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Abstract. We show that the maximum number of di�erent square sub-
strings in unrooted labelled trees behaves much di�erently than in words.
A substring in a tree corresponds (as its value) to a simple path. Let
sq(n) be the maximum number of di�erent square substrings in a tree of
size n. We show that asymptotically sq(n) is strictly between linear and
quadratic orders, for some constants c1, c2 > 0 we obtain:

c1n
4/3 ≤ sq(n) ≤ c2n

4/3.

1 Introduction

Repetitions are a fundamental notion in combinatorics and algorithmics on
words. The basic type of a repetition are squares: words of the type zz, where
z 6= ε. (By ε we denote the empty word.) In this paper we consider square sub-
strings corresponding to simple paths in labelled trees. If a tree is a single path
then it is a problem of classical repetitions in strings. Combinatorics of squares
in classical strings has been investigated in [7,9,10] and for partial words in [3].
Squares were also studied in the context of games, e.g. in [8].

Repetitions in trees and graphs have already been considered, for example
in [4,1,2]. The number of square substrings in general graphs dramatically in-
creases � it can be exponential, even in case of binary alphabet.

Assume we have a tree T whose edges are labelled with symbols from an
alphabet Σ. By |T | we denote the size of the tree, that is the number of nodes.
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?? The author is supported by grant no. N206 566740 of the National Science Centre.



a b
c

c

bc
c

a a

c

a

Fig. 1. There are 4 square substrings in this tree: aa, acaaca, bcbc, cc. Note that cc
occurs twice. The longest is acaaca and it corresponds to a path marked with a solid
line in the �gure.

If u and v are two nodes of T , then by val(u, v) we denote the sequence of labels
of edges on the path from u to v. We call val(u, v) a substring of T . (Note that
a substring is a string, not a path.) Figure 1 illustrates a square substring in a
sample tree. We consider only simple paths: this means that vertices of a path
do not repeat (though edges on the path do not need to have distinct labels).

For a tree T , by sq(T ) we denote the number of di�erent square substrings
in T . For the tree T from Fig. 1, we have sq(T ) = 4. Let sq(n) be the maximum
of sq(T ) over all trees of size n. We show that sq(n) = Θ(n4/3). Thus sq(n) has
di�erent asymptotics than the maximum number of di�erent square substrings
in a standard word (a single path tree) of length n, which is known to be Θ(n)
[7].

We introduce a family of trees which we call combs. The lower bound for
sq(n) turns out to be realized by trees from this family, and such trees also play
an important role in the proof of the upper bound. Before we show the general
upper bound, we provide some intuition behind this proof by showing the same
upper bound for combs and for special squares of the form (aibaj)2 in general
trees.

2 Bounds for Combs

Before we show a general O(n4/3) bound on the number of squares in a tree,
we analyze the number of squares for a family of trees which we call standard
combs. The notion of combs is generalized later in the paper.

A standard comb is a labelled tree that consists of a path called the spine,
with at most one branch attached to each node of the spine. All spine-edges
are labelled with the letter a. Each branch is a path starting with the letter b,
followed by a number of a-labelled edges, see Fig. 2.

As we show in the theorem below, there exists a family Tm of standard combs
for which sq(Tm) = Ω(|Tm|4/3). From this one easily obtains sq(n) = Ω(n4/3)
for any n. In this section we also prove an upper bound of O(n4/3) for the
number of squares in a standard comb of size n. This proof is extensively used
throughout the proof of the same upper bound for general trees, given in the
following sections. Hence, our family of standard combs Tm meets the asymptotic
upper bound for sq(n) for general trees.
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Fig. 2. A standard comb containing 11 square substrings.

For m = k2 we de�ne a set Zm = {1, . . . , k} ∪ {i · k : 1 ≤ i ≤ k}. For
example, if m = 9, then Zm = {1, 2, 3, 6, 9}.

Lemma 1. Assume m is a square of a positive integer. Then for each 0 < j < m
there exist u, v ∈ Zm such that u− v = j.

