Fast Algorithms for Abelian Periods in Words and Greatest Common Divisor Queries

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter

University of Warsaw

STACS 2013 Kiel, February 28, 2013

Part I

Greatest Common Divisor Queries

Problem

Problem (Greatest Common Divisor)

For a positive integer n build a data structure that given integers $x, y \in\{1, \ldots, n\}$ computes $\operatorname{gcd}(x, y)$.

Problem

Problem (Greatest Common Divisor)

For a positive integer n build a data structure that given integers $x, y \in\{1, \ldots, n\}$ computes $\operatorname{gcd}(x, y)$.

RAM model with word-size $\Omega(\log n)$, i.e. constant-time arithmetic operations on $O(\log n)$-bit integers.

Problem

Problem (Greatest Common Divisor)

For a positive integer n build a data structure that given integers $x, y \in\{1, \ldots, n\}$ computes $\operatorname{gcd}(x, y)$.

RAM model with word-size $\Omega(\log n)$, i.e. constant-time arithmetic operations on $O(\log n)$-bit integers.

	space	construction	query time
Euclid's algorithm	-	-	$O(\log n)$
precompute answers	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O(1)$
use factorization	$O(n)$	$O(n)$	$O\left(\frac{\log n}{\log \log n}\right)$
this work	$O(n)$	$O(n)$	$O(1)$

Special factorization

Computing $\operatorname{gcd}(x, y)$ is sometimes easy:

- we can precompute $\operatorname{gcd}\left[x^{\prime}, y^{\prime}\right]$ for every $x^{\prime}, y^{\prime} \leq \sqrt{n}$ and then for $x \leq \sqrt{n}$ we can use the precomputed answer $g c d[x, y \bmod x]$,
- if x is prime it suffices to check whether x divides y.

Special factorization

Computing $\operatorname{gcd}(x, y)$ is sometimes easy:

- we can precompute $\operatorname{gcd}\left[x^{\prime}, y^{\prime}\right]$ for every $x^{\prime}, y^{\prime} \leq \sqrt{n}$ and then for $x \leq \sqrt{n}$ we can use the precomputed answer $\operatorname{gcd}[x, y \bmod x]$,
- if x is prime it suffices to check whether x divides y.

Definition

Let k be a positive integer. Then $\left(k_{1}, k_{2}, k_{3}\right)$ is a special decomposition of k if $k=k_{1} k_{2} k_{3}$ and each k_{i} is prime or does not exceed \sqrt{k}.

Queries

The data structure consists of:

- precomputed answers for any $x, y \leq \sqrt{n}$,
- a special decomposition of each $x \in\{1, \ldots, n\}$.

Queries

The data structure consists of:

- precomputed answers for any $x, y \leq \sqrt{n}$,
- a special decomposition of each $x \in\{1, \ldots, n\}$.

Algorithm $\operatorname{gcd}(x, y)$

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3}\right):=\operatorname{decomp}[x] ; \\
& g:=1 ; \\
& \text { for } i:=1 \text { to } 3 \text { do } \\
& \quad \text { if } x_{i} \leq \sqrt{n} \text { then } \\
& \quad d:=g c d\left[x_{i}, y \bmod x_{i}\right] ; \\
& \text { else if } x_{i} \mid y \text { then } d:=x_{i} ; \\
& \text { else } d:=1 ; \\
& g:=g \cdot d ; \\
& y:=y / d ;
\end{aligned} \quad \begin{gathered}
853 \\
y \\
2 \\
2 \\
2 \\
2 \\
2 \\
2 \\
2 \\
2
\end{gathered}
$$

return g;

Queries

The data structure consists of:

- precomputed answers for any $x, y \leq \sqrt{n}$,
- a special decomposition of each $x \in\{1, \ldots, n\}$.

Algorithm $\operatorname{gcd}(x, y)$

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3}\right):=\operatorname{decomp}[x] ; \\
& g:=1 ; \\
& \text { for } i:=1 \text { to } 3 \text { do } \\
& \quad \text { if } x_{i} \leq \sqrt{n} \text { then } \\
& \quad d:=\operatorname{gcd}\left[x_{i}, y \bmod x_{i}\right] ;
\end{aligned}
$$

else if $x_{i} \mid y$ then $d:=x_{i}$; else $d:=1$;
$g:=g \cdot d ;$ $y:=y / d ;$

return g;

Queries

The data structure consists of:

- precomputed answers for any $x, y \leq \sqrt{n}$,
- a special decomposition of each $x \in\{1, \ldots, n\}$.

