
Fast Algorithms
for Abelian Periods in Words

and Greatest Common Divisor Queries

Tomasz Kociumaka, Jakub Radoszewski,
Wojciech Rytter

University of Warsaw

STACS 2013 Kiel, February 28, 2013

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 1/17

Part I

Greatest Common Divisor Queries

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 2/17

Problem

Problem (Greatest Common Divisor)

For a positive integer n build a data structure that given
integers x, y ∈ {1, . . . , n} computes gcd(x, y).

RAM model with word-size Ω(log n), i.e. constant-time
arithmetic operations on O(log n)-bit integers.

space construction query time
Euclid’s algorithm - - O(log n)
precompute answers O(n2) O(n2) O(1)

use factorization O(n) O(n) O(logn
log logn

)

this work O(n) O(n) O(1)

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 3/17

Problem

Problem (Greatest Common Divisor)

For a positive integer n build a data structure that given
integers x, y ∈ {1, . . . , n} computes gcd(x, y).

RAM model with word-size Ω(log n), i.e. constant-time
arithmetic operations on O(log n)-bit integers.

space construction query time
Euclid’s algorithm - - O(log n)
precompute answers O(n2) O(n2) O(1)

use factorization O(n) O(n) O(logn
log logn

)

this work O(n) O(n) O(1)

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 3/17

Problem

Problem (Greatest Common Divisor)

For a positive integer n build a data structure that given
integers x, y ∈ {1, . . . , n} computes gcd(x, y).

RAM model with word-size Ω(log n), i.e. constant-time
arithmetic operations on O(log n)-bit integers.

space construction query time
Euclid’s algorithm - - O(log n)
precompute answers O(n2) O(n2) O(1)

use factorization O(n) O(n) O(logn
log logn

)

this work O(n) O(n) O(1)

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 3/17

Special factorization

Computing gcd(x, y) is sometimes easy:

we can precompute gcd[x′, y′] for every x′, y′ ≤
√
n and

then for x ≤
√
n we can use the precomputed answer

gcd[x, y mod x],

if x is prime it suffices to check whether x divides y.

Definition
Let k be a positive integer. Then (k1, k2, k3) is a special
decomposition of k if k = k1k2k3 and each ki is prime or does
not exceed

√
k.

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 4/17

Special factorization

Computing gcd(x, y) is sometimes easy:

we can precompute gcd[x′, y′] for every x′, y′ ≤
√
n and

then for x ≤
√
n we can use the precomputed answer

gcd[x, y mod x],

if x is prime it suffices to check whether x divides y.

Definition
Let k be a positive integer. Then (k1, k2, k3) is a special
decomposition of k if k = k1k2k3 and each ki is prime or does
not exceed

√
k.

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 4/17

Queries

The data structure consists of:
precomputed answers for any x, y ≤

√
n,

a special decomposition of each x ∈ {1, . . . , n}.

Algorithm gcd(x, y)
(x1, x2, x3) := decomp[x];
g := 1;
for i := 1 to 3 do
if xi ≤

√
n then

d := gcd[xi, y mod xi];
else if xi | y then d := xi;
else d := 1;
g := g · d;
y := y/d;

return g;

2
2
2
3
5
7

853

x = 716520

2
2
2
2

7

x1 = 28

2

33

5

x2 = 30

853853

x3 = 853

2
2
2
2
33

3
11

853853

y = 337788y = 84447y = 28149y = 33

d = 4d = 3d = 853

2 2 3 853
g = 1g = 4g = 12g = 10236

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 5/17

Queries

The data structure consists of:
precomputed answers for any x, y ≤

√
n,

a special decomposition of each x ∈ {1, . . . , n}.
Algorithm gcd(x, y)

(x1, x2, x3) := decomp[x];
g := 1;
for i := 1 to 3 do
if xi ≤

√
n then

d := gcd[xi, y mod xi];
else if xi | y then d := xi;
else d := 1;
g := g · d;
y := y/d;

return g;