Proof. Each number 0 < j < m can be written as p
√
m−q, where 0 < p, q ≤

√
m.

This formula corresponds to distance between points q and p
√
m. ut

For m = k2 we de�ne a standard comb Tm as follows: Tm consists of a spine of
length m with vertices numbered from 1 to m, and branches of the form bam

attached to each vertex j ∈ Zm of the spine, see Fig. 3.
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Fig. 3. The structure of a standard comb Tm.

Theorem 1. [Lower Bound Theorem]
For each tree Tm we have sq(Tm) = Ω(|Tm|4/3).

Proof. From Lemma 1, for every 0 < j < m there are two nodes u, v of degree 3
on the spine with distance(u, v) = j. Hence, Tm contains all squares of the form
(aibaj−i)2 for 0 ≤ i ≤ j and 0 < j < m. Altogether this gives Ω(m2) di�erent
squares. Note that |Tm| = O(m

√
m). Hence, the number of square substrings in

Tm is Ω(|Tm|4/3). ut



Lemma 2. The number of squares in a standard comb of size n is O(n4/3).

Proof. Let T be a standard comb of size n. Note that T contains only square
substrings of the form (ai)2 or (aibaj)2. The number of squares of the former
type is O(n). We need to bound the number of squares of the latter type (special
squares). Any occurrence of a special square starts and ends within two di�erent
branches of T .

There are at most n4/3 di�erent special squares for which i < n2/3 and j <
n2/3. Hence, it su�ces to prove that there are O(n4/3) special square substrings
of T for i ≥ n2/3 or j ≥ n2/3, we call such special squares long.

A branch of a standard comb is called long if it contains at least n2/3 nodes.
Note that there are O(n1/3) long branches in T . Any occurrence of a long special
square has at least one endpoint in a long branch.

Consider a node u located in a branch B of T and a long branch B′. There
is at most one occurrence of a long special square that starts in u and ends
within the branch B′. Indeed, if there are i a-labelled edges on the path from
u to the spine and k edges on the path connecting the branches B and B′

then the considered square (aibak−i)2 uniquely determines its other endpoint.
Hence, the total number of long special squares is bounded by the number of
nodes u multiplied by the number of long branches B′, that is, by O(n4/3). This
completes the proof. ut

3 Prelude to Upper Bound Proof

In this section we show a tight upper bound for special squares, de�ned at the
end of Section 1. Along the way we introduce some part of the machinery for the
general proof. De�ne a double tree D = (T1, T2, R) as a labelled tree consisting
of two disjoint (except one vertex) trees T1, T2 with a common root R. The size
of D is de�ned as |D| = |T1|+ |T2|− 1. The substrings of D are de�ned as values
of paths which start within T1 and end in T2. An example of a double tree is
shown in Fig. 4, T1 lies below R (lower tree) while T2 above R (upper tree).

A directed rooted labelled tree is deterministic if the edges going down from
the same vertex have di�erent labels. Note that a tree is deterministic if and
only if it is a trie (also called a pre�x tree) of the values of the paths from R to
the leaves. A double tree is deterministic if each of the trees T1, T2 treated as
a directed tree with root R is deterministic. A double deterministic tree is also
called here a D-tree. The double tree in Fig. 4 is a sample D-tree.

Lemma 3. For each double (possibly nondeterministic) tree there exists a D-
tree with at most the same number of vertices and the same set of substrings
(going from T1 to T2).

Proof. For a moment let us direct each tree Ti down from R (treated as a root).
Assume we have a vertex v with edges (v, u), (v, w) going to its children and
labelled with the same letter a. Then we can glue the vertices u,w. We can
perform such operation going top-down from the root in a BFS traversal. Note



that the resulting trees Ti are deterministic, their sizes could only decrease, and
the set of the substrings of the D-tree remains unchanged. ut

A path in a tree T is said to be anchored in a node R ∈ T if R lies on this path.
A square is anchored in R if it is a value of a path anchored in R.