Algorithm $\operatorname{gcd}(x, y)$
$\left(x_{1}, x_{2}, x_{3}\right):=\operatorname{decomp}[x]$; $g:=1$;
for $i:=1$ to 3 do
if $x_{i} \leq \sqrt{n}$ then
$d:=\operatorname{gcd}\left[x_{i}, y \bmod x_{i}\right] ;$
else if $x_{i} \mid y$ then $d:=x_{i}$; else $d:=1$;
$g:=g \cdot d ;$
$y:=y / d ;$
return g;

Queries

The data structure consists of:

- precomputed answers for any $x, y \leq \sqrt{n}$,
- a special decomposition of each $x \in\{1, \ldots, n\}$.

Algorithm $\operatorname{gcd}(x, y)$

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3}\right):=\operatorname{decomp}[x] ; \\
& g:=1 ; \\
& \text { for } i:=1 \text { to } 3 \text { do } \\
& \quad \text { if } x_{i} \leq \sqrt{n} \text { then } \\
& \quad d:=\operatorname{gcd}\left[x_{i}, y \bmod x_{i}\right] ;
\end{aligned}
$$

else if $x_{i} \mid y$ then $d:=x_{i}$; else $d:=1$;
$g:=g \cdot d ;$ $y:=y / d ;$
return g;

Queries

The data structure consists of:

- precomputed answers for any $x, y \leq \sqrt{n}$,
- a special decomposition of each $x \in\{1, \ldots, n\}$.

$$
\begin{gathered}
853 \\
x_{3}=853
\end{gathered}
$$

Algorithm $\operatorname{gcd}(x, y)$

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3}\right):=\operatorname{decomp}[x] \\
& g:=1 ; \\
& \text { for } i:=1 \text { to } 3 \text { do } \\
& \quad \text { if } x_{i} \leq \sqrt{n} \text { then } \\
& \quad d:=g c d\left[x_{i}, y \bmod x_{i}\right] ;
\end{aligned}
$$

else if $x_{i} \mid y$ then $d:=x_{i}$; else $d:=1$;
$g:=g \cdot d ;$ $y:=y / d ;$
return g;

Queries

The data structure consists of:

- precomputed answers for any $x, y \leq \sqrt{n}$,
- a special decomposition of each $x \in\{1, \ldots, n\}$.

Algorithm $\operatorname{gcd}(x, y)$

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3}\right):=\operatorname{decomp}[x] ; \\
& g:=1 ; \\
& \text { for } i:=1 \text { to } 3 \text { do } \\
& \quad \text { if } x_{i} \leq \sqrt{n} \text { then } \\
& \quad d:=\operatorname{gcd}\left[x_{i}, y \bmod x_{i}\right] ;
\end{aligned}
$$

else if $x_{i} \mid y$ then $d:=x_{i}$; else $d:=1$;
$g:=g \cdot d ;$

$$
y:=y / d ;
$$

return g;

Queries

The data structure consists of:

- precomputed answers for any $x, y \leq \sqrt{n}$,
- a special decomposition of each $x \in\{1, \ldots, n\}$.

Algorithm $\operatorname{gcd}(x, y)$

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3}\right):=\operatorname{decomp}[x] ; \\
& g:=1 ; \\
& \text { for } i:=1 \text { to } 3 \text { do } \\
& \quad \text { if } x_{i} \leq \sqrt{n} \text { then } \\
& \quad d:=\operatorname{gcd}\left[x_{i}, y \bmod x_{i}\right] ;
\end{aligned}
$$

else if $x_{i} \mid y$ then $d:=x_{i}$; else $d:=1$;
$g:=g \cdot d ;$ $y:=y / d ;$
return g;

$$
y=28149 \quad x_{1}=28
$$

$$
\begin{aligned}
& 223 \\
& g=12
\end{aligned}
$$

Queries

The data structure consists of:

- precomputed answers for any $x, y \leq \sqrt{n}$,
- a special decomposition of each $x \in\{1, \ldots, n\}$.

