Fast Algorithms for Abelian Periods in Words and Greatest Common Divisor Queries

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter

University of Warsaw

STACS 2013 Kiel, February 28, 2013

Part I

Greatest Common Divisor Queries

Problem (Greatest Common Divisor)

For a positive integer n build a data structure that given integers $x, y \in \{1, ..., n\}$ computes gcd(x, y).

Problem (Greatest Common Divisor)

For a positive integer n build a data structure that given integers $x, y \in \{1, ..., n\}$ computes gcd(x, y).

RAM model with word-size $\Omega(\log n)$, i.e. constant-time arithmetic operations on $O(\log n)$ -bit integers.

Problem (Greatest Common Divisor)

For a positive integer n build a data structure that given integers $x, y \in \{1, ..., n\}$ computes gcd(x, y).

RAM model with word-size $\Omega(\log n)$, i.e. constant-time arithmetic operations on $O(\log n)$ -bit integers.

	space	construction	query time
Euclid's algorithm	-	-	$O(\log n)$
precompute answers	$O(n^2)$	$O(n^2)$	O(1)
use factorization	O(n)	O(n)	$O(\frac{\log n}{\log \log n})$
this work	O(n)	O(n)	O(1)

Computing gcd(x, y) is sometimes easy:

- we can precompute gcd[x', y'] for every $x', y' \leq \sqrt{n}$ and then for $x \leq \sqrt{n}$ we can use the precomputed answer $gcd[x, y \mod x]$,
- if x is prime it suffices to check whether x divides y.

Computing gcd(x, y) is sometimes easy:

- we can precompute gcd[x', y'] for every $x', y' \leq \sqrt{n}$ and then for $x \leq \sqrt{n}$ we can use the precomputed answer $gcd[x, y \mod x]$,
- if x is prime it suffices to check whether x divides y.

Definition

Let k be a positive integer. Then (k_1, k_2, k_3) is a *special* decomposition of k if $k = k_1k_2k_3$ and each k_i is prime or does not exceed \sqrt{k} .

- precomputed answers for any $x, y \leq \sqrt{n}$,
- a special decomposition of each $x \in \{1, \ldots, n\}$.

- precomputed answers for any $x, y \leq \sqrt{n}$,
- a special decomposition of each $x \in \{1, \ldots, n\}$.

- precomputed answers for any $x, y \leq \sqrt{n}$,
- a special decomposition of each $x \in \{1, \ldots, n\}$.

- precomputed answers for any $x, y \leq \sqrt{n}$,
- a special decomposition of each $x \in \{1, \ldots, n\}$.

- precomputed answers for any $x, y \leq \sqrt{n}$,
- a special decomposition of each $x \in \{1, \ldots, n\}$.

- precomputed answers for any $x, y \leq \sqrt{n}$,
- a special decomposition of each $x \in \{1, \ldots, n\}$.

- precomputed answers for any $x, y \leq \sqrt{n}$,
- a special decomposition of each $x \in \{1, \ldots, n\}$.

- precomputed answers for any $x, y \leq \sqrt{n}$,
- a special decomposition of each $x \in \{1, \ldots, n\}$.

- precomputed answers for any $x, y \leq \sqrt{n}$,
- a special decomposition of each $x \in \{1, \ldots, n\}$.

Lemma

Let $\ell > 1$ be a positive integer, p be the smallest prime divisor of ℓ and $k = \frac{\ell}{p}$. A decomposition of ℓ can be obtained from a decomposition of k by multiplying the smallest factor by p.

Lemma

Let $\ell > 1$ be a positive integer, p be the smallest prime divisor of ℓ and $k = \frac{\ell}{p}$. A decomposition of ℓ can be obtained from a decomposition of k by multiplying the smallest factor by p.

Theorem (Gries & Misra, 1978)

The smallest prime divisors for all positive integers up to n can be computed in O(n) time.