A path p from v to u in a D-tree is called a D-square if v ∈ T1, u ∈ T2, val(v, u)
is a square and its midpoint lies within T1, and amongst all such paths of the
same value p has its starting node closest to R. Since the D-tree is deterministic,
no two D-squares have the same value. Below we bind the number of D-squares
in D-trees with the number of squares in ordinary trees. Recall that a centroid
of a tree T is a node R such that each component of T \ {R} contains at most
n/2 nodes. It is a well-known fact that each tree has a centroid.

Lemma 4. Assume that the number of D-squares in any D-tree of size n is
O(n4/3). Then the number of squares in any tree is also O(n4/3).

Proof. Let T be a tree of size n and let R be its centroid. Consider a D-tree
D = (T1, T2, R) composed of two copies T1 and T2 of T , determinised as in
Lemma 3.

Let xx be a square in T anchored in R. Either this square or its reverse cor-
responds to a D-square in D. Obviously |D| = O(n), therefore, by the hypothesis
of the lemma, there are O(n4/3) D-squares in this D-tree. Hence, the number of
squares in T anchored in R is also O(n4/3).

Now we need to count the squares in T that are not anchored in R. After
removing the node R, the tree is partitioned into components T1, . . . , Tk, such
that

∑
i |Ti| = n− 1 and |Ti| ≤ n/2. Hence, the number of squares in T can be

written as:
sq(T ) ≤ O(|T |4/3) +

∑
i sq(Ti).

A solution to this recurrence yields the upper bound sq(n) = O(n4/3). ut

The proof of the assumption of the previous lemma is the core of this paper. In
full generality it is provided in the last section. Here we limit ourselves to a very
special type of squares. There is a useful connection between D-trees and combs,
as expressed by the following observation, see Fig. 4.
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Fig. 4. Illustration of Observation 1.



Observation 1 Assume we have a D-tree labelled with letters a, b. Let us take
only paths from a vertex in T1 to R or from R to a vertex in T2 which contain
at most one b, with other edges labelled with a. Then the resulting labelled tree
is a standard comb (with at most one additional branch attached to R).

Corollary 1. Assume binary alphabet {a, b}. The maximum number of special
squares in any tree is O(n4/3).

Proof. By Lemma 4, it su�ces to consider a D-tree D = (T1, T2, R) and only
special D-squares in D. The special D-squares with both occurrences of b in T2
are uniquely determined by their upper end and those with both occurrences
in T1 by their lower end. Hence the number of such D-squares in linear. By
Lemma 2 and Observation 1, there are O(n4/3) special D-squares which have
one b in T1 and one b in T2. ut

4 (p, q)-Representations of Substrings

In this section w denotes a word of length n. We start by recalling a few basic
notions of word periodicity, see e.g. [5,6,11]. A border of w is de�ned as a pre�x
of w which is also a su�x of w. We say that a positive integer p is a period of
w = w1w2 . . . wn if wi = wi+p holds for all 1 ≤ i ≤ n− p. A non-empty word w
is called periodic if it has a period p such that 2p ≤ |w|. The primitive root of
a word w, denoted root(w), is the shortest word u such that uk = w for some
positive integer k. We call a word w primitive if root(w) = w, otherwise it is
called non-primitive. We recall several periodic properties of words [5,6,11].

Fact 1 A word w has a border of length b if and only if w has a period |w| − b.

Fact 2 (Periodicity Lemma) If a word of length n has two periods p and q,
such that p+ q ≤ n+ gcd(p, q), then gcd(p, q) is also a period of the word.

Fact 3 (Synchronizing Properties)

(a) If uv = vu then both words u, v are powers of the same primitive word.
(b) Let q 6= ε be a primitive word. Then q has exactly two occurrences in qq.
(c) Let p 6= ε, q 6= ε be such that pq is primitive. Then qp has exactly one

occurrence in pqpq.