Algorithm $\operatorname{gcd}(x, y)$

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3}\right):=\operatorname{decomp}[x] ; \\
& g:=1 ; \\
& \text { for } i:=1 \text { to } 3 \text { do } \\
& \quad \text { if } x_{i} \leq \sqrt{n} \text { then } \\
& \quad d:=\operatorname{gcd}\left[x_{i}, y \bmod x_{i}\right] ;
\end{aligned}
$$

else if $x_{i} \mid y$ then $d:=x_{i}$; else $d:=1$;
$g:=g \cdot d ;$

$$
y:=y / d ;
$$

return g;

Construction

Lemma

Let $\ell>1$ be a positive integer, p be the smallest prime divisor of ℓ and $k=\frac{\ell}{p}$. A decomposition of ℓ can be obtained from a decomposition of k by multiplying the smallest factor by p.

Construction

Lemma

Let $\ell>1$ be a positive integer, p be the smallest prime divisor of ℓ and $k=\frac{\ell}{p}$. A decomposition of ℓ can be obtained from a decomposition of k by multiplying the smallest factor by p.

Theorem (Gries \& Misra, 1978)

The smallest prime divisors for all positive integers up to n can be computed in $O(n)$ time.

Part II

Abelian Periods

Commutative equivalence and Parikh vectors

Definition

Let w be a word over Σ. A Parikh vector $\mathcal{P}(w)$ counts for each letter $a \in \Sigma$ its number of occurrences in w.

$$
w=\mathrm{abbac} \quad \mathcal{P}(w)=(2,2,1)
$$

Commutative equivalence and Parikh vectors

Definition

Let w be a word over Σ. A Parikh vector $\mathcal{P}(w)$ counts for each letter $a \in \Sigma$ its number of occurrences in w.

$$
w=\mathrm{abbac} \quad \mathcal{P}(w)=(2,2,1)
$$

Commutative equivalence and Parikh vectors

Definition

Let w be a word over Σ. A Parikh vector $\mathcal{P}(w)$ counts for each letter $a \in \Sigma$ its number of occurrences in w.

$$
w=\mathrm{abbac} \quad \mathcal{P}(w)=(2,2,1)
$$

Commutative equivalence and Parikh vectors

Definition

Let w be a word over Σ. A Parikh vector $\mathcal{P}(w)$ counts for each letter $a \in \Sigma$ its number of occurrences in w.

$$
w=\mathrm{abbac} \quad \mathcal{P}(w)=(2,2,1)
$$

Commutative equivalence and Parikh vectors

Definition

Let w be a word over Σ. A Parikh vector $\mathcal{P}(w)$ counts for each letter $a \in \Sigma$ its number of occurrences in w.

$$
w=\mathrm{abbac} \quad \mathcal{P}(w)=(2,2,1)
$$

Definition

Words u, w are commutatively equivalent if $\mathcal{P}(u)=\mathcal{P}(w)$.

$$
\mathrm{abbac} \approx \mathrm{acbab} \quad \mathrm{~b} a b \not \approx \mathrm{aba}
$$

Abelian Periods

Definition

Let w be a word. An integer q is:

- a full Abelian period of w if w can be partitioned into commutatively equivalent factors of length q,

$$
\begin{gathered}
\hline \mathrm{a} \mathrm{~b} \text { a b a c a b a a b c b a a b } \\
q=8 \quad \mathcal{P}=(4,3,1)
\end{gathered}
$$

Abelian Periods

Definition

Let w be a word. An integer q is:

- a full Abelian period of w if w can be partitioned into commutatively equivalent factors of length q,
- an Abelian period of w if q is a full Abelian period of some extension to the right of w,

$$
\begin{gathered}
\hline \mathrm{a} \mathrm{~b} \text { a b a c a b a a b c b a a b a c } \\
q=6 \quad \mathcal{P}=(3,2,1)
\end{gathered}
$$

Abelian Periods

Definition

Let w be a word. An integer q is:

- a full Abelian period of w if w can be partitioned into commutatively equivalent factors of length q,
- an Abelian period of w if q is a full Abelian period of some extension to the right of w,
- a weak Abelian period of w if q is a full Abelian period of some extension of w.

$$
\begin{gathered}
\hline \text { a b a b a c a b a a b c b a a b b c } \\
\qquad=(2,2,1)
\end{gathered}
$$