2
2
2
3
5
7

853

x = 716520

2
2

2
2
7

x1 = 28

2
3

3

5

x2 = 30

853

853

x3 = 853

2
2

2
2

3

3

3
11

853

853

y = 337788

y = 84447y = 28149y = 33

d = 4d = 3d = 853

2 2 3 853
g = 1g = 4g = 12g = 10236

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 5/17

Queries

The data structure consists of:
precomputed answers for any x, y ≤

√
n,

a special decomposition of each x ∈ {1, . . . , n}.
Algorithm gcd(x, y)

(x1, x2, x3) := decomp[x];
g := 1;
for i := 1 to 3 do
if xi ≤

√
n then

d := gcd[xi, y mod xi];
else if xi | y then d := xi;
else d := 1;
g := g · d;
y := y/d;

return g;

2
2
2
3
5
7

853

x = 716520

2
2

2
2
7

x1 = 28

2
3

3

5

x2 = 30

853

853

x3 = 853

2
2

2
2

3

3

3
11

853

853

y = 337788

y = 84447y = 28149y = 33

d = 4d = 3d = 853

2 2 3 853
g = 1g = 4g = 12g = 10236

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 5/17

Queries

The data structure consists of:
precomputed answers for any x, y ≤

√
n,

a special decomposition of each x ∈ {1, . . . , n}.
Algorithm gcd(x, y)

(x1, x2, x3) := decomp[x];
g := 1;
for i := 1 to 3 do
if xi ≤

√
n then

d := gcd[xi, y mod xi];
else if xi | y then d := xi;
else d := 1;
g := g · d;
y := y/d;

return g;

2
2
2
3
5
7

853

x = 716520

2
2

2
2

7

x1 = 28

2
3

3

5

x2 = 30

853

853

x3 = 853

2
2

2
2
3

3

3
11

853

853

y = 337788

y = 84447y = 28149y = 33

d = 4

d = 3d = 853

2 2 3 853

g = 1

g = 4g = 12g = 10236

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 5/17

Queries

The data structure consists of:
precomputed answers for any x, y ≤

√
n,

a special decomposition of each x ∈ {1, . . . , n}.
Algorithm gcd(x, y)

(x1, x2, x3) := decomp[x];
g := 1;
for i := 1 to 3 do
if xi ≤

√
n then

d := gcd[xi, y mod xi];
else if xi | y then d := xi;
else d := 1;
g := g · d;
y := y/d;

return g;

2
2
2
3
5
7

853

x = 716520

2
2

2
2
7

x1 = 28

2
3

3

5

x2 = 30

853

853

x3 = 853

2
2
2
2

3

3

3
11

853

853

y = 337788

y = 84447

y = 28149y = 33

d = 4d = 3d = 853

2 2

3 853
g = 1

g = 4

g = 12g = 10236

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 5/17

Queries

The data structure consists of:
precomputed answers for any x, y ≤

√
n,

a special decomposition of each x ∈ {1, . . . , n}.
Algorithm gcd(x, y)

(x1, x2, x3) := decomp[x];
g := 1;
for i := 1 to 3 do
if xi ≤

√
n then

d := gcd[xi, y mod xi];
else if xi | y then d := xi;
else d := 1;
g := g · d;
y := y/d;

return g;

2
2
2
3
5
7

853

x = 716520

2
2

2
2
7

x1 = 28

2

3

3
5

x2 = 30

853

853

x3 = 853

2
2
2
2
3

3
3

11
853

853

y = 337788

y = 84447

y = 28149y = 33

d = 4

d = 3

d = 853

2 2

3 853
g = 1

g = 4

g = 12g = 10236

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 5/17

Queries

The data structure consists of:
precomputed answers for any x, y ≤

√
n,

a special decomposition of each x ∈ {1, . . . , n}.
Algorithm gcd(x, y)