As a consequence of the synchronizing properties of primitive words, we obtain
the following auxiliary fact that will be useful in the proof of the main result
(Lemma 9).

Fact 4 Let p, p′, q, q′ be words such that: q 6= ε and q′ 6= ε, pq is primitive,
pq = p′q′, and qp = q′p′. Then p = p′ and q = q′.

Proof. First assume p = ε. Then q′p′ = qp = pq = p′q′. From Fact 3a, since
q′ 6= ε, we get p′ = ε. This naturally implies that q = q′. Now assume that p 6= ε.
We have pqpq = p′q′p′q′ = p′qpq′ and from Fact 3c we know that there is only
one occurrence of qp in pqpq. Thus p = p′ and q = q′. ut



Assume that w is periodic. There exists a unique representation of w: w = (pq)kp
such that k ≥ 2, q 6= ε and pq is primitive. This representation is called a
canonical representation of w. Here |pq| is the shortest period of w. We say that
w is of periodic type (p, q).

Example 1. The word abbabbab has a canonical representation (abb)2ab, with
p = ab and q = b. On the other hand, bababa has a representation (ba)3 with
p = ε and q = ba.

Fact 5 Borders of w that are periodic belong to O(log n) periodic types. Addi-
tionally, w may have O(log n) borders which are not periodic.

Proof. As for the �rst part of the lemma, let u, v be periodic borders of w such
that |u| < |v| ≤ 1.5|u|. We show that u and v are of the same periodic type.

Indeed, let v = (pq)kp, where d = |pq| is the shortest period of v, and
u = (p′q′)k

′
p′ be the canonical representations of v and u. The border u is also

a border of v. Due to Fact 1, both d and |v| − |u| are periods of v. Moreover
d < 1

2 |v| (since k ≥ 2) and |v| − |u| ≤ 1
3 |v| (since |v| ≤ 1.5|u|). Hence, by the

Periodicity Lemma, |v|− |u| is a multiple of d. The word u is a pre�x of v, hence
u = (pq)`p for some ` < k. Now, let us show that ` ≥ 2. Assume to the contrary
that ` ≤ 1. Then:

3|p|+ 2|q| ≤ (k + 1)|p|+ k|q| = |v| ≤ 1.5|u| ≤ 3|p|+ 1.5|q|.

This is clearly a contradiction, since |q| > 0. Hence ` ≥ 2. Now by the uniqueness
of canonical representations we obtain p = p′, q = q′ and k′ = `. This concludes
that the borders u and v are of the same periodic type.

As for the second part, let u, v be non-periodic borders of w such that |u| <
|v|. We show that |v| > 2|u|.

Assume to the contrary that |u| < |v| ≤ 2|u|. As in the previous part of the
proof, we see that |v| − |u| is a period of v. However,

2(|v| − |u|) = |v|+ |v| − 2|u| ≤ |v|+ 2|u| − 2|u| = |v|,

therefore v is periodic, a contradiction. ut

A periodic border v of w is called global if its period is the period of the whole
word w. Equivalently, v is global if v, w are of the same periodic type. If w is of
periodic type (p, q) and its canonical representation is w = (pq)kp, then all its
global borders are (pq)k

′
p for 2 ≤ k′ ≤ k.

De�nition 1. Let p, q be such words that q 6= ε and pq is primitive. The rep-
resentation w = p(qp)`y(pq)rp is called the (p, q)-representation of w if: (a)
`, r ≥ 1; (b) y has a pre�x qp but not (qp)2; (c) y has a su�x pq but not (pq)2,
see Fig. 5 and 6.

