scan of the input data,
- online (partial answers after processing each symbol),
- small working space,
- real-time (worst-case per symbol processing time).

- single sequential scan of the input data,
- online (partial answers after processing each symbol),
- small working space,
- real-time (worst-case per symbol processing time).

- single sequential scan of the input data,
- online (partial answers after processing each symbol),
- small working space,
- real-time (worst-case per symbol processing time).

- single sequential scan of the input data,
- online (partial answers after processing each symbol),
- small working space,
- real-time (worst-case per symbol processing time).

- single sequential scan of the input data,
- online (partial answers after processing each symbol),
- small working space,
- real-time (worst-case per symbol processing time).

Data stream model:

- single sequential scan of the input data,
- online (partial answers after processing each symbol),
- small working space,
- real-time (worst-case per symbol processing time).

Data stream model:

- single sequential scan of the input data,
- online (partial answers after processing each symbol),
- small working space,
- real-time (worst-case per symbol processing time).

abbaabbbaabbbbbaabbbaa

Data stream model:

- single sequential scan of the input data,
- online (partial answers after processing each symbol),
- small working space,
- real-time (worst-case per symbol processing time).

bbaabbb

a b b a a b b b a a b b b b b a a b b b b a a

Lower bounds

- deterministic: $\Omega(m \log \sigma)$ bits,
- randomized: $\Omega(\log m)$ bits.

Randomized algorithms

Porat, Porat FOCS 2009

 $\mathcal{O}(\log m)$ time

 $\mathcal{O}(\log^2 m)$ bits

Breslauer, Galil 2014, ACM Trans. Algorithms

 $\mathcal{O}(1)$ time

 $\mathcal{O}(\log^2 m)$ bits

Pattern matching with mismatches

Given a pattern P of length m and a text T of length n, compute the **Hamming distances** between P and all length-m fragments of T.

bbaabbb

bbaabbbaabbbbaabbbaa

Output: 3

Pattern matching with mismatches

Given a pattern P of length m and a text T of length n, compute the **Hamming distances** between P and all length-m fragments of T.

b b a a b b b

 b b a a b b b

 a b b a a b b b a a b b b b b b b a a b b b b a a

 Output: 3 0

Pattern matching with mismatches

Given a pattern P of length m and a text T of length n, compute the **Hamming distances** between P and all length-m fragments of T.

b b a a b b b

bbaabbb abbaabbbbaabbbbaa Output: 303

Pattern matching with mismatches

Given a pattern P of length m and a text T of length n, compute the **Hamming distances** between P and all length-m fragments of T.

bbaabbb

bbaabbb

Output: 3 0 3 6

Pattern matching with mismatches

Given a pattern P of length m and a text T of length n, compute the **Hamming distances** between P and all length-m fragments of T.

bbaabbb

bbaabbb

Output: 3 0 3 6 5

Pattern matching with mismatches

Given a pattern P of length m and a text T of length n, compute the **Hamming distances** between P and all length-m fragments of T.

bbaabbb

bbaabbb

a b b a a <mark>b b b a a</mark> b b b b b a a b b b b a a

Output: 3 0 3 6 5 2

Pattern matching with mismatches

Given a pattern P of length m and a text T of length n, compute the **Hamming distances** between P and all length-m fragments of T.

bbaabbb

a b b a a b b b a a b b b b b a a b b b b a a

Output: 3 0 3 6 5 2 0 2 4 3 3 4 4 2 0 2 5 5

Pattern matching with mismatches

Given a pattern P of length m and a text T of length n, compute the **Hamming distances** between P and all length-m fragments of T.

bbaabbb

Output: 3 0 3 6 5 2 0 2 4 3 3 4 4 2 0 2 5 5

Algorithms

Fischer, Patterson 1973, Complex. Comput.

Abrahamson 1987, SIAM J. Comput. $\mathcal{O}(n\sigma \log m)$ time

 $\mathcal{O}(n\sqrt{m\log m})$ time

Pattern matching with mismatches

Given a pattern P of length m and a text T of length n, compute the **Hamming distances** between P and all length-m fragments of T.

bbaabbb

a b b a a b b b a a b b b b b b a a b b b a a

Output: 3 0 3 6 5 2 0 2 4 3 3 4 4 2 0 2 5 5

Algorithms

Fischer, Patterson 1973, Complex. Comput.

Abrahamson 1987, SIAM J. Comput. $\mathcal{O}(n\sigma \log m)$ time

 $\mathcal{O}(n\sqrt{m\log m})$ time

Lower bound

lacksquare no $\mathcal{O}(nm^{0.5-arepsilon})$ -time **combinatorial** algorithms, conditioned on BMM

The k-mismatch problem

Problem

Given a pattern P, a text T, and a **threshold** k, find all fragments of the text T at Hamming distance **at most** k from P (along with the distances).

$$\mathbf{k} = \mathbf{3}$$

$$\mathbf{b} \, \mathbf{b} \, \mathbf{a} \, \mathbf{a} \, \mathbf{b} \, \mathbf{b} \, \mathbf{b}$$

The k-mismatch problem

Problem

Given a pattern P, a text T, and a **threshold** k, find all fragments of the text T at Hamming distance **at most** k from P (along with the distances).

$$\begin{array}{c} \textbf{k} = \textbf{3} \\ \textbf{b} \, \textbf{b} \, \textbf{a} \, \textbf{a} \, \textbf{b} \, \textbf{b} \, \textbf{b} \end{array}$$

Output: 3 0 3 - - 2 0 2 - 3 3 - - 2 0 2 - -

The k-mismatch problem

Problem

Given a pattern P, a text T, and a **threshold** k, find all fragments of the text T at Hamming distance **at most** k from P (along with the distances).

$$\begin{array}{c} \textbf{k} = \textbf{3} \\ \textbf{b} \, \textbf{b} \, \textbf{a} \, \textbf{a} \, \textbf{b} \, \textbf{b} \, \textbf{b} \end{array}$$

Algorithms

Landau, Vishkin 1986, Theor. Comput. Sci.