Part II

Abelian Periods

Definition

$$w = abbac$$
 $\mathcal{P}(w) = (2,2,1)$

Definition

$$w = \mathbf{a} \mathbf{b} \mathbf{b} \mathbf{a} \mathbf{c}$$
 $\mathcal{P}(w) = (\mathbf{2}, \mathbf{2}, \mathbf{1})$

Definition

$$w = a b b a c$$
 $\mathcal{P}(w) = (2, 2, 1)$

Definition

$$w = a b b a c$$
 $\mathcal{P}(w) = (2, 2, 1)$

Definition

Let w be a word over Σ . A Parikh vector $\mathcal{P}(w)$ counts for each letter $a \in \Sigma$ its number of occurrences in w.

$$w = abbac$$
 $\mathcal{P}(w) = (2,2,1)$

Definition

Words u, w are commutatively equivalent if $\mathcal{P}(u) = \mathcal{P}(w)$.

Abelian Periods

Definition

Let w be a word. An integer q is:

• a *full* Abelian period of w if w can be partitioned into commutatively equivalent factors of length q,

a b a b a c a b a a b c b a a b
$$q = 8 \quad \mathcal{P} = (4,3,1)$$

Abelian Periods

Definition

Let w be a word. An integer q is:

- a *full* Abelian period of w if w can be partitioned into commutatively equivalent factors of length q,
- an Abelian period of w if q is a full Abelian period of some extension to the right of w,

a b a b a c a b a a b c b a a b a c
$$q = 6$$
 $\mathcal{P} = (3, 2, 1)$

Abelian Periods

Definition

Let w be a word. An integer q is:

- a *full* Abelian period of w if w can be partitioned into commutatively equivalent factors of length q,
- an Abelian period of w if q is a full Abelian period of some extension to the right of w,
- a *weak* Abelian period of w if q is a full Abelian period of some extension of w.

Previous results

Year	Authors	Variant	Time complexity
2011	Fici et al.	weak	$O(n^2\sigma)$
2012 Fici et al.	Fici et al	standard	$O(n^2)$
		full	$O(n \log \log n)$
2013	Crochemore et al.	weak	$O(n^2)$

Previous results

Year	Authors	Variant	Time complexity
2011	Fici et al.	weak	$O(n^2\sigma)$
2012	Fici et al.	standard	$O(n^2)$
		full	$O(n \log \log n)$
2013	Crochemore et al.	weak	$O(n^2)$
2013	this work	standard	$O(n \log \log n)$
			randomized
			$O(n\log\log n + n\log\sigma)$
			deterministic
		full	O(n)

Previous results

Year	Authors	Variant	Time complexity
2011	Fici et al.	weak	$O(n^2\sigma)$
2012	Fici et al.	standard	$O(n^2)$
		full	$O(n \log \log n)$
2013	Crochemore et al.	weak	$O(n^2)$
2013	this work	standard	$O(n \log \log n)$
			randomized
			$O(n\log\log n + n\log\sigma)$
			deterministic
		full	O(n)

Assumptions:

- $\Sigma = \{1, \ldots, \sigma\}$
- standard RAM model (arrays, arithmetic of O(log n)-bit integers)

Proportionality

Definition

Let \mathcal{P}_i be the Parikh vector of w[1..i]. We write $i \sim j$ if there exists $c \in \mathbb{R}$ such that $\mathcal{P}_i[s] = c\mathcal{P}_j[s]$ for each $s \in \Sigma$.

Proportionality

Definition

Let \mathcal{P}_i be the Parikh vector of w[1..i]. We write $i \sim j$ if there exists $c \in \mathbb{R}$ such that $\mathcal{P}_i[s] = c\mathcal{P}_j[s]$ for each $s \in \Sigma$.

Lemma

After O(n) randomized or $O(n \log \sigma)$ deterministic time preprocessing \sim can be tested in constant time.

Fact

The set $[n]_{\sim} = \{k : k \sim n\}$ can be constructed in O(n) time.

Fact

Fact

Fact

Fact

Fact

Let $A = \{k : k \sim n\}$. Then q is a full Abelian period \iff there $q \mid k$ and $k \leq n$ implies $k \in A$.