Lemma 5. Assume w has a non-global periodic border of periodic type (p, q).
Then w has a (p, q)-representation w = p(qp)`y(pq)rp. Moreover: (a) this (p, q)-
representation is unique (i.e., `, r and y are unique); (b) y is not a pre�x of
(qp)2; (c) y is not a su�x of (pq)2; (d) all borders of w of periodic type (p, q)
are: (pq)k

′
p for 2 ≤ k′ ≤ min(`, r) + 1.
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Fig. 5. The (p, q)-representations: w1 = a(abaa)2abaaba(aaba)1a and w2 =
a(abaa)2abaabaaba(aaba)1a. In both cases p = a, q = aba and y is marked grey.

y
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Fig. 6. A schematic view of a (p, q)-representation. The ∗-symbols correspond to the
�rst mismatch for the continuation of the period qp from the left side and the period
pq from the right side.

Proof. Let u = (pq)kp be the longest border of w of type (p, q). Clearly p is a
pre�x of w and |w| > |u| > 2|p|, so let us write w = pzp. Now, let (qp)`+1 be the
maximal power of qp that is a pre�x of z. We have for some z′: w = p(qp)`z′p.
Let (pq)r+1 be the maximal power of pq that is a su�x of z′. Now we can write
w = p(qp)`y(pq)rp. Let us prove that this representation satis�es the required
conditions. We get the following easily:

� z has a pre�x qp and a su�x pq.
� z′ has a pre�x qp but not (qp)2, and a su�x pq
� y has a pre�x qp but not (qp)2, and a su�x pq but not (pq)2.

Let us now show that y is not a pre�x of (qp)2. Assume to the contrary. Recall
that pq is a su�x of y. Thus we get an occurrence of pq in qpqp. If p 6= ε, from
Fact 3 we get that y = qpq. But then, w would be of type (p, q). Therefore
p = ε. From Fact 3 we conclude that y = q and w is a power of q. This is,
however, impossible since w has a non-global periodic border (pq)kp = qk. This
contradiction implies that y is not a pre�x of (qp)2.

A symmetric argument proves that y is not a su�x of (pq)2. Since none of
(qp)2 and y is a pre�x of the other, p(qp)`+2 is not a pre�x of w. Similarly
(pq)r+2p is not a su�x of w. Thus u = (pq)min(`,r)+1. In particular `, r ≥ 1.
Clearly (pq)k

′
p for 2 ≤ k′ ≤ min(`, r) + 1 are the only periodic borders of w of

the type (p, q).
Now it remains to show the uniqueness of the representation. Assume there

was another representation w = p(qp)`
′
y′(pq)r

′
p. Since y′ has a pre�x qp but not

(qp)2, `′ + 1 is the largest m such that p(qp)m is a pre�x of m, that is `′ = `.
Similarly r′ = r and �nally y′ = y. ut

A periodic border is called maximal if it is the longest border of its periodic type.
By Fact 5, w has O(log n) maximal borders.

We call a border regular if it is periodic and is neither global nor maximal.



5 General Combs and General Upper Bound

Due to Lemma 4, in this section we are only dealing with D-squares in a deter-
ministic double tree D = (T1, T2, R) of size n.

For a node v ∈ T1 we de�ne the set SQ(v) of all D-squares which start in v.
Each D-square in SQ(v) of value xx induces a period |x| of val(v,R), and thus
corresponds to a border u of val(v,R). This D-square is called regular if u is a
regular border of val(v,R). The periodic type of a D-square is de�ned as the
periodic type of the underlying border u.

The following lemma lets us concentrate only on the regular D-squares.

Lemma 6. At most O(n log n) D-squares in D are not regular.

Proof. We show that in SQ(v) at most O(log n) D-squares are not regular. Each
D-square in SQ(v) corresponds to a di�erent border of val(v,R). The borders
corresponding to non-regular D-squares are non-periodic, global or maximal; we
extend these terms to D-squares as in the case of regular D-squares and borders.
We have the following claim.

Claim. In SQ(v) at most one D-square is global.

Proof. Let xx and x′x′ be values of two global D-squares starting in v. Assume
|x| < |x′|. Let w = val(v,R) = (pq)kp. The global D-squares are of the form
(pq)k

′
. Since a global border is periodic of periodic type (p, q), we have 1 ≤ k′ ≤

k − 2. Let x = (pq)` and x′ = (pq)`
′
, ` < `′.