Previous results

Year	Authors	Variant	Time complexity
2011	Fici et al.	weak	$O\left(n^{2} \sigma\right)$
2012	Fici et al.	standard	$O\left(n^{2}\right)$
		full	$O(n \log \log n)$
2013	Crochemore et al.	weak	$O\left(n^{2}\right)$

Previous results

Year	Authors	Variant	Time complexity
2011	Fici et al.	weak	$O\left(n^{2} \sigma\right)$
2012	Fici et al.	standard full	$O\left(n^{2}\right)$ 2013
Crochemore et al.	weak	$O(n \log \log n)$	
			$O(n \log \log n)$
2013	this work	standard	randomized
		full	$O(n)$

Previous results

Year	Authors	Variant	Time complexity
2011	Fici et al.	weak	$O\left(n^{2} \sigma\right)$
2012	Fici et al.	standard full	$O\left(n^{2}\right)$
		$O(n \log \log n)$	
2013	Crochemore et al.	weak	$O\left(n^{2}\right)$
			$O(n \log \log n)$
2013	this work	standard	randomized
		full	$O(n)$

Assumptions:

- $\Sigma=\{1, \ldots, \sigma\}$
- standard RAM model
(arrays, arithmetic of $O(\log n)$-bit integers)

Proportionality

Definition

Let \mathcal{P}_{i} be the Parikh vector of $w[1 . . i]$. We write $i \sim j$ if there exists $c \in \mathbb{R}$ such that $\mathcal{P}_{i}[s]=c \mathcal{P}_{j}[s]$ for each $s \in \Sigma$.

Proportionality

Definition

Let \mathcal{P}_{i} be the Parikh vector of $w[1 . . i]$. We write $i \sim j$ if there exists $c \in \mathbb{R}$ such that $\mathcal{P}_{i}[s]=c \mathcal{P}_{j}[s]$ for each $s \in \Sigma$.

Efficient proportionality testing

Lemma

After $O(n)$ randomized or $O(n \log \sigma)$ deterministic time preprocessing \sim can be tested in constant time.

Fact

The set $[n]_{\sim}=\{k: k \sim n\}$ can be constructed in $O(n)$ time.

Full Abelian Periods

Fact

Let $A=\{k: k \sim n\}$. Then q is a full Abelian period there $q \mid k$ and $k \leq n$ implies $k \in A$.

Full Abelian Periods

Fact

Let $A=\{k: k \sim n\}$. Then q is a full Abelian period there $q \mid k$ and $k \leq n$ implies $k \in A$.

4 is a full Abelian period.

Full Abelian Periods

Fact

Let $A=\{k: k \sim n\}$. Then q is a full Abelian period there $q \mid k$ and $k \leq n$ implies $k \in A$.

6 is a full Abelian period.

Full Abelian Periods

Fact

Let $A=\{k: k \sim n\}$. Then q is a full Abelian period there $q \mid k$ and $k \leq n$ implies $k \in A$.

2 is not a full Abelian period.

Full Abelian Periods

Fact

Let $A=\{k: k \sim n\}$. Then q is a full Abelian period \Longleftrightarrow there $q \mid k$ and $k \leq n$ implies $k \in A$.

Observation

There is no $k \notin A$ such that $q \mid k \Longleftrightarrow$ there is no q^{\prime} such that $q \mid q^{\prime}$ and $q^{\prime}=\operatorname{gcd}(k, n)$ for some $k \notin A$.

Full Abelian Periods

Fact

Let $A=\{k: k \sim n\}$. Then q is a full Abelian period \Longleftrightarrow there $q \mid k$ and $k \leq n$ implies $k \in A$.

Observation

There is no $k \notin A$ such that $q \mid k \Longleftrightarrow$ there is no q^{\prime} such that $q \mid q^{\prime}$ and $q^{\prime}=\operatorname{gcd}(k, n)$ for some $k \notin A$.
(1) $A^{\prime}:=\{k: k \nsim n\}$
(2) $X:=\left\{q^{\prime}: \exists_{k \notin A} \operatorname{gcd}(k, n)=q^{\prime}\right\}$
(iterating over $k \notin A$ and using fast gcd queries)
(3) For each $q \mid n$ check whether there exists $q^{\prime} \in X$ such that $q \mid q^{\prime}$

Full Abelian Periods

Fact

Let $A=\{k: k \sim n\}$. Then q is a full Abelian period \Longleftrightarrow there $q \mid k$ and $k \leq n$ implies $k \in A$.

