Constant Factor Approximation for Capacitated *k*-Center with Outliers

Marek Cygan and Tomasz Kociumaka

Institute of Informatics University of Warsaw

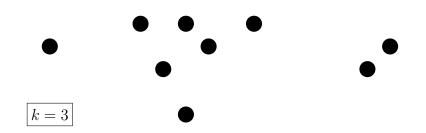
STACS 2014

Lyon, France March 7, 2013

k-CENTER

k-Center

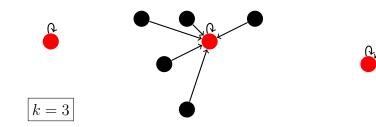
Input: A finite set V, a metric function d on V, an integer k.



k-CENTER

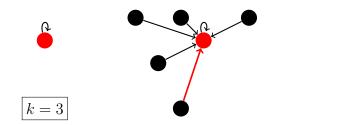
k-Center

Input: A finite set V, a metric function d on V, an integer k. **Output:** A set $F \subseteq V$ of size k and a function $\phi : V \to F$.



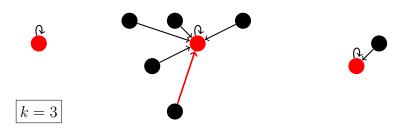
k-Center

Input: A finite set V, a metric function d on V, an integer k. **Output:** A set $F \subseteq V$ of size k and a function $\phi : V \to F$. **Minimize:** $\max_{v \in V} d(v, \phi(v))$.



k-Center

Input: A finite set V, a metric function d on V, an integer k. **Output:** A set $F \subseteq V$ of size k and a function $\phi : V \to F$. **Minimize:** $\max_{v \in V} d(v, \phi(v))$.

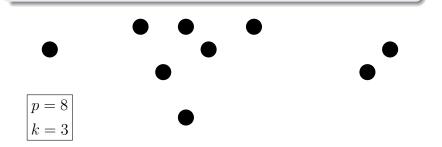


• simple 2-approximation known to be tight under $P \neq NP$ (Hochbaum & Shmoys, 1985; Gonzalez 1985).

k-Center With Outliers

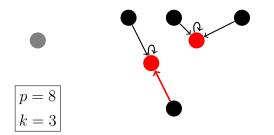
k-Center with Outliers

Input: A finite set V, a metric function d on V, integers k, p.



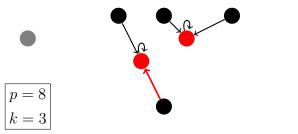
k-Center with Outliers

Input: A finite set V, a metric function d on V, integers k, p. **Output:** Set $F \subseteq V$ of size k, $C \subseteq V$ of size p and a function $\phi : C \to F$. **Minimize:** $\max_{v \in C} d(v, \phi(v))$.



k-Center with Outliers

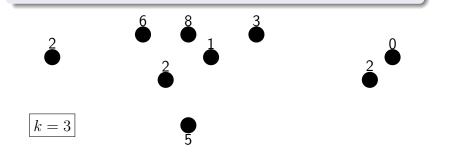
Input: A finite set V, a metric function d on V, integers k, p. **Output:** Set $F \subseteq V$ of size k, $C \subseteq V$ of size p and a function $\phi : C \to F$. **Minimize:** $\max_{v \in C} d(v, \phi(v))$.



 3-approximation algorithm by Charikar, Khuller, Mound & Narasimhan (SODA 2001).

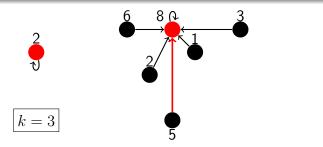
CAPACITATED k-CENTER

Input: A finite set V, a metric function d on V, an integer k, and a capacity function $L: V \to \mathbb{Z}_{\geq 0}$.



CAPACITATED k-CENTER

Input: A finite set V, a metric function d on V, an integer k, and a capacity function $L: V \to \mathbb{Z}_{\geq 0}$. **Output:** A set $F \subseteq V$ of size k and a function $\phi: V \to F$ satisfying $|\phi^{-1}(v)| \leq L(v)$ for each $v \in F$. **Minimize:** $\max_{v \in V} d(v, \phi(v))$.



