Near-Optimal Computation of Runs over General Alphabet via Non-Crossing LCE Queries

Maxime Crochemore, Costas S. Iliopoulos, **Tomasz Kociumaka**, Ritu Kundu, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, Tomasz Waleń

> King's College London, UK University of Warsaw, Poland

SPIRE 2016

Beppu, Japan October 18, 2016

LCE Queries

LCE Queries

	1	2	3	4	5	6	7	8	9	10	11
w =	а	а	b	а	b	а	а	b	а	b	b

LCE Queries

LCE Queries

LCE Queries

LCE Queries

For positions i, j in a word w, LCE(i, j) is length of the longest common prefix of w[i..] and w[j..].

LCE Problem

For a given word w of length n, answer a sequence of q = O(n) queries LCE(i, j) in an on-line manner.

Letters can be sorted in $\mathcal{O}(n)$ time (e.g., integers $\{1, \ldots, n\}$).

 $\mathcal{O}(n)$ Range Minimum Queries on the LCP table

Letters can be sorted in $\mathcal{O}(n)$ time (e.g., integers $\{1, \ldots, n\}$).

 $\mathcal{O}(n)$ Range Minimum Queries on the LCP table

General alphabet Symbols can be accessed only via comparisons (<,=,>) $\mathcal{O}(n^2)$ Symbol-by-symbol naive check

 $\mathcal{O}(n \log n)$ Reduction to integer alphabet

Letters can be sorted in $\mathcal{O}(n)$ time (e.g., integers $\{1, \ldots, n\}$).

 $\mathcal{O}(n)$ Range Minimum Queries on the LCP table

General alphabetSymbols can be accessed only via comparisons (<, =, >) $\mathcal{O}(n^2)$ Symbol-by-symbol naive check $\mathcal{O}(n \log n)$ Reduction to integer alphabet $\mathcal{O}(n \log^{2/3} n)$ Kosolobov; IPL 2016 $\mathcal{O}(n \log \log n)$ Gawrychowski, K., Rytter, Waleń; CPM 2016

Definition

A run is a maximal periodic fragment w[i..j]. For p = per(w[i..j]),

- $2p \le |w[i..j]|,$
- p is not a period of w[i-1..j] and w[i..j+1].

Definition

A run is a maximal periodic fragment w[i..j]. For p = per(w[i..j]),

- $2p \le |w[i..j]|,$
- p is not a period of w[i-1..j] and w[i..j+1].

aababaababb

Definition

A run is a maximal periodic fragment w[i..j]. For p = per(w[i..j]),

- $2p \le |w[i..j]|,$
- p is not a period of w[i-1..j] and w[i..j+1].

period 1: w[1..2], w[6..7], w[10..11]

Definition

A run is a maximal periodic fragment w[i..j]. For p = per(w[i..j]),

- $2p \le |w[i..j]|,$
- p is not a period of w[i-1..j] and w[i..j+1].

period 1: w[1..2], w[6..7], w[10..11] period 2: w[2..6], w[7..10]

Definition

A run is a maximal periodic fragment w[i..j]. For p = per(w[i..j]),

- $2p \le |w[i..j]|,$
- p is not a period of w[i-1..j] and w[i..j+1].

period 1: w[1..2], w[6..7], w[10..11] period 2: w[2..6], w[7..10] period 3: w[5..8]

Definition

A run is a maximal periodic fragment w[i..j]. For p = per(w[i..j]),

- $2p \leq |w[i..j]|$,
- p is not a period of w[i-1..j] and w[i..j+1].

- period 1: w[1..2], w[6..7], w[10..11]
- period 2: w[2..6], w[7..10]
- period 3: w[5..8]
- period 5: w[1..10]

Kolpakov, Kucherov (1999): $\mathcal{O}(n)$ time using LZ factorization Bannai et. al (2015): $\mathcal{O}(n)$ time using Lyndon roots & LCE

Kolpakov, Kucherov (1999): $\mathcal{O}(n)$ time using LZ factorization Bannai et. al (2015): $\mathcal{O}(n)$ time using Lyndon roots & LCE

General alphabet:

Kosolobov (2015): LZ factorization: $\Omega(n \log n)$ comparisons Kosolobov (2015): $\mathcal{O}(n^2)$ time, $\mathcal{O}(n)$ comparisons

Kolpakov, Kucherov (1999): $\mathcal{O}(n)$ time using LZ factorization Bannai et. al (2015): $\mathcal{O}(n)$ time using Lyndon roots & LCE

General alphabet:

Kosolobov (2015): LZ factorization: $\Omega(n \log n)$ comparisons Kosolobov (2015): $\mathcal{O}(n^2)$ time, $\mathcal{O}(n)$ comparisons

Improvements via LCE queries: Kosolobov (2016): $\mathcal{O}(n \log^{2/3} n)$ time, $\mathcal{O}(n)$ comparisons Gawrychowski et al. (2016): $\mathcal{O}(n \log \log n)$ time, $\mathcal{O}(n)$ comp.