(x1, x2, x3) := decomp[x];
g := 1;
for i := 1 to 3 do
if xi ≤

√
n then

d := gcd[xi, y mod xi];
else if xi | y then d := xi;
else d := 1;
g := g · d;
y := y/d;

return g;

2
2
2
3
5
7

853

x = 716520

2
2

2
2
7

x1 = 28

2
3

3

5

x2 = 30

853

853

x3 = 853

2
2
2
2
33

3
11

853

853

y = 337788y = 84447

y = 28149

y = 33

d = 4d = 3d = 853

2 2 3

853
g = 1g = 4

g = 12

g = 10236

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 5/17

Queries

The data structure consists of:
precomputed answers for any x, y ≤

√
n,

a special decomposition of each x ∈ {1, . . . , n}.
Algorithm gcd(x, y)

(x1, x2, x3) := decomp[x];
g := 1;
for i := 1 to 3 do
if xi ≤

√
n then

d := gcd[xi, y mod xi];
else if xi | y then d := xi;
else d := 1;
g := g · d;
y := y/d;

return g;

2
2
2
3
5
7

853

x = 716520

2
2

2
2
7

x1 = 28

2
3

3

5

x2 = 30

853

853
x3 = 853

2
2
2
2
33

3
11

853

853

y = 337788y = 84447

y = 28149

y = 33

d = 4d = 3

d = 853

2 2 3

853
g = 1g = 4

g = 12

g = 10236

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 5/17

Queries

The data structure consists of:
precomputed answers for any x, y ≤

√
n,

a special decomposition of each x ∈ {1, . . . , n}.
Algorithm gcd(x, y)

(x1, x2, x3) := decomp[x];
g := 1;
for i := 1 to 3 do
if xi ≤

√
n then

d := gcd[xi, y mod xi];
else if xi | y then d := xi;
else d := 1;
g := g · d;
y := y/d;

return g;

2
2
2
3
5
7

853

x = 716520

2
2

2
2
7

x1 = 28

2
3

3

5

x2 = 30

853

853

x3 = 853

2
2
2
2
33

3
11

853853

y = 337788y = 84447y = 28149

y = 33

d = 4d = 3d = 853

2 2 3 853

g = 1g = 4g = 12

g = 10236
Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 5/17

Construction

Lemma
Let ` > 1 be a positive integer, p be the smallest prime divisor
of ` and k = `

p
. A decomposition of ` can be obtained from a

decomposition of k by multiplying the smallest factor by p.

Theorem (Gries & Misra, 1978)

The smallest prime divisors for all positive integers up to n can
be computed in O(n) time.

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 6/17

Construction

Lemma
Let ` > 1 be a positive integer, p be the smallest prime divisor
of ` and k = `

p
. A decomposition of ` can be obtained from a

decomposition of k by multiplying the smallest factor by p.

Theorem (Gries & Misra, 1978)

The smallest prime divisors for all positive integers up to n can
be computed in O(n) time.

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 6/17

Part II

Abelian Periods

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 7/17

Commutative equivalence and Parikh vectors

Definition
Let w be a word over Σ. A Parikh vector P(w) counts for
each letter a ∈ Σ its number of occurrences in w.

w = a b b a c P(w) = (2, 2, 1)

Definition
Words u,w are commutatively equivalent if P(u) = P(w).

a b b a c ≈ a c b a b b a b 6≈ a b a

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 8/17

Commutative equivalence and Parikh vectors

Definition
Let w be a word over Σ. A Parikh vector P(w) counts for
each letter a ∈ Σ its number of occurrences in w.

w = a b b a c P(w) = (2, 2, 1)

Definition
Words u,w are commutatively equivalent if P(u) = P(w).

a b b a c ≈ a c b a b b a b 6≈ a b a

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 8/17

Commutative equivalence and Parikh vectors

Definition
Let w be a word over Σ. A Parikh vector P(w) counts for
each letter a ∈ Σ its number of occurrences in w.