CAPACITATED k-CENTER: previous results

- an O(1)-approximation bound by Cygan, Hajiaghayi & Khuller (FOCS'2012),
- improved to a 9-approximation by An, Bhaskara & Svensson (arXiv'2013) and independently by Chekuri, Gupta & Madan (joint paper accepted to IPCO'2014),
- 3 ε lower bound by reduction from COST k-CENTER (Chuzhoy et al.; STOC'2004)
- a 6-approximation for *uniform* capacities and a 5-approximation for *uniform soft* capacities by Khuller & Sussmann (ESA'1996),

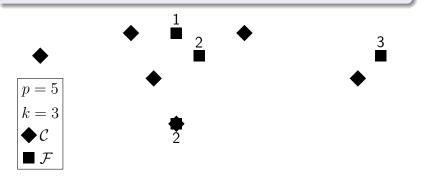
CAPACITATED k-CENTER: previous results

- an O(1)-approximation bound by Cygan, Hajiaghayi & Khuller (FOCS'2012),
- improved to a 9-approximation by An, Bhaskara & Svensson (arXiv'2013) and independently by Chekuri, Gupta & Madan (joint paper accepted to IPCO'2014),
- 3 ε lower bound by reduction from COST k-CENTER (Chuzhoy et al.; STOC'2004)
- a 6-approximation for *uniform* capacities and a 5-approximation for *uniform soft* capacities by Khuller & Sussmann (ESA'1996),
- soft capacities: multiple facilities can be opened in a single location

CAPACITATED k-SUPPLIER WITH OUTLIERS

CAPACITATED k-Supplier with Outliers

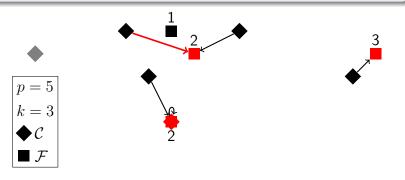
Input: Finite sets \mathcal{F} and \mathcal{C} , a (pseudo)metric function d on $\mathcal{F} \cup \mathcal{C}$, integers k, p, and a capacity function $L : \mathcal{F} \to \mathbb{Z}_{>0}$.



CAPACITATED k-SUPPLIER WITH OUTLIERS

CAPACITATED k-Supplier with Outliers

Input: Finite sets \mathcal{F} and \mathcal{C} , a (pseudo)metric function d on $\mathcal{F} \cup \mathcal{C}$, integers k, p, and a capacity function $L : \mathcal{F} \to \mathbb{Z}_{\geq 0}$. **Output:** Sets $F \subseteq \mathcal{F}$ of size $k, C \subseteq \mathcal{C}$ of size p and a function $\phi : C \to F$ satisfying $|\phi^{-1}(v)| \leq L(v)$ for each $v \in F$. **Minimize:** $\max_{v \in C} d(v, \phi(v))$.



CAPACITATED k-Supplier with Outliers

CAPACITATED k-Supplier with Outliers

Input: Finite sets \mathcal{F} and \mathcal{C} , a (pseudo)metric function d on $\mathcal{F} \cup \mathcal{C}$, integers k, p, and a capacity function $L : \mathcal{F} \to \mathbb{Z}_{\geq 0}$. **Output:** Sets $F \subseteq \mathcal{F}$ of size $k, C \subseteq \mathcal{C}$ of size p and a function $\phi : C \to F$ satisfying $|\phi^{-1}(v)| \leq L(v)$ for each $v \in F$. **Minimize:** $\max_{v \in C} d(v, \phi(v))$.

- Natural generalization of CAPACITATED *k*-CENTER WITH OUTLIERS,
- Can be reduced to CAPACITATED *k*-CENTER WITH OUTLIERS preserving the approximation factor.

Theorem (main result)

CAPACITATED *k*-SUPPLIER WITH OUTLIERS *admits a* 25-approximation algorithm.

Fact

The approximation ratio can be reduced to 23 for uniform capacities and to 13 for soft uniform capacities.

Corollary

CAPACITATED *k*-CENTER WITH OUTLIERS *admits* a 25-approximation algorithm in the general case, a 23-approximation for uniform capacities and a 13-approximation for uniform soft capacities.