 $\mathcal{O}(nk)$ time

Amir, Lewenstein, Porat 2004, J. Algorithms

 $\mathcal{O}(n\sqrt{k\log k})$ time $\mathcal{O}(n+nk^3\log k/m)$ time

Clifford et al.

 $\widetilde{\mathcal{O}}(\textit{n} + \textit{nk}^2/\textit{m})$ time

Gawrychowski, Uznański ICALP 2018

 $\mathcal{O}(n + nk/\sqrt{m})$ time **Tight** for combinatorial algorithms (from BMM).

Algorithms

Time per symbol Space in bits

Lower bounds

AlgorithmsTime per symbolSpace in bitsClifford et al. $\widetilde{\mathcal{O}}(\sqrt{k})$ $\mathcal{O}(m \log m)$ deterministic2011, Inf. Comput. (CPM 2008) $\widetilde{\mathcal{O}}(\sqrt{k})$ $\mathcal{O}(m \log m)$ deterministic

Lower bounds

Algorithms Time per symbol

Space in bits

Clifford et al. 2011, Inf. Comput. (CPM 2008)

 $\widetilde{\mathcal{O}}(\sqrt{k})$

 $\mathcal{O}(m \log m)$ deterministic

Lower bounds

Folklore

 $\Omega(m \log \sigma)$ deterministic

Algorithms Time per symbol Space in bits

Clifford et al.

$$\widetilde{\mathcal{O}}(\sqrt{k})$$
 $\mathcal{O}(m \log m)$ deterministic

Lower bounds

Folklore $\Omega(m \log \sigma)$ deterministic

Gawrychowski, Uznański 2018, personal communication

2011, Inf. Comput. (CPM 2008)

$$\Omega(k^{0.5-\varepsilon})$$

combinatorial

Algorithms	Time per symbol	Space in bits	
Clifford et al. 2011, Inf. Comput. (CPM 2008)	$\widetilde{\mathcal{O}}(\sqrt{k})$	$\mathcal{O}(m \log m)$	deterministic
Porat, Porat FOCS 2009	$\widetilde{\mathcal{O}}(k^2)$	$\widetilde{\mathcal{O}}(k^3)$	randomized

Lower bounds

Folklore $\Omega(m\log\sigma)$ deterministic

Gawrychowski, Uznański 2018, personal communication

$$\Omega(k^{0.5-\varepsilon})$$

combinatorial

Algorithms	Time per symbol	Space in bits
Clifford et al. 2011, Inf. Comput. (CPM 2008)	$\widetilde{\mathcal{O}}(\sqrt{k})$	$\mathcal{O}(m \log m)$
Porat, Porat FOCS 2009	$\widetilde{\mathcal{O}}(k^2)$	$\widetilde{\mathcal{O}}(k^3)$

Lower bounds

Folklore		$\Omega(m\log\sigma)$	deterministic
Huang et al. 2006, Inf. Process. Lett.		$\Omega(k + \log n)$	randomized
Gawrychowski, Uznański 2018, personal communication	$\Omega(k^{0.5-arepsilon})$		combinatorial

deterministic

randomized

Algorithms	Time per symbol	Space in bits	
Clifford et al. 2011, Inf. Comput. (CPM 2008)	$\widetilde{\mathcal{O}}(\sqrt{k})$	$\mathcal{O}(m \log m)$	deterministic
Porat, Porat FOCS 2009	$\widetilde{\mathcal{O}}(k^2)$	$\widetilde{\mathcal{O}}(k^3)$	randomized
Clifford et al. SODA 2016	$\widetilde{\mathcal{O}}(\sqrt{k})$	$\widetilde{\mathcal{O}}(k^2)$	randomized
Golan, Kopelowitz, Porat ICALP 2018	$\widetilde{\mathcal{O}}(k)$	$\widetilde{\mathcal{O}}(k)$	randomized

Lower bounds

Folklore		$\Omega(m\log\sigma)$	deterministic
Huang et al. 2006, Inf. Process. Lett.		$\Omega(k + \log n)$	randomized
Gawrychowski, Uznański 2018, personal communication	$\Omega(k^{0.5-arepsilon})$		combinatorial