w = a b b a c P(w) = (2, 2, 1)

Definition
Words u,w are commutatively equivalent if P(u) = P(w).

a b b a c ≈ a c b a b b a b 6≈ a b a

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 8/17

Commutative equivalence and Parikh vectors

Definition
Let w be a word over Σ. A Parikh vector P(w) counts for
each letter a ∈ Σ its number of occurrences in w.

w = a b b a c P(w) = (2, 2, 1)

Definition
Words u,w are commutatively equivalent if P(u) = P(w).

a b b a c ≈ a c b a b b a b 6≈ a b a

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 8/17

Commutative equivalence and Parikh vectors

Definition
Let w be a word over Σ. A Parikh vector P(w) counts for
each letter a ∈ Σ its number of occurrences in w.

w = a b b a c P(w) = (2, 2, 1)

Definition
Words u,w are commutatively equivalent if P(u) = P(w).

a b b a c ≈ a c b a b b a b 6≈ a b a

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 8/17

Abelian Periods

Definition
Let w be a word. An integer q is:

a full Abelian period of w if w can be partitioned into
commutatively equivalent factors of length q,

an Abelian period of w if q is a full Abelian period of
some extension to the right of w,

a weak Abelian period of w if q is a full Abelian period of
some extension of w.

a a a a a a a ab b b b b bc c

q = 8 P = (4, 3, 1)

a c

q = 6 P = (3, 2, 1)

b bc c

q = 5 P = (2, 2, 1)

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 9/17

Abelian Periods

Definition
Let w be a word. An integer q is:

a full Abelian period of w if w can be partitioned into
commutatively equivalent factors of length q,

an Abelian period of w if q is a full Abelian period of
some extension to the right of w,

a weak Abelian period of w if q is a full Abelian period of
some extension of w.

a a a a a a a ab b b b b bc c

q = 8 P = (4, 3, 1)

a c

q = 6 P = (3, 2, 1)

b bc c

q = 5 P = (2, 2, 1)

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 9/17

Abelian Periods

Definition
Let w be a word. An integer q is:

a full Abelian period of w if w can be partitioned into
commutatively equivalent factors of length q,

an Abelian period of w if q is a full Abelian period of
some extension to the right of w,

a weak Abelian period of w if q is a full Abelian period of
some extension of w.

a a a a a a a ab b b b b bc c

q = 8 P = (4, 3, 1)

a c

q = 6 P = (3, 2, 1)

b bc c

q = 5 P = (2, 2, 1)

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 9/17

Previous results
Year Authors Variant Time complexity
2011 Fici et al. weak O(n2σ)

2012 Fici et al.
standard O(n2)
full O(n log log n)

2013 Crochemore et al. weak O(n2)

2013 this work
standard

O(n log log n)
randomized

O(n log log n+ n log σ)
deterministic

full O(n)

Assumptions:

Σ = {1, . . . , σ}
standard RAM model
(arrays, arithmetic of O(log n)-bit integers)

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 10/17

Previous results
Year Authors Variant Time complexity
2011 Fici et al. weak O(n2σ)

2012 Fici et al.
standard O(n2)
full O(n log log n)

2013 Crochemore et al. weak O(n2)

2013 this work
standard

O(n log log n)
randomized

O(n log log n+ n log σ)
deterministic

full O(n)

Assumptions:

Σ = {1, . . . , σ}
standard RAM model
(arrays, arithmetic of O(log n)-bit integers)

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 10/17

Previous results
Year Authors Variant Time complexity
2011 Fici et al. weak O(n2σ)

2012 Fici et al.
standard O(n2)
full O(n log log n)

2013 Crochemore et al. weak O(n2)

2013 this work
standard

O(n log log n)
randomized

O(n log log n+ n log σ)
deterministic

full O(n)