Definition

A distance-r solution is a triple (C, F, ϕ) such that |C| = pand |F| = k and $\phi : C \to F$ obeys the capacities and satisfies $d(v, \phi(v)) \leq r$ for each $v \in C$.

Binary search (already used in most algorithms for k-CENTER) makes it sufficient to solve the following problem.

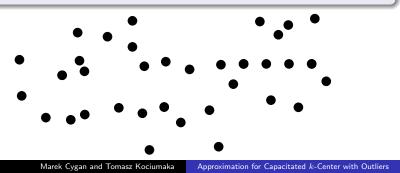
Graphic instances: r-approximation

Input: An unweighted, undirected bipartite graph $G = (C, \mathcal{F}, E)$, integers k and p, and a capacity function $L : \mathcal{F} \to \mathbb{Z}_{\geq 0}$. **Output**: A distance *r*-solution or NO, if there is no distance-1 solution (with respect to metric d_G).

Definition

A set $S \subseteq \mathcal{F}$ is called a *skeleton* if

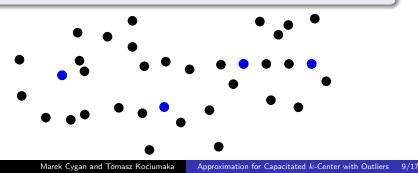
- (separation) $d(u, u') \ge 6$ for any $u, u' \in S$, $u \ne u'$,
- there exists a distance-1 solution $(C_{\phi}, F_{\phi}, \phi)$ such that:
 - (covering) $d(u, S) \leq 4$ for each $u \in F_{\phi}$,
 - (injection) there exists an injection f : S → F_φ satisfying d(u, f(u)) ≤ 2 for each u ∈ S.



9/17

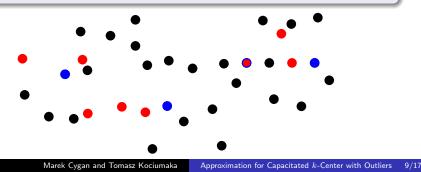
Definition

- (separation) $d(u, u') \ge 6$ for any $u, u' \in S$, $u \ne u'$,
- there exists a distance-1 solution $(C_{\phi}, F_{\phi}, \phi)$ such that:
 - (covering) $d(u, S) \leq 4$ for each $u \in F_{\phi}$,
 - (injection) there exists an injection f : S → F_φ satisfying d(u, f(u)) ≤ 2 for each u ∈ S.



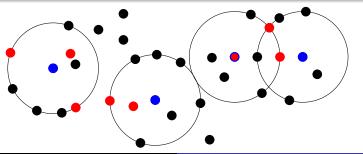
Definition

- (separation) $d(u, u') \ge 6$ for any $u, u' \in S$, $u \ne u'$,
- there exists a distance-1 solution $(C_{\phi}, F_{\phi}, \phi)$ such that:
 - (covering) $d(u, S) \leq 4$ for each $u \in F_{\phi}$,
 - (injection) there exists an injection f : S → F_φ satisfying d(u, f(u)) ≤ 2 for each u ∈ S.



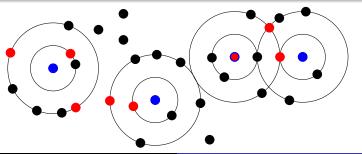
Definition

- (separation) $d(u, u') \ge 6$ for any $u, u' \in S$, $u \ne u'$,
- there exists a distance-1 solution $(C_{\phi}, F_{\phi}, \phi)$ such that:
 - (covering) $d(u, S) \leq 4$ for each $u \in F_{\phi}$,
 - (injection) there exists an injection f : S → F_φ satisfying d(u, f(u)) ≤ 2 for each u ∈ S.



Definition

- (separation) $d(u, u') \ge 6$ for any $u, u' \in S$, $u \ne u'$,
- there exists a distance-1 solution $(C_{\phi}, F_{\phi}, \phi)$ such that:
 - (covering) $d(u, S) \leq 4$ for each $u \in F_{\phi}$,
 - (injection) there exists an injection f : S → F_φ satisfying d(u, f(u)) ≤ 2 for each u ∈ S.



