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k-Center

k-Center
Input: A finite set V , a metric function d on V , an integer k.

Output: A set F ⊆ V of size k and a function φ : V → F .
Minimize: maxv∈V d(v, φ(v)).

k = 3

simple 2-approximation known to be tight under P 6= NP
(Hochbaum & Shmoys, 1985; Gonzalez 1985).
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k-Center With Outliers

k-Center with Outliers
Input: A finite set V , a metric function d on V , integers k, p.

Output: Set F ⊆ V of size k, C ⊆ V of size p and a function
φ : C → F .
Minimize: maxv∈C d(v, φ(v)).

k = 3

p = 8

3-approximation algorithm by Charikar, Khuller, Mound &
Narasimhan (SODA 2001).
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Capacitated k-Center

Capacitated k-Center
Input: A finite set V , a metric function d on V , an integer k,
and a capacity function L : V → Z≥0.

Output: A set F ⊆ V of size k and a function φ : V → F
satisfying |φ−1(v)| ≤ L(v) for each v ∈ F .
Minimize: maxv∈V d(v, φ(v)).

k = 3
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Capacitated k-Center: previous results

an O(1)-approximation bound by Cygan, Hajiaghayi &
Khuller (FOCS’2012),

improved to a 9-approximation by An, Bhaskara &
Svensson (arXiv’2013) and independently by Chekuri,
Gupta & Madan (joint paper accepted to IPCO’2014),

3− ε lower bound by reduction from Cost k-center
(Chuzhoy et al.; STOC’2004)

a 6-approximation for uniform capacities and a
5-approximation for uniform soft capacities
by Khuller & Sussmann (ESA’1996),

soft capacities: multiple facilities can be opened in a
single location
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Capacitated k-Supplier with Outliers

Capacitated k-Supplier with Outliers
Input: Finite sets F and C, a (pseudo)metric function d on
F ∪ C, integers k, p, and a capacity function L : F → Z≥0.

Output: Sets F ⊆ F of size k, C ⊆ C of size p and a function
φ : C → F satisfying |φ−1(v)| ≤ L(v) for each v ∈ F .
Minimize: maxv∈C d(v, φ(v)).

k = 3

p = 5
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Capacitated k-Supplier with Outliers

Capacitated k-Supplier with Outliers
Input: Finite sets F and C, a (pseudo)metric function d on
F ∪ C, integers k, p, and a capacity function L : F → Z≥0.
Output: Sets F ⊆ F of size k, C ⊆ C of size p and a function
φ : C → F satisfying |φ−1(v)| ≤ L(v) for each v ∈ F .
Minimize: maxv∈C d(v, φ(v)).

Natural generalization of Capacitated k-Center
with Outliers,

Can be reduced to Capacitated k-Center with
Outliers preserving the approximation factor.
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Our results

Theorem (main result)

Capacitated k-Supplier with Outliers admits a
25-approximation algorithm.

Fact
The approximation ratio can be reduced to 23 for uniform
capacities and to 13 for soft uniform capacities.

Corollary

Capacitated k-Center with Outliers admits
a 25-approximation algorithm in the general case,
a 23-approximation for uniform capacities and
a 13-approximation for uniform soft capacities.
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Thresholding

Definition
A distance-r solution is a triple (C,F, φ) such that |C| = p
and |F | = k and φ : C → F obeys the capacities and satisfies
d(v, φ(v)) ≤ r for each v ∈ C.

Binary search (already used in most algorithms for k-center)
makes it sufficient to solve the following problem.

Graphic instances: r-approximation

Input: An unweighted, undirected bipartite graph
G = (C,F , E), integers k and p, and a capacity function
L : F → Z≥0.
Output: A distance r-solution or NO, if there is no distance-1
solution (with respect to metric dG).
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Skeletons

Definition
A set S ⊆ F is called a skeleton if

(separation) d(u, u′) ≥ 6 for any u, u′ ∈ S, u 6= u′,
there exists a distance-1 solution (Cφ, Fφ, φ) such that:
(covering) d(u, S) ≤ 4 for each u ∈ Fφ,
(injection) there exists an injection f : S ↪→ Fφ
satisfying d(u, f(u)) ≤ 2 for each u ∈ S.
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Constructing a skeleton

Greedy algorithm:
1 S0 = ∅.
2 Si+1 = Si+argmax{min(L(u), deg(u)) : dG(u, Si) ≥ 6}.

Choose a vertex which would not violate the separation
property and can serve the largest number of clients in a
distance-1 solution.