Let u be an ancestor of v the de�ned by val(u,R) = (pq)k−1p. A path starting
in u and going to the upper end of x′x′ has the value (pq)2`

′−1, which has a pre�x
(pq)2` = xx. We have ` < k − 1, so this occurrence has a centre in the lower
part of the D-tree. Hence, it is a candidate for a D-square of the value xx. This
concludes that the original path of value xx starting in v could not be a D-
square, which is a contradiction. ut

As we noticed in Section 4, only O(log n) borders of val(v,R) can be non-periodic
or maximal. Hence only O(log n) D-squares starting in v can correspond to a
non-regular border. Thus there can be only O(n log n) D-squares which are not
regular. ut

We introduce an important notion of a general comb. Before we give a formal
de�nition, we provide a few sentences of intuition behind it. Assume val(v, u)
is a regular D-square of type (p, q). By Lemma 5 we have the representation
val(v,R) = p(qp)`y(pq)rp. All D-squares of type (p, q) starting in v correspond
to the same representation. Those squares induce a particular structure of paths
labelled with p, q and y in the upper part of the D-tree D. A similar structure
is also present in the lower part.

De�nition 2. Let p, q, y satisfy the conditions of Lemma 5. A D-tree
(T1, T2, R) is called a (p, q, y)-comb if

� for each leaf v ∈ T1, val(v,R) = p(qp)my(pq)kp for some integers k,m,
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Fig. 7. Correspondence between squares in trees and borders.

� for each leaf u ∈ T2, val(R, u) = (qp)my(pq)k for some integers k,m.

Let D be a D-tree containing a regular D-square of periodic type (p, q). Then by
Comb(D, p, q, y) we denote the maximal subtree of D that is a (p, q, y)-comb.
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Fig. 8. A sample (p, q, y)-comb with the root R; the main nodes are shown as larger
circles; the bended edges are partially glued to the spine due to determinisation. All
(p, q, y)-combs are subtrees of this in�nite D-tree. For p = ε, q = a and y = aba we
obtain a standard comb.

Note that the conditions of De�nition 1 and Lemma 5 in particular imply that
neither y is a pre�x of (qp)2 nor (qp)2 a pre�x of y. Similarly neither y is a su�x
of (pq)2 nor (pq)2 a su�x of y. Hence, all combs have a regular structure, see
Fig. 8. Each (p, q, y)-comb consists of a path labelled with p(qp)m (for an integer



m) and containing the root, which we call the spine, and the branches which are
paths attached directly to the spine.

Some nodes of the combs are particularly important for the D-squares. These
are nodes v of values val(v,R) = p(qp)ky(pq)mp in the lower part, and nodes u of
values val(R, u) = (qp)ky(pq)m in the upper part (k,m are arbitrary nonnegative
integers in both cases). Such nodes are called main. For a comb C, by Main(C)
we denote the set of main nodes in C, and by ‖C‖ we denote |Main(C)|. D-squares
in C with both endpoints in main nodes are said to be induced by the comb.

The following lemma con�rms a strong relation between combs and regular
D-squares.

Lemma 7. Each regular D-square of type (p, q) in D is induced by the corre-
sponding comb Comb(D, p, q, y).

Proof. Let val(v, u) be a regular D-square in D of type (p, q). By Lemma 5,
val(v,R) has a following representation val(v,R) = p(qp)`y(pq)rp. The underly-
ing border is regular, that is (pq)kp for some 2 ≤ k ≤ min(`, r), hence the value
of the D-square is (p(qp)`y(pq)r−k)2. Thus val(R, u) = (qp)`−ky(pq)r−k. Now it
is clear that both v and u are main nodes of Comb(D, p, q, y). ut

The following result is a simple extension of the upper bound for standard combs.

Lemma 8. A comb C induces O(‖C‖4/3) D-squares.