Greedy algorithm:

② $S_{i+1} = S_i + \arg \max\{\min(L(u), \deg(u)) : d_G(u, S_i) \ge 6\}.$

Choose a vertex which would not violate the separation property and can serve the largest number of clients in a distance-1 solution.

Lemma

If there exists a distance-1 solution, then at least one of the sets S_0, \ldots, S_k is a skeleton.

Linear program

$$\begin{split} \sum_{u \in \mathcal{F}} y_u &= k \\ \sum_{u \in \mathcal{F}, v \in \mathcal{C}} x_{uv} &= p \\ x_{uv} &\leq y_u & \text{for } u \in \mathcal{F}, v \in \mathcal{C} \\ \sum_v x_{uv} &\leq L(u) \cdot y_u & \text{for } u \in \mathcal{F} \\ \sum_v x_{uv} &\leq L(u) \cdot y_u & \text{for } v \in \mathcal{C} \\ \sum_u x_{uv} &\leq 1 & \text{for } v \in \mathcal{C} \\ \sum_{u \in \mathcal{F} \cap N^2[s]} y_u &\geq 1 & \text{for } s \in S \\ x_{uv} &= 0 & \text{for } u \in \mathcal{F}, v \in \mathcal{C} \text{ such that } (v, u) \notin E \\ \mathbf{0} &\leq x, y \leq \mathbf{1} \end{split}$$

 $LP_{k,p}(G,L,S)$. In the corresponding integer program $y_u = 1$ means $u \in F$ and $x_{uv} = 1$ means $\phi(v) = u$.

Linear program

$$\begin{split} \sum_{u \in \mathcal{F}} y_u &= k \\ \sum_{u \in \mathcal{F}, v \in \mathcal{C}} x_{uv} &= p \\ x_{uv} \leq y_u & \text{for } u \in \mathcal{F}, v \in \mathcal{C} \\ \sum_v x_{uv} \leq L(u) \cdot y_u & \text{for } u \in \mathcal{F} \\ \sum_v x_{uv} \leq L(u) \cdot y_u & \text{for } v \in \mathcal{C} \\ \sum_u x_{uv} \leq 1 & \text{for } v \in \mathcal{C} \\ \sum_u x_{uv} \leq 1 & \text{for } s \in S \\ x_{uv} = 0 & \text{for } u \in \mathcal{F}, v \in \mathcal{C} \text{ such that } (v, u) \notin E \\ \mathbf{0} \leq x, y \leq \mathbf{1} \end{split}$$

 $LP_{k,p}(G,L,S)$. In the corresponding integer program $y_u = 1$ means $u \in F$ and $x_{uv} = 1$ means $\phi(v) = u$.

Integrality gap & clustering

Definition

The *integrality gap* of $LP_{k,p}(G, L, S)$ is the smallest r such that if the LP is feasible, then there is a distance-r solution.

Integrality gap & clustering

Definition

The *integrality gap* of $LP_{k,p}(G, L, S)$ is the smallest r such that if the LP is feasible, then there is a distance-r solution.

- The integrality gap of $LP_{k,p}(G, L, S)$ is in general unbounded, even if G is connected (unlike the analogous LP for the CAPACITATED k-CENTER).
- Use the covering property of a skeleton to remove vertices v such that $d_G(v, S) > 5$ and only then consider connected components separately.
- Apply dynamic programming to distribute k open facilities and p served clients among components, so that the LPs corresponding to the components are all feasible.

Integrality gap & clustering

Definition

The *integrality gap* of $LP_{k,p}(G, L, S)$ is the smallest r such that if the LP is feasible, then there is a distance-r solution.

- The integrality gap of $LP_{k,p}(G, L, S)$ is in general unbounded, even if G is connected (unlike the analogous LP for the CAPACITATED k-CENTER).
- Use the covering property of a skeleton to remove vertices v such that $d_G(v, S) > 5$ and only then consider connected components separately.
- Apply dynamic programming to distribute k open facilities and p served clients among components, so that the LPs corresponding to the components are all feasible.
- This may fail if S is not a skeleton
- If it does not, we will compute an approximate solution.