Observation

There is no $k \notin A$ such that $q \mid k \iff$ there is no q' such that $q \mid q'$ and q' = gcd(k, n) for some $k \notin A$.

Fact

Let $A = \{k : k \sim n\}$. Then q is a full Abelian period \iff there $q \mid k$ and $k \leq n$ implies $k \in A$.

Observation

There is no $k \notin A$ such that $q \mid k \iff$ there is no q' such that $q \mid q'$ and q' = gcd(k, n) for some $k \notin A$.

$$A' := \{k : k \not\sim n\}$$

- 2 X := {q' : ∃_{k∉A} gcd(k, n) = q'} (iterating over k ∉ A and using fast gcd queries)
- So For each *q* | *n* check whether there exists *q'* ∈ *X* such that *q* | *q'*

Fact

Let $A = \{k : k \sim n\}$. Then q is a full Abelian period \iff there $q \mid k$ and $k \leq n$ implies $k \in A$.

Observation

There is no $k \notin A$ such that $q \mid k \iff$ there is no q' such that $q \mid q'$ and q' = gcd(k, n) for some $k \notin A$.

$$A' := \{k : k \not\sim n\}$$

So For each *q* | *n* check whether there exists *q'* ∈ *X* such that *q* | *q'*

The number of pairs (q,q') is o(n), since the number of divisors of n is $o(n^{\varepsilon})$.

Definition

A positive integer
$$q \le n$$
 is a *candidate* if $q \sim kq$ for each $k \in \left\{1, \ldots, \left\lfloor \frac{n}{q} \right\rfloor\right\}$.

Definition

A positive integer
$$q \le n$$
 is a *candidate* if $q \sim kq$ for each $k \in \left\{1, \ldots, \left\lfloor \frac{n}{q} \right\rfloor\right\}$.

Definition

A positive integer
$$q \le n$$
 is a *candidate* if $q \sim kq$ for each $k \in \left\{1, \ldots, \left\lfloor \frac{n}{q} \right\rfloor\right\}$.

A simple application of the techniques from weak Abelian periods algorithm gives an O(n) time algorithm computing the set of Abelian periods given the set of candidates.

A simple application of the techniques from weak Abelian periods algorithm gives an O(n) time algorithm computing the set of Abelian periods given the set of candidates.

Computing candidates

Lemma

The set C of all candidates can be computed in $O(n \log \log n)$ time provided that \sim can be tested in constant time.

Lemma

The set C of all candidates can be computed in $O(n \log \log n)$ time provided that \sim can be tested in constant time.

Observation

$$q \in \mathcal{C} \iff \forall_{k \in \mathbb{Z}_+ : kq \le n} \ q \sim kq \iff \\ \forall_{p \in Primes : pq \le n} \ (q \sim pq \ \land pq \in \mathcal{C}).$$

Recall that primes up to n can be generated in O(n) time.

Lemma

The set C of all candidates can be computed in $O(n \log \log n)$ time provided that \sim can be tested in constant time.

Observation

$$q \in \mathcal{C} \iff \forall_{k \in \mathbb{Z}_+ : kq \le n} \ q \sim kq \iff \\ \forall_{p \in Primes : pq \le n} \ (q \sim pq \ \land pq \in \mathcal{C}).$$

Recall that primes up to n can be generated in O(n) time. A fixed $p \in Primes$ is processed for at most $\frac{n}{p}$ values of q, so the total number of operations is bounded by

$$\sum_{p \in Primes, \, p \leq n} \frac{n}{p} = O(n \log \log n).$$

Theorem

Let w be a word of length n over the alphabet $\{1, \ldots, \sigma\}$. Full Abelian periods of w can be computed in O(n) time.

Theorem

Let w be a word of length n over the alphabet $\{1, \ldots, \sigma\}$. There exist an $O(n \log \log n + n \log \sigma)$ time deterministic and an $O(n \log \log n)$ time randomized algorithm that compute all Abelian periods of w. Both algorithms require O(n) space.

Thank you for your attention!