The k-mismatch problem: online and streaming algorithms

Algorithms	Time per symbol	Space in bits	
Clifford et al. 2011, Inf. Comput. (CPM 2008)	$\widetilde{\mathcal{O}}(\sqrt{k})$	$\mathcal{O}(m \log m)$	deterministic
Porat, Porat FOCS 2009	$\widetilde{\mathcal{O}}(k^2)$	$\widetilde{\mathcal{O}}(k^3)$	randomized
Clifford et al. SODA 2016	$\widetilde{\mathcal{O}}(\sqrt{k})$	$\widetilde{\mathcal{O}}(k^2)$	randomized
Golan, Kopelowitz, Porat ICALP 2018	$\widetilde{\mathcal{O}}(k)$	$\widetilde{\mathcal{O}}(k)$	randomized
	. ,	, ,	

Lower bounds

Folklore		$\Omega(m\log\sigma)$	deterministic
Huang et al. 2006, Inf. Process. Lett.		$\Omega(k + \log n)$	randomized
Gawrychowski, Uznański 2018, personal communication	$\Omega(k^{0.5-arepsilon})$		combinatorial

The k-mismatch problem: online and streaming algorithms

Algorithms	Time per symbol	Space in bits	
Clifford et al. 2011, Inf. Comput. (CPM 2008)	$\widetilde{\mathcal{O}}(\sqrt{k})$	$\mathcal{O}(m \log m)$	deterministic
Porat, Porat FOCS 2009	$\widetilde{\mathcal{O}}(k^2)$	$\widetilde{\mathcal{O}}(k^3)$	randomized
Clifford et al. SODA 2016	$\widetilde{\mathcal{O}}(\sqrt{k})$	$\widetilde{\mathcal{O}}(k^2)$	randomized
Golan, Kopelowitz, Porat ICALP 2018	$\widetilde{\mathcal{O}}(k)$	$\widetilde{\mathcal{O}}(k)$	randomized
This work SODA 2019	$\widetilde{\mathcal{O}}(\sqrt{k})$	$\widetilde{\mathcal{O}}(k)$	randomized
Lower bounds			
Folklore		$\Omega(m\log\sigma)$	deterministic
Huang et al. 2006, Inf. Process. Lett.		$\Omega(k + \log n)$	randomized
Gawrychowski, Uznański 2018, personal communication	$\Omega(k^{0.5-arepsilon})$		combinatorial

Theorem (This work)

There is a streaming k-mismatch algorithm which uses $\mathcal{O}(k \log m \log \frac{m}{k})$ bits of space and takes $\mathcal{O}((\sqrt{k \log k} + \log^3 m) \log \frac{m}{k})$ time per symbol.

Theorem (This work)

There is a streaming k-mismatch algorithm which uses $\mathcal{O}(k \log m \log \frac{m}{k})$ bits of space and takes $\mathcal{O}((\sqrt{k \log k} + \log^3 m) \log \frac{m}{k})$ time per symbol.

Extra features of the new algorithm:

■ For each reported occurrence, the **mismatch information** can be computed on demand in O(k) time.

Theorem (This work)

There is a streaming k-mismatch algorithm which uses $\mathcal{O}(k \log m \log \frac{m}{k})$ bits of space and takes $\mathcal{O}((\sqrt{k \log k} + \log^3 m) \log \frac{m}{k})$ time per symbol.

Extra features of the new algorithm:

■ For each reported occurrence, the **mismatch information** can be computed on demand in $\mathcal{O}(k)$ time.

Theorem (This work)

There is a streaming k-mismatch algorithm which uses $\mathcal{O}(k \log m \log \frac{m}{k})$ bits of space and takes $\mathcal{O}((\sqrt{k \log k} + \log^3 m) \log \frac{m}{k})$ time per symbol.

Extra features of the new algorithm:

■ For each reported occurrence, the **mismatch information** can be computed on demand in O(k) time.

The only previous streaming algorithm computing mismatch information: Radoszewski, Starikovskaya (DCC 2017): $\widetilde{\mathcal{O}}(k)$ time per symbol, $\widetilde{\mathcal{O}}(k^2)$ space.

Theorem (This work)

There is a streaming k-mismatch algorithm which uses $\mathcal{O}(k \log m \log \frac{m}{k})$ bits of space and takes $\mathcal{O}((\sqrt{k \log k} + \log^3 m) \log \frac{m}{k})$ time per symbol.

Extra features of the new algorithm:

- For each reported occurrence, the **mismatch information** can be computed on demand in $\mathcal{O}(k)$ time. The only previous streaming algorithm computing mismatch information: Radoszewski, Starikovskaya (DCC 2017): $\widetilde{\mathcal{O}}(k)$ time per symbol, $\widetilde{\mathcal{O}}(k^2)$ space.
- Pattern preprocessing under the same bounds on space and time.

Theorem (This work)

There is a streaming k-mismatch algorithm which uses $\mathcal{O}(k \log m \log \frac{m}{k})$ bits of space and takes $\mathcal{O}((\sqrt{k \log k} + \log^3 m) \log \frac{m}{k})$ time per symbol.

Extra features of the new algorithm:

- For each reported occurrence, the **mismatch information** can be computed on demand in $\mathcal{O}(k)$ time. The only previous streaming algorithm computing mismatch information: Radoszewski, Starikovskaya (DCC 2017): $\widetilde{\mathcal{O}}(k)$ time per symbol, $\widetilde{\mathcal{O}}(k^2)$ space.
- Pattern preprocessing under the same bounds on space and time. All previous algorithms require non-streaming preprocessing.