Lemma

Let $I = (G = (C, \mathcal{F}, E), L, k, p)$ be an instance of CAPACITATED k-SUPPLIER WITH OUTLIERS and let $S \subseteq \mathcal{F}$. If the following four conditions are satisfied: (i) G is connected,

(ii) for any
$$u, u' \in S$$
, $u \neq u'$ we have $d(u, u') \ge 6$,

(iii)
$$N^5[S] = \mathcal{F} \cup \mathcal{C}$$
,

(iv) $LP_{k,p}(G, L, S)$ admits a feasible solution,

then one can find a distance-25 solution for I in polynomial time.

Distance-r transfers

- introduced by An, Bhaskara & Svensson (arXiv'2013) to round y preserving its sum
- each "portion" of y makes at most r hops, and lands in a vertex of capacity no smaller than the original one.

Distance-r transfers

- introduced by An, Bhaskara & Svensson (arXiv'2013) to round y preserving its sum
- each "portion" of y makes at most r hops, and lands in a vertex of capacity no smaller than the original one.

Lemma

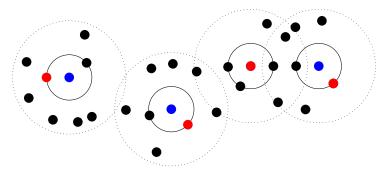
If $F \subseteq \mathcal{F}$ is a distance-r transfer of y in G with respect to L, then a distance-(r + 1) solution can be determined in polynomial time.

Lemma (An, Bhaskara & Svensson, arXiv 2013)

Integral distance-2 transfer can be found for a tree T and y such that $y_u = 1$ for all non-leaves u.

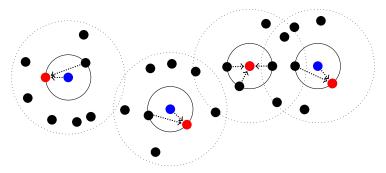
Lemma (An, Bhaskara & Svensson, arXiv 2013)

Integral distance-2 transfer can be found for a tree T and y such that $y_u = 1$ for all non-leaves u.



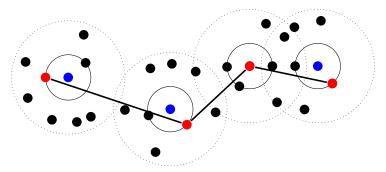
Lemma (An, Bhaskara & Svensson, arXiv 2013)

Integral distance-2 transfer can be found for a tree T and y such that $y_u = 1$ for all non-leaves u.



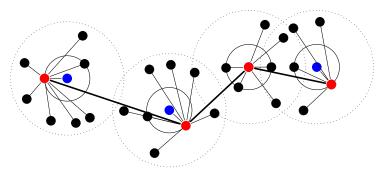
Lemma (An, Bhaskara & Svensson, arXiv 2013)

Integral distance-2 transfer can be found for a tree T and y such that $y_u = 1$ for all non-leaves u.



Lemma (An, Bhaskara & Svensson, arXiv 2013)

Integral distance-2 transfer can be found for a tree T and y such that $y_u = 1$ for all non-leaves u.



Conclusions & open problems

Theorem

CAPACITATED *k*-SUPPLIER WITH OUTLIERS *admits a* 25-approximation algorithm.

Conclusions & open problems

Theorem

CAPACITATED *k*-SUPPLIER WITH OUTLIERS *admits a* 25-approximation algorithm.

Open problems:

• Shrink the gap between the approximation ratio (25) and the lower bound $(3 - \varepsilon)$.

Conclusions & open problems

Theorem

CAPACITATED *k*-SUPPLIER WITH OUTLIERS *admits a* 25-approximation algorithm.

Open problems:

- Shrink the gap between the approximation ratio (25) and the lower bound (3ε) .
- $\mathcal{O}(1)$ -approximation for CAPACITATED *k*-MEDIAN.

CAPACITATED k-MEDIAN

Input: A finite set V, a metric function d on V, an integer kand a capacity function $L: V \to \mathbb{Z}_{\geq 0}$. **Output:** A set $F \subseteq V$ of size k and a function $\phi: V \to F$ satisfying $|\phi^{-1}(v)| \leq L(v)$ for each $v \in F$. **Minimize:** $\sum_{v} d(v, \phi(v))$.

Thank you for your attention!