Assumptions:

Σ = {1, . . . , σ}
standard RAM model
(arrays, arithmetic of O(log n)-bit integers)

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 10/17

Proportionality

Definition
Let Pi be the Parikh vector of w[1..i]. We write i ∼ j if there
exists c ∈ R such that Pi[s] = cPj[s] for each s ∈ Σ.

a b

a a b

b

a a a b

a b

a

3 ∼ 9

5 ∼ 10

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 11/17

Proportionality

Definition
Let Pi be the Parikh vector of w[1..i]. We write i ∼ j if there
exists c ∈ R such that Pi[s] = cPj[s] for each s ∈ Σ.

a b

a a b

b

a a a b

a b

a

3 ∼ 9

5 ∼ 10

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 11/17

Efficient proportionality testing

Lemma
After O(n) randomized or O(n log σ) deterministic time
preprocessing ∼ can be tested in constant time.

Fact
The set [n]∼ = {k : k ∼ n} can be constructed in O(n) time.

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 12/17

Full Abelian Periods

Fact
Let A = {k : k ∼ n}. Then q is a full Abelian period ⇐⇒
there q | k and k ≤ n implies k ∈ A.

a b

a b

b

a a b

a a b

b

A = {2, 4, 6, 8, 12}

full Abelian period.

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 13/17

Full Abelian Periods

Fact
Let A = {k : k ∼ n}. Then q is a full Abelian period ⇐⇒
there q | k and k ≤ n implies k ∈ A.

a b

a b

b

a a b

a a b

b

A = {2, 4, 6, 8, 12}
4 is a full Abelian period.

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 13/17

Full Abelian Periods

Fact
Let A = {k : k ∼ n}. Then q is a full Abelian period ⇐⇒
there q | k and k ≤ n implies k ∈ A.

a b

a b

b

a a b

a a b

b

A = {2, 4, 6, 8, 12}
6 is a full Abelian period.

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 13/17

Full Abelian Periods

Fact
Let A = {k : k ∼ n}. Then q is a full Abelian period ⇐⇒
there q | k and k ≤ n implies k ∈ A.

a b

a b

b

a a b

a a b

b

A = {2, 4, 6, 8, 12}
2 is not a full Abelian period.

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 13/17

Full Abelian Periods

Fact
Let A = {k : k ∼ n}. Then q is a full Abelian period ⇐⇒
there q | k and k ≤ n implies k ∈ A.

Observation
There is no k 6∈ A such that q | k ⇐⇒ there is no
q′ such that q | q′ and q′ = gcd(k, n) for some k 6∈ A.

1 A′ := {k : k 6∼ n}
2 X := {q′ : ∃k 6∈A gcd(k, n) = q′}

(iterating over k 6∈ A and using fast gcd queries)
3 For each q | n check whether there exists q′ ∈ X such

that q | q′

The number of pairs (q, q′) is o(n), since the number of
divisors of n is o(nε).

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 13/17

Full Abelian Periods

Fact
Let A = {k : k ∼ n}. Then q is a full Abelian period ⇐⇒
there q | k and k ≤ n implies k ∈ A.

Observation
There is no k 6∈ A such that q | k ⇐⇒ there is no
q′ such that q | q′ and q′ = gcd(k, n) for some k 6∈ A.

1 A′ := {k : k 6∼ n}
2 X := {q′ : ∃k 6∈A gcd(k, n) = q′}

(iterating over k 6∈ A and using fast gcd queries)
3 For each q | n check whether there exists q′ ∈ X such

that q | q′

The number of pairs (q, q′) is o(n), since the number of
divisors of n is o(nε).

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 13/17

Full Abelian Periods

Fact
Let A = {k : k ∼ n}. Then q is a full Abelian period ⇐⇒
there q | k and k ≤ n implies k ∈ A.