Outline of the talk

Introduction

Exact streaming pattern matching

Our streaming *k*-mismatch algorithm

Conclusions and open problems

Outline of the talk

Introduction

Exact streaming pattern matching

Our streaming k-mismatch algorithm

Conclusions and open problems

Karp-Rabin fingerprints

Assign $\mathcal{O}(\log m)$ -bit integer **fingerprints** $\Psi(\cdot)$ to strings of length up to m so that if $X \neq Y$, then $\Pr[\Psi(X) = \Psi(Y)] \leq m^{-\Theta(1)}$.

¹Plus read-only access to the text.

Karp-Rabin fingerprints

Assign $\mathcal{O}(\log m)$ -bit integer **fingerprints** $\Psi(\cdot)$ to strings of length up to m so that if $X \neq Y$, then $\Pr[\Psi(X) = \Psi(Y)] \leq m^{-\Theta(1)}$.

Rolling fingerprints:

¹Plus read-only access to the text.

Karp-Rabin fingerprints

Assign $\mathcal{O}(\log m)$ -bit integer **fingerprints** $\Psi(\cdot)$ to strings of length up to m so that if $X \neq Y$, then $\Pr[\Psi(X) = \Psi(Y)] \leq m^{-\Theta(1)}$.

Rolling fingerprints:

¹Plus read-only access to the text.

Karp-Rabin fingerprints

Assign $\mathcal{O}(\log m)$ -bit integer **fingerprints** $\Psi(\cdot)$ to strings of length up to m so that if $X \neq Y$, then $\Pr[\Psi(X) = \Psi(Y)] \leq m^{-\Theta(1)}$.

Rolling fingerprints:

¹Plus read-only access to the text.

Karp and Rabin (1987, IBM J. Res. Dev.)

Karp-Rabin fingerprints

Assign $\mathcal{O}(\log m)$ -bit integer **fingerprints** $\Psi(\cdot)$ to strings of length up to m so that if $X \neq Y$, then $\Pr[\Psi(X) = \Psi(Y)] \leq m^{-\Theta(1)}$.

Rolling fingerprints:

¹Plus read-only access to the text.

Karp and Rabin (1987, IBM J. Res. Dev.)

Karp-Rabin fingerprints

Assign $\mathcal{O}(\log m)$ -bit integer **fingerprints** $\Psi(\cdot)$ to strings of length up to m so that if $X \neq Y$, then $\Pr[\Psi(X) = \Psi(Y)] \leq m^{-\Theta(1)}$.

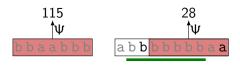
Rolling fingerprints:

¹Plus read-only access to the text.

Karp-Rabin fingerprints

Assign $\mathcal{O}(\log m)$ -bit integer **fingerprints** $\Psi(\cdot)$ to strings of length up to m so that if $X \neq Y$, then $\Pr[\Psi(X) = \Psi(Y)] \leq m^{-\Theta(1)}$.

Rolling fingerprints:



¹Plus read-only access to the text.

Karp and Rabin (1987, IBM J. Res. Dev.)

Karp-Rabin fingerprints

Assign $\mathcal{O}(\log m)$ -bit integer **fingerprints** $\Psi(\cdot)$ to strings of length up to m so that if $X \neq Y$, then $\Pr[\Psi(X) = \Psi(Y)] \leq m^{-\Theta(1)}$.

Rolling fingerprints:

¹Plus read-only access to the text.

Karp and Rabin (1987, IBM J. Res. Dev.)

Karp-Rabin fingerprints

Assign $\mathcal{O}(\log m)$ -bit integer **fingerprints** $\Psi(\cdot)$ to strings of length up to m so that if $X \neq Y$, then $\Pr[\Psi(X) = \Psi(Y)] \leq m^{-\Theta(1)}$.

Rolling fingerprints:

¹Plus read-only access to the text.

Karp and Rabin (1987, IBM J. Res. Dev.)

Karp-Rabin fingerprints

Assign $\mathcal{O}(\log m)$ -bit integer **fingerprints** $\Psi(\cdot)$ to strings of length up to m so that if $X \neq Y$, then $\Pr[\Psi(X) = \Psi(Y)] \leq m^{-\Theta(1)}$.

Rolling fingerprints:

¹Plus read-only access to the text.

Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin–Karp algorithm needs T[i-m] to process T[i].

Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin–Karp algorithm needs T[i-m] to process T[i].

Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin–Karp algorithm needs T[i-m] to process T[i].

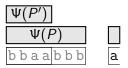
How to avoid accessing this character?

I Recursively look for the occurrences of $P' := P[1 .. \lceil m/2 \rceil]$.

Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin–Karp algorithm needs T[i-m] to process T[i].

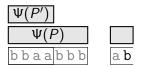
- **I** Recursively look for the occurrences of $P' := P[1 .. \lceil m/2 \rceil]$.
- 2 Maintain $\Psi(T[1..i])$.



Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin–Karp algorithm needs T[i-m] to process T[i].

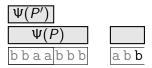
- **I** Recursively look for the occurrences of $P' := P[1 .. \lceil m/2 \rceil]$.
- **2** Maintain Ψ(T[1...i]).



Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin–Karp algorithm needs T[i-m] to process T[i].