Proof. Let C be a (p, q, y)-comb. We can construct a (ε, a, aba)-comb C′ of the
same structure of branches and main nodes as C. Clearly, ‖C‖ = ‖C′‖ and the
number of squares induced by both combs is the same. But now C′ is a standard
comb.

For the comb C′ we have an upper bound sq(C′) = O(|C′|4/3) from Lemma 2.
In order to obtain an O(‖C′‖4/3) bound for the number of squares induced by
C′, it su�ces to restrict the proof of that lemma to special squares (aibaj) for
i ≥ 2 and j ≥ 1. This way we obtain an upper bound of O(‖C′‖4/3) for the
number of D-squares induced by C′, consequently an O(‖C‖4/3) upper bound for
an arbitrary comb C. ut

Finally, we can prove the main lemma.

Lemma 9 (Key lemma). A D-tree of size n contains O(n4/3) regular D-
squares.

Proof. We show that combs in a D-tree are almost disjoint with regard to
their main nodes. More precisely, due to combinatorial properties of words, any
two di�erent such combs can have at most two common main nodes in upper
branches, and same for lower branches (Claim 2). Before that, we show that
certain pairs of combs (with |pq| = |p′q′|) have none common main nodes at all
(Claim 1).

Claim 1 If C = Comb(D, p, q, y) and C′ = Comb(D, p′, q′, y′) are di�erent
combs satisfying |pq| = |p′q′|, then Main(C) ∩Main(C′) = ∅.



Proof. Assume u is a common main node of the two combs. It can lie either in
the upper part or in the lower part of D. First, let us consider the �rst case.
Let w = val(R, u). Since qp and q′p′ is a pre�x of w and pq and p′q′ is a su�x
of w, we get that qp = q′p′ and pq = p′q′. By Fact 4, p = p′ and q = q′. We
now know that w = (qp)`y(pq)r = (qp)`

′
y′(pq)r

′
. Assume ` 6= `′, without the

loss of generality ` < `′. Since y′ has a pre�x qp, y(pq)r has a pre�x (qp)2.i This
is impossible by the de�nition of a comb. By a similar argument, r = r′. Hence
y = y′, so C and C′ cannot be di�erent combs.

Now, consider a common main node u in the lower part. Let w = val(u,R).
As previously we easily obtain that p = p′ and q = q′. This time we have
w = p(qp)`y(pq)rp = p(qp)`

′
y′(pq)r

′
p. Exactly in the same way as before, we get

` = `′, r = r′ and conclude that y = y′. ut

Claim 2 Let C = Comb(D, p, q, y) and C′ = Comb(D, p′, q′, y′). Then either
C = C′ or |Main(C) ∩Main(C′)| ≤ 4.

Proof. By Claim 1, it su�ces to show that if C and C′ have at least 5 common
main nodes, then |pq| = |p′q′|. First we show that no two common main nodes
may lie on a single branch (in the upper or in the lower tree). Assume we have
such two nodes u and u′ and u is the lower among them. Then val(u, u′) is a power
of both pq and p′q′. But pq and p′q′ are primitive, so |pq| = |root(val(u, u′))| =
|p′q′|, which by claim concludes the proof of this case.

Now we show that no three common main nodes may lie in the upper tree.
Assume that u, u′, u′′ are such nodes. Since no two of them can lie on the same
branch, they are aligned as in Fig. 9 (up to a permutation of u, u′, u′′).

R

v

v′

u

u′
u′′

Fig. 9. Main nodes on three di�erent branches of a D-tree.

Note that nodes v and v′ need to be branching nodes of both combs. Ob-
viously, |pq| = |root(val(v, v′))| = |p′q′|. This again concludes the proof of the
current case.

Finally, it remains to show that no three common main nodes may lie in the
lower tree. The proof is exactly the same as in the previous case. ut

Now let us divide combs into small combs, for which ‖C‖ ≤ n0.6, and the remain-
ing big combs. Due to the following claim, we can restrict the further analysis
to big combs.