Observation
There is no k 6∈ A such that q | k ⇐⇒ there is no
q′ such that q | q′ and q′ = gcd(k, n) for some k 6∈ A.

1 A′ := {k : k 6∼ n}
2 X := {q′ : ∃k 6∈A gcd(k, n) = q′}

(iterating over k 6∈ A and using fast gcd queries)
3 For each q | n check whether there exists q′ ∈ X such

that q | q′

The number of pairs (q, q′) is o(n), since the number of
divisors of n is o(nε).

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 13/17

Standard Abelian Periods

Definition
A positive integer q ≤ n is a candidate if q ∼ kq for each

k ∈
{

1, . . . ,
⌊
n
q

⌋}
.

10 is a candidate

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 14/17

Standard Abelian Periods

Definition
A positive integer q ≤ n is a candidate if q ∼ kq for each

k ∈
{

1, . . . ,
⌊
n
q

⌋}
.

8 is a candidate

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 14/17

Standard Abelian Periods

Definition
A positive integer q ≤ n is a candidate if q ∼ kq for each

k ∈
{

1, . . . ,
⌊
n
q

⌋}
.

9 is not a candidate

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 14/17

Standard Abelian Periods
A simple application of the techniques from weak Abelian
periods algorithm gives an O(n) time algorithm computing the
set of Abelian periods given the set of candidates.

10 is an Abelian period

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 14/17

Standard Abelian Periods
A simple application of the techniques from weak Abelian
periods algorithm gives an O(n) time algorithm computing the
set of Abelian periods given the set of candidates.

8 is not an Abelian period

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 14/17

Computing candidates

Lemma
The set C of all candidates can be computed in O(n log log n)
time provided that ∼ can be tested in constant time.

Observation

q ∈ C ⇐⇒ ∀k∈Z+ : kq≤n q ∼ kq ⇐⇒
∀ p∈Primes : pq≤n (q ∼ pq ∧ pq ∈ C).

Recall that primes up to n can be generated in O(n) time.
A fixed p ∈ Primes is processed for at most n

p
values of q, so

the total number of operations is bounded by∑
p∈Primes, p≤n

n
p

= O(n log log n).

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 15/17

Computing candidates

Lemma
The set C of all candidates can be computed in O(n log log n)
time provided that ∼ can be tested in constant time.

Observation

q ∈ C ⇐⇒ ∀k∈Z+ : kq≤n q ∼ kq ⇐⇒
∀ p∈Primes : pq≤n (q ∼ pq ∧ pq ∈ C).

Recall that primes up to n can be generated in O(n) time.

A fixed p ∈ Primes is processed for at most n
p

values of q, so
the total number of operations is bounded by∑

p∈Primes, p≤n

n
p

= O(n log log n).

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 15/17

Computing candidates

Lemma
The set C of all candidates can be computed in O(n log log n)
time provided that ∼ can be tested in constant time.

Observation

q ∈ C ⇐⇒ ∀k∈Z+ : kq≤n q ∼ kq ⇐⇒
∀ p∈Primes : pq≤n (q ∼ pq ∧ pq ∈ C).

Recall that primes up to n can be generated in O(n) time.
A fixed p ∈ Primes is processed for at most n

p
values of q, so

the total number of operations is bounded by∑
p∈Primes, p≤n

n
p

= O(n log log n).

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 15/17

Conclusions

Theorem
Let w be a word of length n over the alphabet {1, . . . , σ}.
Full Abelian periods of w can be computed in O(n) time.

Theorem
Let w be a word of length n over the alphabet {1, . . . , σ}.
There exist an O(n log log n+ n log σ) time deterministic and
an O(n log log n) time randomized algorithm that compute all
Abelian periods of w. Both algorithms require O(n) space.

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 16/17

Thank you

Thank you for your attention!

Tomasz Kociumaka Fast Algorithms for Abelian Periods and GCD Queries 17/17

	Greatest Common Divisor Queries
	Abelian Periods