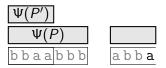
- **I** Recursively look for the occurrences of $P' := P[1 .. \lceil m/2 \rceil]$.
- 2 Maintain $\Psi(T[1..i])$.



Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin–Karp algorithm needs T[i-m] to process T[i].

- **I** Recursively look for the occurrences of $P' := P[1 .. \lceil m/2 \rceil]$.
- 2 Maintain $\Psi(T[1..i])$.



Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin–Karp algorithm needs T[i-m] to process T[i].

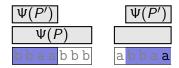
- **I** Recursively look for the occurrences of $P' := P[1 .. \lceil m/2 \rceil]$.
- 2 Maintain $\Psi(T[1..i])$.
- If P' is detected at position j, retrieve and store $\Psi(T[1..j-1])$.



Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin–Karp algorithm needs T[i-m] to process T[i].

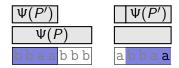
- **I** Recursively look for the occurrences of $P' := P[1 .. \lceil m/2 \rceil]$.
- 2 Maintain $\Psi(T[1..i])$.
- If P' is detected at position j, retrieve and store $\Psi(T[1..j-1])$.



Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin–Karp algorithm needs T[i-m] to process T[i].

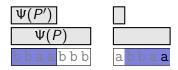
- **I** Recursively look for the occurrences of $P' := P[1 .. \lceil m/2 \rceil]$.
- 2 Maintain $\Psi(T[1..i])$.
- If P' is detected at position j, retrieve and store $\Psi(T[1..j-1])$.



Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin–Karp algorithm needs T[i-m] to process T[i].

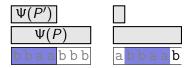
- **I** Recursively look for the occurrences of $P' := P[1 .. \lceil m/2 \rceil]$.
- **2** Maintain Ψ(T[1..i]).
- If P' is detected at position j, retrieve and store $\Psi(T[1..j-1])$.



Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin–Karp algorithm needs T[i-m] to process T[i].

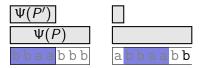
- **I** Recursively look for the occurrences of $P' := P[1 .. \lceil m/2 \rceil]$.
- 2 Maintain $\Psi(T[1..i])$.
- If P' is detected at position j, retrieve and store $\Psi(T[1..j-1])$.



Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin–Karp algorithm needs T[i-m] to process T[i].

- **I** Recursively look for the occurrences of $P' := P[1 .. \lceil m/2 \rceil]$.
- 2 Maintain $\Psi(T[1..i])$.
- If P' is detected at position j, retrieve and store $\Psi(T[1..j-1])$.



Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

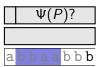
Issue: Rabin–Karp algorithm needs T[i-m] to process T[i].

- **1** Recursively look for the occurrences of $P' := P[1 .. \lceil m/2 \rceil]$.
- 2 Maintain $\Psi(T[1..i])$.
- If P' is detected at position j, retrieve and store $\Psi(T[1..j-1])$.
- Combine $\Psi(T[1..j-1])$ with $\Psi(T[1..i])$ to check if P=T[j..i].

Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin–Karp algorithm needs T[i-m] to process T[i].

- **1** Recursively look for the occurrences of $P' := P[1 .. \lceil m/2 \rceil]$.
- 2 Maintain $\Psi(T[1..i])$.
- If P' is detected at position j, retrieve and store $\Psi(T[1..j-1])$.
- Combine $\Psi(T[1..j-1])$ with $\Psi(T[1..i])$ to check if P=T[j..i].



Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

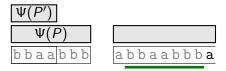
Issue: Rabin–Karp algorithm needs T[i-m] to process T[i].

- **1** Recursively look for the occurrences of $P' := P[1 .. \lceil m/2 \rceil]$.
- 2 Maintain $\Psi(T[1..i])$.
- If P' is detected at position j, retrieve and store $\Psi(T[1..j-1])$.
- Combine $\Psi(T[1..j-1])$ with $\Psi(T[1..i])$ to check if P=T[j..i].

Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin–Karp algorithm needs T[i-m] to process T[i].

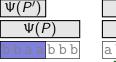
- **1** Recursively look for the occurrences of $P' := P[1 .. \lceil m/2 \rceil]$.
- 2 Maintain $\Psi(T[1..i])$.
- If P' is detected at position j, retrieve and store $\Psi(T[1..j-1])$.
- Combine $\Psi(T[1..j-1])$ with $\Psi(T[1..i])$ to check if P=T[j..i].



Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin–Karp algorithm needs T[i-m] to process T[i].

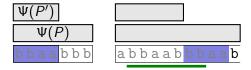
- **1** Recursively look for the occurrences of $P' := P[1 .. \lceil m/2 \rceil]$.
- 2 Maintain $\Psi(T[1..i])$.
- If P' is detected at position j, retrieve and store $\Psi(T[1..j-1])$.
- Combine $\Psi(T[1..j-1])$ with $\Psi(T[1..i])$ to check if P=T[j..i].



Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin–Karp algorithm needs T[i-m] to process T[i].

- **1** Recursively look for the occurrences of $P' := P[1 .. \lceil m/2 \rceil]$.
- 2 Maintain $\Psi(T[1..i])$.
- If P' is detected at position j, retrieve and store $\Psi(T[1..j-1])$.
- Combine $\Psi(T[1..j-1])$ with $\Psi(T[1..i])$ to check if P=T[j..i].



Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

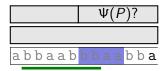
Issue: Rabin–Karp algorithm needs T[i-m] to process T[i].

- **1** Recursively look for the occurrences of $P' := P[1 .. \lceil m/2 \rceil]$.
- 2 Maintain $\Psi(T[1..i])$.
- If P' is detected at position j, retrieve and store $\Psi(T[1..j-1])$.
- Combine $\Psi(T[1..j-1])$ with $\Psi(T[1..i])$ to check if P=T[j..i].

Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin–Karp algorithm needs T[i-m] to process T[i].

- **1** Recursively look for the occurrences of $P' := P[1 .. \lceil m/2 \rceil]$.
- 2 Maintain $\Psi(T[1..i])$.
- If P' is detected at position j, retrieve and store $\Psi(T[1..j-1])$.
- Combine $\Psi(T[1..j-1])$ with $\Psi(T[1..i])$ to check if P=T[j..i].



Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin–Karp algorithm needs T[i-m] to process T[i].

- **1** Recursively look for the occurrences of $P' := P[1 .. \lceil m/2 \rceil]$.
- 2 Maintain $\Psi(T[1..i])$.
- If P' is detected at position j, retrieve and store $\Psi(T[1..j-1])$.
- Combine $\Psi(T[1..j-1])$ with $\Psi(T[1..i])$ to check if P=T[j..i].

Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Viable occurrences of P'

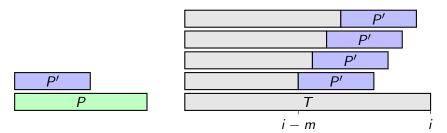
- For each viable occurrence, we need to store $\Psi(T[1..j-1])$.
- There can be $\Theta(m)$ viable occurrences. . .



Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Viable occurrences of P'

- For each viable occurrence, we need to store $\Psi(T[1..j-1])$.
- There can be $\Theta(m)$ viable occurrences. . . but their starting positions form an arithmetic progression.



Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Viable occurrences of P'

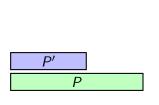
- For each viable occurrence, we need to store $\Psi(T[1..j-1])$.
- There can be $\Theta(m)$ viable occurrences. . . but their starting positions form an arithmetic progression.
- We store only the first two fingerprints and the last one. . .

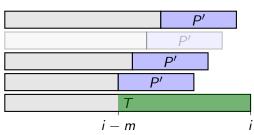


Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Viable occurrences of P'

- For each viable occurrence, we need to store $\Psi(T[1..j-1])$.
- There can be $\Theta(m)$ viable occurrences... but their starting positions form an arithmetic progression.
- We store only the first two fingerprints and the last one. . . and update the representation when necessary.

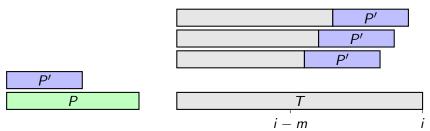




Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Viable occurrences of P'

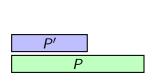
- For each viable occurrence, we need to store $\Psi(T[1..j-1])$.
- There can be $\Theta(m)$ viable occurrences... but their starting positions form an arithmetic progression.
- We store only the first two fingerprints and the last one. . . and update the representation when necessary.

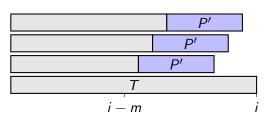


Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Viable occurrences of P'

- For each viable occurrence, we need to store $\Psi(T[1..j-1])$.
- There can be $\Theta(m)$ viable occurrences... but their starting positions form an arithmetic progression.
- We store only the first two fingerprints and the last one. . . and update the representation when necessary.

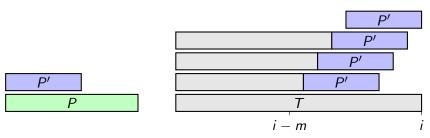




Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Viable occurrences of P'

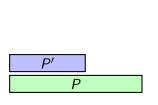
- For each viable occurrence, we need to store $\Psi(T[1..j-1])$.
- There can be $\Theta(m)$ viable occurrences... but their starting positions form an arithmetic progression.
- We store only the first two fingerprints and the last one... and update the representation when necessary.

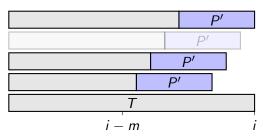


Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Viable occurrences of P'

- For each viable occurrence, we need to store $\Psi(T[1..j-1])$.
- There can be $\Theta(m)$ viable occurrences... but their starting positions form an arithmetic progression.
- We store only the first two fingerprints and the last one. . . and update the representation when necessary.





