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LCE Queries

LCE Queries

For positions i , j in a word w , LCE(i , j) is length of the longest
common prefix of w [i ..] and w [j ..].
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LCE Problem

For a given word w of length n, answer a sequence of q = O(n)
queries LCE(i , j) in an on-line manner.
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Algorithms for the LCE Problem

Integer alphabet

Letters can be sorted in O(n) time (e.g., integers {1, . . . , n}).

O(n) Range Minimum Queries on the LCP table

General alphabet

Symbols can be accessed only via comparisons (<,=, >)

O(n2) Symbol-by-symbol naive check

O(n log n) Reduction to integer alphabet

O(n log2/3 n) Kosolobov; IPL 2016

O(n log log n) Gawrychowski, K., Rytter, Waleń; CPM 2016
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Runs (Maximal Repetitions)

Definition

A run is a maximal periodic fragment w [i ..j ]. For p = per(w [i ..j ]),

2p ≤ |w [i ..j ]|,
p is not a period of w [i − 1..j ] and w [i ..j + 1].

a a b a b a a b a b b

period 1: w [1..2], w [6..7], w [10..11]

period 2: w [2..6], w [7..10]

period 3: w [5..8]

period 5: w [1..10]
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Computing Runs

Integer alphabet:

Kolpakov, Kucherov (1999): O(n) time using LZ factorization

Bannai et. al (2015): O(n) time using Lyndon roots & LCE

General alphabet:

Kosolobov (2015): LZ factorization: Ω(n log n) comparisons

Kosolobov (2015): O(n2) time, O(n) comparisons

Improvements via LCE queries:

Kosolobov (2016): O(n log2/3 n) time, O(n) comparisons

Gawrychowski et al. (2016): O(n log log n) time, O(n) comp.

Improvements via non-crossing LCE queries:

This work: O(nα(n)) time, O(n) comparisons.
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Non-Crossing LCE Queries

Definition

Pairs of integers {i , j} and {i ′, j ′} are crossing if i < i ′ < j < j ′ or
i ′ < i < j ′ < j .

1 2 3 4 5 6 7 8 9 10 11

{1, 5} and {3, 8} crossing
{2, 6} and {3, 8} non-crossing
{2, 4} and {6, 9} non-crossing
{1, 5} and {3, 5} non-crossing
{2, 4} and {4, 8} non-crossing
{2, 5} and {5, 5} non-crossing

Theorem (Our main technical result)

The LCE problem can be solved in O(nα(n)) time in the general
alphabet model if args {i , j} of the LCE queries are non-crossing.
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Properties of Non-Crossing Families

Fact

A family of non-crossing pairs from {1, . . . , n} contains less than
3n distinct pairs.

1 2 3 4 5 6 7 8 9 10 11

Proof. Pairs {i , j} form the edge set of an outerplanar graph:

at most n loops

simple outerplanar graph has less than 2n edges.
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Properties of Non-Crossing Families

Fact

Let us partition {1, . . . , n} into b contiguous blocks.
A family of non-crossing pairs involves less than 3b pairs of blocks
(block-pairs).

1 2 3 4 5 6 7 8 9 10 11

Proof.
Block-pairs form the edge set of an outerplanar graph on b vertices.
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Limited LCE Queries (CPM’16)

Intuition: An LCE(i , j) query is easy if the LCE value is small.

Limited LCE queries:

LCE≤`(i , j) = min(`,LCE(i , j))

w = a
1

a
2

b
3

a
4

b
5

a
6

a
7

b
8

a
9

b
10

b
11

a a b a b a a b a b ba a b a b a a b a b b

LCE≤3(2, 9) =

2

LCE≤3(2, 7) =

3

Lemma (Gawrychowski et al., CPM 2016)

A sequence of LCE≤`q(iq, jq) queries can be answered on-line in
O((n +

∑
log `q) · α(n)) time in the general alphabet model.
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Answering Non-Crossing LCE Queries: Idea

Non-crossing LCE queries in O(n log log n · α(n)) time:

1 Introduce a partition into blocks of size 2k for k = blog log nc.
2 For short queries (LCE(i , j) ≤ 3 · 2k), apply limited LCE:

O(log log n · α(n)) amortized time per query.

3 For long queries, exploit the fact that many such queries
involving the same block-pair yield certain structure.

4 For each block-pair (out of O(n/ log n) involved):
learn the structure using O(1) unlimited LCE queries
O(log n · α(n)) amortize time per query
exploit the structure answering the remaining queries
O(1) time per query.

Non-crossing LCE queries in O(nα(n)) time:

apply the idea above to O(log n) levels,

blocks of length 2k in level k (k = 0, . . . , log n).
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Answering Long Queries Involving a Block-Pair

Intuition:

learn the structure using O(1) (unlimited) LCE queries,

exploit the structure answering the remaining queries.

Algorithm:

Initially, no structure known.

We have to learn the answer to the first query.

The result can be exploited for queries with the same shift.

2k

3 · 2k ≥ 3 · 2k
3 · 2k≥ 3 · 2k3 · 2k ≥ 3 · 2k

2k

3 · 2k ≥ 3 · 2k
3 · 2k≥ 3 · 2k3 · 2k ≥ 3 · 2k
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Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k
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Answering Non-Crossing LCE Queries: Overview

Blocks of size 2k at
level k .

Input queries passed
to level 0.

Level k learns by
asking level k + 1.
Queries asked to
level k :

input queries,
LCE(i , j) for
|i − j | ≤ 2k .

Block-pairs involved
at level k form a
non-crossing family.

0

1

k

k + 1

blog nc

...

...

Input queries
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Running Time Analysis

1 O(nα(n)) amortized preprocessing time (for LCE≤` queries).

2 Each level k answers at most 24n/2k queries:
queries in level k − 1 involve 3n/2k−1 block-pairs;
each block-pairs triggers at most 4 queries to level k.

3 Each query to level k takes O(kα(n)) amortized time:
a LCE≤3·2k query: O(kα(n)) amortized time
answering long queries (using block-pair state): O(1) time
excluding queries triggered on level k + 1.

4 Total running time:

O (nα(n)) +

log n∑
k=1

24n
2k
· O(kα(n)) = O(nα(n)).

Theorem (Our main technical result)

The LCE problem can be solved in O(nα(n)) time in the general
alphabet model if the LCE(i , j) queries are non-crossing.
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Runs Computation

The algorithm of Bannai et al. (SODA 2015):

1 Construct the Lyndon tree of w with respect to the
lexicographic order.

O(n) non-crossing LCE queries in w .

2 Check which nodes correspond to Lyndon roots of runs.

O(n) non-crossing LCE queries in w (extension to the right),
O(n) non-crossing LCE queries in wR (extension to the left).

3 Construct the Lyndon tree of w with respect to the reverse
lexicographic order.

O(n) non-crossing LCE queries in w .

4 Check which nodes correspond to Lyndon roots of runs.

O(n) non-crossing LCE queries in w (extension to the right),
O(n) non-crossing LCE queries in wR (extension to the left).

Theorem

Runs in a word of length n over a general ordered alphabet can be
computed in O(nα(n)) time.
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Questions?

Thank you for your attention!

M. Crochemore et al. Computation of Runs over General Alphabet 16/16