Kolpakov, Kucherov (1999): $\mathcal{O}(n)$ time using LZ factorization Bannai et. al (2015): $\mathcal{O}(n)$ time using Lyndon roots & LCE

General alphabet:

Kosolobov (2015): LZ factorization: $\Omega(n \log n)$ comparisons Kosolobov (2015): $\mathcal{O}(n^2)$ time, $\mathcal{O}(n)$ comparisons

Improvements via LCE queries: Kosolobov (2016): $\mathcal{O}(n \log^{2/3} n)$ time, $\mathcal{O}(n)$ comparisons Gawrychowski et al. (2016): $\mathcal{O}(n \log \log n)$ time, $\mathcal{O}(n)$ comp.

Improvements via non-crossing LCE queries:

This work: $\mathcal{O}(n\alpha(n))$ time, $\mathcal{O}(n)$ comparisons.

Definition

Definition

•	•	•	•	•	•	•	•	•	•	•
1	2	3	4	5	6	7	8	9	10	11

Definition

Definition

Definition

Definition

Definition

Definition

Definition

Pairs of integers $\{i, j\}$ and $\{i', j'\}$ are crossing if i < i' < j < j' or i' < i < j' < j.

• 1	• 2	• 3	• 4	• 5	• 6	• 7	• 8	• 9	• 10	$\overset{\bullet}{11}$
			$\{1,5\}$	and $\{$	3,8}	cros	ssing			
			$\{2, 6\}$	and $\{$	3,8}	non-c	rossing	5		
			$\{2, 4\}$	and $\{$	6,9}	non-c	rossing	5		
			$\{1, 5\}$	and $\{$	3,5}	non-crossing non-crossing		5		
			$\{2, 4\}$	and $\{$	4,8}			5		
			{2,5}	and $\{$	5,5}	non-c	rossing	5		

Theorem (Our main technical result)

The LCE problem can be solved in $\mathcal{O}(n\alpha(n))$ time in the general alphabet model if args $\{i, j\}$ of the LCE queries are non-crossing.

A family of non-crossing pairs from $\{1, \ldots, n\}$ contains less than 3n distinct pairs.

A family of non-crossing pairs from $\{1, \ldots, n\}$ contains less than 3n distinct pairs.

A family of non-crossing pairs from $\{1, \ldots, n\}$ contains less than 3n distinct pairs.

Proof. Pairs $\{i, j\}$ form the edge set of an outerplanar graph:

- at most *n* loops
- simple outerplanar graph has less than 2n edges.

Let us partition $\{1, ..., n\}$ into b contiguous blocks. A family of non-crossing pairs involves less than 3b pairs of blocks (block-pairs).

Let us partition $\{1, ..., n\}$ into b contiguous blocks. A family of non-crossing pairs involves less than 3b pairs of blocks (block-pairs).

Proof.

Block-pairs form the edge set of an outerplanar graph on *b* vertices.

Let us partition $\{1, ..., n\}$ into b contiguous blocks. A family of non-crossing pairs involves less than 3b pairs of blocks (block-pairs).

Proof.

Block-pairs form the edge set of an outerplanar graph on *b* vertices.

Limited LCE Queries (CPM'16)

Intuition: An LCE(i, j) query is easy if the LCE value is small.

Limited LCE Queries (CPM'16)

Intuition: An LCE(i, j) query is easy if the LCE value is small.

Limited LCE queries:

 $LCE_{\leq \ell}(i,j) = \min(\ell, LCE(i,j))$
Intuition: An LCE(i, j) query is easy if the LCE value is small.

Limited LCE queries:

 $LCE_{\leq \ell}(i,j) = \min(\ell, LCE(i,j))$ $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11$ $w = a \quad a \quad b \quad a \quad b \quad a \quad b \quad a \quad b \quad b$

Intuition: An LCE(i, j) query is easy if the LCE value is small.

Limited LCE queries:

Intuition: An LCE(i, j) query is easy if the LCE value is small.

Limited LCE queries:

Intuition: An LCE(i, j) query is easy if the LCE value is small.

Limited LCE queries:

Intuition: An LCE(i, j) query is easy if the LCE value is small.

Limited LCE queries:

Intuition: An LCE(i, j) query is easy if the LCE value is small.

Limited LCE queries:

Lemma (Gawrychowski et al., CPM 2016)

A sequence of $\text{LCE}_{\leq \ell_q}(i_q, j_q)$ queries can be answered on-line in $\mathcal{O}((n + \sum \log \ell_q) \cdot \alpha(n))$ time in the general alphabet model.

Non-crossing LCE queries in $\mathcal{O}(n \log \log n \cdot \alpha(n))$ time:

• Introduce a partition into blocks of size 2^k for $k = \lfloor \log \log n \rfloor$.