Outline of the talk

Introduction

Exact streaming pattern matching

Our streaming k-mismatch algorithm

Conclusions and open problems

The *k*-mismatch sketches

A **sketch function** sk_k mapping words X, $|X| \leq n$, to $\mathcal{O}(k \log n)$ -bit values $\operatorname{sk}_k(X)$ designed so that $\operatorname{sk}_k(X)$ and $\operatorname{sk}_k(Y)$ are sufficient to:

• decide whether $HD(X, Y) \leq k$

The *k*-mismatch sketches

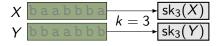
A **sketch function** sk_k mapping words X, $|X| \leq n$, to $\mathcal{O}(k \log n)$ -bit values $\operatorname{sk}_k(X)$ designed so that $\operatorname{sk}_k(X)$ and $\operatorname{sk}_k(Y)$ are sufficient to:

• decide whether $HD(X, Y) \leq k$

The *k*-mismatch sketches

A **sketch function** sk_k mapping words X, $|X| \leq n$, to $\mathcal{O}(k \log n)$ -bit values $\operatorname{sk}_k(X)$ designed so that $\operatorname{sk}_k(X)$ and $\operatorname{sk}_k(Y)$ are sufficient to:

• decide whether $HD(X, Y) \leq k$



The k-mismatch sketches

A **sketch function** sk_k mapping words X, $|X| \leq n$, to $\mathcal{O}(k \log n)$ -bit values $\operatorname{sk}_k(X)$ designed so that $\operatorname{sk}_k(X)$ and $\operatorname{sk}_k(Y)$ are sufficient to:

- decide whether $HD(X, Y) \leq k$, and
- retrieve the mismatch information if $HD(X, Y) \le k$,

The *k*-mismatch sketches

A **sketch function** sk_k mapping words X, $|X| \leq n$, to $\mathcal{O}(k \log n)$ -bit values $\operatorname{sk}_k(X)$ designed so that $\operatorname{sk}_k(X)$ and $\operatorname{sk}_k(Y)$ are sufficient to:

- decide whether $HD(X, Y) \leq k$, and
- retrieve the mismatch information if $HD(X, Y) \le k$,

both in $\widetilde{\mathcal{O}}(k)$ time.

The *k*-mismatch sketches

A **sketch function** sk_k mapping words X, $|X| \leq n$, to $\mathcal{O}(k \log n)$ -bit values $\operatorname{sk}_k(X)$ designed so that $\operatorname{sk}_k(X)$ and $\operatorname{sk}_k(Y)$ are sufficient to:

- decide whether $HD(X, Y) \leq k$, and
- retrieve the mismatch information if $HD(X, Y) \le k$, both in $\widetilde{\mathcal{O}}(k)$ time.

Manipulation in $\widetilde{\mathcal{O}}(k)$ time:

- concatenation,
- prefix and suffix removal,
- lacksquare appending $\mathcal{O}(k)$ chars,
- $\mathcal{O}(k)$ substitutions.

The *k*-mismatch sketches

A **sketch function** sk_k mapping words X, $|X| \leq n$, to $\mathcal{O}(k \log n)$ -bit values $\operatorname{sk}_k(X)$ designed so that $\operatorname{sk}_k(X)$ and $\operatorname{sk}_k(Y)$ are sufficient to:

- decide whether $HD(X, Y) \leq k$, and
- retrieve the mismatch information if $HD(X, Y) \le k$, both in $\widetilde{\mathcal{O}}(k)$ time.

Manipulation in $\widetilde{\mathcal{O}}(k)$ time:

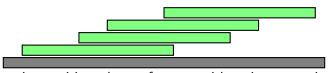
- concatenation,
- prefix and suffix removal,
- lacksquare appending $\mathcal{O}(k)$ chars,
- $\mathcal{O}(k)$ substitutions.

Techniques:

- Reed—Solomon error correcting codes,
- Karp–Rabin fingerprints,
- polynomial factorization, evaluation, and interpolation.

Theorem

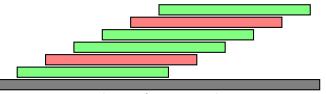
The k-mismatch occurrences of a length-m pattern in a length-2m text, each with the mismatch information (MI), can be encoded in $\widetilde{\mathcal{O}}(k)$ bits.



■ The starting positions do not form an arithmetic progression. . .

Theorem

The k-mismatch occurrences of a length-m pattern in a length-2m text, each with the mismatch information (MI), can be encoded in $\widetilde{\mathcal{O}}(k)$ bits.

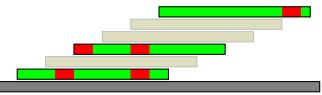


■ The starting positions do not form an arithmetic progression... but we still consider the smallest progression containing all of them.

Theorem

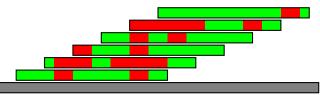
- The starting positions do not form an arithmetic progression... but we still consider the smallest progression containing all of them.
- This progression is spanned by $\mathcal{O}(\log m)$ k-mismatch occurrences.

Theorem



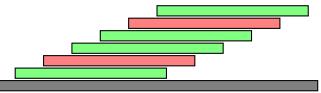
- The starting positions do not form an arithmetic progression... but we still consider the smallest progression containing all of them.
- This progression is spanned by $\mathcal{O}(\log m)$ k-mismatch occurrences.
- Their MI encodes the MI for all alignments in the progression.

Theorem



- The starting positions do not form an arithmetic progression... but we still consider the smallest progression containing all of them.
- This progression is spanned by $\mathcal{O}(\log m)$ k-mismatch occurrences.
- Their MI encodes the MI for all alignments in the progression.