Lemma
If there exists a distance-1 solution, then at least one of the
sets S0, . . . , Sk is a skeleton.
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Linear program∑
u∈F

yu = k∑
u∈F,v∈C

xuv = p

xuv ≤ yu for u ∈ F , v ∈ C∑
v

xuv ≤ L(u) · yu for u ∈ F∑
u

xuv ≤ 1 for v ∈ C∑
u∈F∩N2[s]

yu≥ 1 for s ∈ S

xuv = 0 for u ∈ F , v ∈ C such that (v, u) /∈ E
0 ≤ x, y ≤ 1

LPk,p(G,L, S). In the corresponding integer program yu = 1 means

u ∈ F and xuv = 1 means φ(v) = u.
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Integrality gap & clustering

Definition
The integrality gap of LPk,p(G,L, S) is the smallest r such
that if the LP is feasible, then there is a distance-r solution.

The integrality gap of LPk,p(G,L, S) is in general
unbounded, even if G is connected (unlike the analogous
LP for the Capacitated k-Center).
Use the covering property of a skeleton to remove vertices
v such that dG(v, S) > 5 and only then consider
connected components separately.
Apply dynamic programming to distribute k open
facilities and p served clients among components, so that
the LPs corresponding to the components are all feasible.
This may fail if S is not a skeleton
If it does not, we will compute an approximate solution.
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Rounding

Lemma
Let I = (G = (C,F , E), L, k, p) be an instance of
Capacitated k-supplier with Outliers and let S ⊆ F .
If the following four conditions are satisfied:

(i) G is connected,

(ii) for any u, u′ ∈ S, u 6= u′ we have d(u, u′) ≥ 6,

(iii) N5[S] = F ∪ C,

(iv) LPk,p(G,L, S) admits a feasible solution,

then one can find a distance-25 solution for I in polynomial
time.
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Distance-r transfers

Distance-r transfers

introduced by An, Bhaskara & Svensson (arXiv’2013) to
round y preserving its sum

each “portion” of y makes at most r hops, and lands in a
vertex of capacity no smaller than the original one.

Lemma
If F ⊆ F is a distance-r transfer of y in G with respect to L,
then a distance-(r + 1) solution can be determined in
polynomial time.
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Rounding cnt’d

Lemma (An, Bhaskara & Svensson, arXiv 2013)

Integral distance-2 transfer can be found for a tree T and y
such that yu = 1 for all non-leaves u.

For simplicity we sketch a distance-32 transfer instead of a
distance-24 transfer.

Marek Cygan and Tomasz Kociumaka Approximation for Capacitated k-Center with Outliers 15/17



Rounding cnt’d

Lemma (An, Bhaskara & Svensson, arXiv 2013)

Integral distance-2 transfer can be found for a tree T and y
such that yu = 1 for all non-leaves u.

For simplicity we sketch a distance-32 transfer instead of a
distance-24 transfer.

Marek Cygan and Tomasz Kociumaka Approximation for Capacitated k-Center with Outliers 15/17



Rounding cnt’d

Lemma (An, Bhaskara & Svensson, arXiv 2013)

Integral distance-2 transfer can be found for a tree T and y
such that yu = 1 for all non-leaves u.

For simplicity we sketch a distance-32 transfer instead of a
distance-24 transfer.

Marek Cygan and Tomasz Kociumaka Approximation for Capacitated k-Center with Outliers 15/17



Rounding cnt’d

Lemma (An, Bhaskara & Svensson, arXiv 2013)

Integral distance-2 transfer can be found for a tree T and y
such that yu = 1 for all non-leaves u.

For simplicity we sketch a distance-32 transfer instead of a
distance-24 transfer.

Marek Cygan and Tomasz Kociumaka Approximation for Capacitated k-Center with Outliers 15/17



Rounding cnt’d

Lemma (An, Bhaskara & Svensson, arXiv 2013)

Integral distance-2 transfer can be found for a tree T and y
such that yu = 1 for all non-leaves u.

For simplicity we sketch a distance-32 transfer instead of a
distance-24 transfer.

Marek Cygan and Tomasz Kociumaka Approximation for Capacitated k-Center with Outliers 15/17



Conclusions & open problems

Theorem
Capacitated k-Supplier with Outliers admits a
25-approximation algorithm.

Open problems:
Shrink the gap between the approximation ratio (25) and
the lower bound (3− ε).
O(1)-approximation for Capacitated k-Median.

Capacitated k-Median
Input: A finite set V , a metric function d on V , an integer k
and a capacity function L : V → Z≥0.
Output: A set F ⊆ V of size k and a function φ : V → F
satisfying |φ−1(v)| ≤ L(v) for each v ∈ F .
Minimize:

∑
v d(v, φ(v)).
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Thank you

Thank you for your attention!
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