Observation

There is no $k \notin A$ such that $q \mid k \Longleftrightarrow$ there is no q^{\prime} such that $q \mid q^{\prime}$ and $q^{\prime}=\operatorname{gcd}(k, n)$ for some $k \notin A$.
(1) $A^{\prime}:=\{k: k \nsim n\}$
(2) $X:=\left\{q^{\prime}: \exists_{k \notin A} \operatorname{gcd}(k, n)=q^{\prime}\right\}$
(iterating over $k \notin A$ and using fast gcd queries)
(3) For each $q \mid n$ check whether there exists $q^{\prime} \in X$ such that $q \mid q^{\prime}$
The number of pairs $\left(q, q^{\prime}\right)$ is $o(n)$, since the number of divisors of n is $o\left(n^{\varepsilon}\right)$.

Standard Abelian Periods

Definition

A positive integer $q \leq n$ is a candidate if $q \sim k q$ for each $k \in\left\{1, \ldots,\left\lfloor\frac{n}{q}\right\rfloor\right\}$.

10 is a candidate

Standard Abelian Periods

Definition

A positive integer $q \leq n$ is a candidate if $q \sim k q$ for each $k \in\left\{1, \ldots,\left\lfloor\frac{n}{q}\right\rfloor\right\}$.

8 is a candidate

Standard Abelian Periods

Definition

A positive integer $q \leq n$ is a candidate if $q \sim k q$ for each $k \in\left\{1, \ldots,\left\lfloor\frac{n}{q}\right\rfloor\right\}$.

9 is not a candidate

Standard Abelian Periods

A simple application of the techniques from weak Abelian periods algorithm gives an $O(n)$ time algorithm computing the set of Abelian periods given the set of candidates.

Standard Abelian Periods

A simple application of the techniques from weak Abelian periods algorithm gives an $O(n)$ time algorithm computing the set of Abelian periods given the set of candidates.

Computing candidates

Lemma

The set \mathcal{C} of all candidates can be computed in $O(n \log \log n)$ time provided that \sim can be tested in constant time.

Computing candidates

Lemma

The set \mathcal{C} of all candidates can be computed in $O(n \log \log n)$ time provided that \sim can be tested in constant time.

Observation

$$
\begin{aligned}
& q \in \mathcal{C} \Longleftrightarrow \forall_{k \in \mathbb{Z}_{+}: k q \leq n} q \sim k q \Longleftrightarrow \\
& \forall_{p \in \text { Primes }: p q \leq n}(q \sim p q \wedge p q \in \mathcal{C}) .
\end{aligned}
$$

Recall that primes up to n can be generated in $O(n)$ time.

Computing candidates

Lemma

The set \mathcal{C} of all candidates can be computed in $O(n \log \log n)$ time provided that \sim can be tested in constant time.

Observation

$$
\begin{array}{rl}
q \in \mathcal{C} \Longleftrightarrow \forall_{k \in \mathbb{Z}_{+}: k q \leq n} & q \sim k q \Longleftrightarrow \\
& \forall_{p \in \text { Primes }: p q \leq n}(q \sim p q \wedge p q \in \mathcal{C}) .
\end{array}
$$

Recall that primes up to n can be generated in $O(n)$ time. A fixed $p \in$ Primes is processed for at most $\frac{n}{p}$ values of q, so the total number of operations is bounded by

$$
\sum_{p \in \text { Primes }, p \leq n} \frac{n}{p}=O(n \log \log n)
$$

Conclusions

Theorem

Let w be a word of length n over the alphabet $\{1, \ldots, \sigma\}$. Full Abelian periods of w can be computed in $O(n)$ time.

Theorem

Let w be a word of length n over the alphabet $\{1, \ldots, \sigma\}$. There exist an $O(n \log \log n+n \log \sigma)$ time deterministic and an $O(n \log \log n)$ time randomized algorithm that compute all Abelian periods of w. Both algorithms require $O(n)$ space.

Thank you

Thank you for your attention!