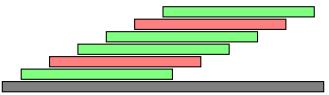
Theorem



- The starting positions do not form an arithmetic progression... but we still consider the smallest progression containing all of them.
- This progression is spanned by $\mathcal{O}(\log m)$ k-mismatch occurrences.
- Their MI encodes the MI for all alignments in the progression.

Theorem

The k-mismatch occurrences of a length-m pattern in a length-2m text, each with the mismatch information (MI), can be encoded in $\widetilde{\mathcal{O}}(k)$ bits.



- The starting positions do not form an arithmetic progression... but we still consider the smallest progression containing all of them.
- This progression is spanned by $\mathcal{O}(\log m)$ k-mismatch occurrences.
- Their MI encodes the MI for all alignments in the progression.

Consequence

A k-mismatch streaming algorithm with $\widetilde{\mathcal{O}}(k)$ space and time per symbol.

Bottleneck: manipulation of sketches at every position.

Bottleneck: manipulation of sketches at every position.

Hope: sketches needed only when a viable occurrence is processed.

b b a a a b b a

b b a a a b b a
b b a a a b b a
a b b b a a b b a b

Bottleneck: manipulation of sketches at every position.

Hope: sketches needed only when a viable occurrence is processed.

bbaaabba bbaaabba abbbaababab

Approximate period

An integer p is a d-period of P if $HD(P[1 ... m - p], P[p + 1 ... m]) <math>\leq d$.

Bottleneck: manipulation of sketches at every position.

Hope: sketches needed only when a viable occurrence is processed.

b b a a a b b a

 b b a a a b b a

 b b a a a b b a

 a b b b a a b a b b a b

Approximate period

An integer p is a d-period of P if $HD(P[1 ... m - p], P[p + 1 ... m]) <math>\leq d$.

Improved specialized algorithm

A **deterministic** streaming k-mismatches algorithm for patterns P with an $\mathcal{O}(k)$ -period $\mathcal{O}(k)$. Complexity: $\widetilde{\mathcal{O}}(k)$ bits and $\widetilde{\mathcal{O}}(\sqrt{k})$ time per symbol.

Outline of the talk

Introduction

Exact streaming pattern matching

Our streaming k-mismatch algorithm

Conclusions and open problems

Theorem

There is a streaming k-mismatch algorithm which uses $\mathcal{O}(k \log m \log \frac{m}{k})$ bits of space and takes $\mathcal{O}((\sqrt{k \log k} + \log^3 m) \log \frac{m}{k})$ time per symbol.

Theorem

There is a streaming k-mismatch algorithm which uses $\mathcal{O}(k \log m \log \frac{m}{k})$ bits of space and takes $\mathcal{O}((\sqrt{k \log k} + \log^3 m) \log \frac{m}{k})$ time per symbol.

Theorem

There is a streaming k-mismatch algorithm which uses $\mathcal{O}(k \log m \log \frac{m}{k})$ bits of space and takes $\mathcal{O}((\sqrt{k \log k} + \log^3 m) \log \frac{m}{k})$ time per symbol.

Possible directions for further research:

Fewer logarithmic factors from the query time?

Theorem

There is a streaming k-mismatch algorithm which uses $\mathcal{O}(k \log m \log \frac{m}{k})$ bits of space and takes $\mathcal{O}((\sqrt{k \log k} + \log^3 m) \log \frac{m}{k})$ time per symbol.

- 1 Fewer logarithmic factors from the query time?
- **2** Does small alphabet help in the $\widetilde{\mathcal{O}}(k)$ -space regime?
 - Not clear even if random access is allowed.
 - $ightharpoonup \widetilde{\mathcal{O}}(1)$ time possible in $\widetilde{\mathcal{O}}(k^2)$ space.

Theorem

There is a streaming k-mismatch algorithm which uses $\mathcal{O}(k \log m \log \frac{m}{k})$ bits of space and takes $\mathcal{O}((\sqrt{k \log k} + \log^3 m) \log \frac{m}{k})$ time per symbol.

- 1 Fewer logarithmic factors from the query time?
- **2** Does small alphabet help in the $\widetilde{\mathcal{O}}(k)$ -space regime?
 - Not clear even if random access is allowed.
 - $\widetilde{\mathcal{O}}(1)$ time possible in $\widetilde{\mathcal{O}}(k^2)$ space.
- Improved amortized running time?

Theorem

There is a streaming k-mismatch algorithm which uses $\mathcal{O}(k \log m \log \frac{m}{k})$ bits of space and takes $\mathcal{O}((\sqrt{k \log k} + \log^3 m) \log \frac{m}{k})$ time per symbol.

- 1 Fewer logarithmic factors from the query time?
- **2** Does small alphabet help in the $\widetilde{\mathcal{O}}(k)$ -space regime?
 - Not clear even if random access is allowed.
 - $\widetilde{\mathcal{O}}(1)$ time possible in $\widetilde{\mathcal{O}}(k^2)$ space.
- Improved amortized running time?
- 4 Any $\omega(k + \log n)$ lower bounds?
 - $\square \Omega(k \log n)$ might be feasible.
 - $\omega(\log n)$ for constant k might give hints for exact matching.

Questions?

Thank you for your attention!

Thank you for your attention!

Advertisement

University of Bristol is hiring!

Assistant/associate professorship in algorithms and complexity. Visit tinyurl.com/bristolukjob or talk to Raphaël Clifford.