Claim 3 The number of regular D-squares in D induced by small combs is
o(n4/3).

Proof. Consider a node v in the lower part of the D-tree D. Assume SQ(v) con-
tains s > 0 regular D-squares of type (p, q), and val(v,R) = w = p(qp)`y(pq)rp
is a corresponding representation. Let C = Comb(D, p, q, y). We will show that
|Main(C)| = Ω(s2).

Indeed, let x1x1, . . . , xsxs be those s regular D-squares ordered by increasing
lengths. As in the proof of Lemma 7 the values of these D-squares are of reg-
ular form. Namely, we have xi = p(qp)`y(pq)ki for some max(0, r − `) ≤ k1 <
. . . < ks < r. Let u1, . . . , us be the other endpoints of these D-squares. We have
val(R, ui) = (qp)`−r+kiy(pq)ki . The nodes in the upper tree of C corresponding
to paths of the form (qp)`−r+kiy(pq)k for 0 ≤ k ≤ ki are all distinct main nodes,
hence |Main(C)| ≥ ((k1+1)+(k2+1)+ . . .+(ks+1)) ≥ (1+2+ . . .+s) = Ω(s2).

As a consequence, we get that O(n0.3) D-squares from SQ(v) can be induced
by a single small comb. Moreover, by Fact 5, regular squares starting in v are
induced by O(log n) combs. Consequently, the number of elements of SQ(v) that
are induced by small combs is O(n0.3) ·O(log n) = o(n1/3). In total, small combs
induce o(n4/3) squares. ut
Let C1, . . . , Ck denote all big combs of D. As a consequence of Claim 2, the total
size of all these combs, measured in the number of main nodes, turns out to be
linear in terms of n.

Claim 4 For any D-tree of n nodes,
∑k

i=1 ‖Ci‖ = O(n).

Proof. We will show the following inequality:

k∑
i=1

‖Ci‖ ≤ n+ 2(k − 1)(k − 2). (1)

From this inequality, by ‖Ci‖ ≥ n0.6, we get

k · n0.6 ≤ n+ 2(k − 1)(k − 2).

Comparing asymptotics of both sides of the inequality, we conclude that for
almost all values of n (that is, all values excluding only a �nite number) k < n0.5.
For such values of k the right side of the inequality (1) is O(n), which will
conclude the proof of the claim provided that we show that inequality.

As for the proof of (1), using Claim 2 we obtain that:∣∣∣∣∣
k⋃

i=1

Main(Ci)

∣∣∣∣∣ =

∣∣∣∣∣∣
k⋃

i=1

Main(Ci) \
i−1⋃
j=1

Main(Cj)

∣∣∣∣∣∣
=

k∑
i=1

∣∣∣∣∣∣Main(Ci) \
i−1⋃
j=1

Main(Cj)

∣∣∣∣∣∣
≥

k∑
i=1

(‖Ci‖ − 4 · (i− 1)) =

k∑
i=1

‖Ci‖ − 2(k − 1)(k − 2).



Consequently:

k∑
i=1

‖Ci‖ − 2(k − 1)(k − 2) ≤

∣∣∣∣∣
k⋃

i=1

Main(Ci)

∣∣∣∣∣ ≤ n

which is equivalent to the inequality (1). ut

Let D be a D-tree of size n. Due to Lemma 7, each regular D-square in D is
induced by a comb in D. By Claim 3, there are o(n4/3) such D-squares induced by
small combs. Finally, by Lemma 8 and Claim 4, the number of regular D-squares
induced by big combs C1, . . . , Ck of D is bounded by:

k∑
i=1

O
(
‖Ci‖4/3

)
= O

(
k∑

i=1

‖Ci‖

)4/3

= O(n4/3).

This completes the proof of the key lemma. ut

As a corollary of the key lemma, by Lemma 4 and 6 we obtain the desired upper
bound.

Theorem 2. The number of squares in a tree with n nodes is O(n4/3).
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