- Introduce a partition into blocks of size 2^k for $k = \lfloor \log \log n \rfloor$.
- **②** For short queries $(LCE(i, j) \le 3 \cdot 2^k)$, apply limited LCE:
 - $\mathcal{O}(\log \log n \cdot \alpha(n))$ amortized time per query.

- Introduce a partition into blocks of size 2^k for $k = \lfloor \log \log n \rfloor$.
- **②** For short queries $(LCE(i, j) \le 3 \cdot 2^k)$, apply limited LCE:
 - $\mathcal{O}(\log \log n \cdot \alpha(n))$ amortized time per query.
- For long queries, exploit the fact that many such queries involving the same block-pair yield certain structure.

- Introduce a partition into blocks of size 2^k for $k = \lfloor \log \log n \rfloor$.
- **2** For short queries $(LCE(i, j) \le 3 \cdot 2^k)$, apply limited LCE:
 - $\mathcal{O}(\log \log n \cdot \alpha(n))$ amortized time per query.
- For long queries, exploit the fact that many such queries involving the same block-pair yield certain structure.
- For each block-pair (out of $\mathcal{O}(n/\log n)$ involved):
 - learn the structure using O(1) unlimited LCE queries $O(\log n \cdot \alpha(n))$ amortize time per query
 - exploit the structure answering the remaining queries $\mathcal{O}(1)$ time per query.

Non-crossing LCE queries in $\mathcal{O}(n \log \log n \cdot \alpha(n))$ time:

- Introduce a partition into blocks of size 2^k for $k = \lfloor \log \log n \rfloor$.
- **②** For short queries $(LCE(i, j) \le 3 \cdot 2^k)$, apply limited LCE:
 - $\mathcal{O}(\log \log n \cdot \alpha(n))$ amortized time per query.
- For long queries, exploit the fact that many such queries involving the same block-pair yield certain structure.
- For each block-pair (out of $\mathcal{O}(n/\log n)$ involved):
 - learn the structure using O(1) unlimited LCE queries $O(\log n \cdot \alpha(n))$ amortize time per query
 - exploit the structure answering the remaining queries $\mathcal{O}(1)$ time per query.

Non-crossing LCE queries in $\mathcal{O}(n\alpha(n))$ time:

- apply the idea above to $\mathcal{O}(\log n)$ levels,
- blocks of length 2^k in level k ($k = 0, ..., \log n$).

Intuition:

- learn the structure using $\mathcal{O}(1)$ (unlimited) LCE queries,
- exploit the structure answering the remaining queries.

Intuition:

- learn the structure using $\mathcal{O}(1)$ (unlimited) LCE queries,
- exploit the structure answering the remaining queries.

Algorithm:

• Initially, no structure known.

Intuition:

- learn the structure using $\mathcal{O}(1)$ (unlimited) LCE queries,
- exploit the structure answering the remaining queries.

- Initially, no structure known.
- We have to learn the answer to the first query.

Intuition:

- learn the structure using $\mathcal{O}(1)$ (unlimited) LCE queries,
- exploit the structure answering the remaining queries.

- Initially, no structure known.
- We have to learn the answer to the first query.
- The result can be exploited for queries with the same shift.

Intuition:

- learn the structure using $\mathcal{O}(1)$ (unlimited) LCE queries,
- exploit the structure answering the remaining queries.

- Initially, no structure known.
- We have to learn the answer to the first query.
- The result can be exploited for queries with the same shift.

Intuition:

- learn the structure using $\mathcal{O}(1)$ (unlimited) LCE queries,
- exploit the structure answering the remaining queries.

- Initially, no structure known.
- We have to learn the answer to the first query.
- The result can be exploited for queries with the same shift.

Intuition:

- learn the structure using $\mathcal{O}(1)$ (unlimited) LCE queries,
- exploit the structure answering the remaining queries.

- Initially, no structure known.
- We have to learn the answer to the first query.
- The result can be exploited for queries with the same shift.

Algorithm (continued):

Algorithm (continued):

Algorithm (continued):

Algorithm (continued):

Algorithm (continued):

Algorithm (continued):

Algorithm (continued):

Algorithm (continued):

Algorithm (continued):

Algorithm (continued):

Algorithm (continued):

Algorithm (continued):

Algorithm (continued):

Algorithm (continued):

Algorithm (continued):

Algorithm (continued):

Algorithm (continued):

Algorithm (continued):

• Long query with a different shift yields periodic structure.

Algorithm (continued):

• Long query with a different shift yields periodic structure.

- Long query with a different shift yields periodic structure.
- Fragments following the blocks have a common period *p*.

- Long query with a different shift yields periodic structure.
- Fragments following the blocks have a common period *p*.

- Long query with a different shift yields periodic structure.
- Fragments following the blocks have a common period *p*.

- Long query with a different shift yields periodic structure.
- Fragments following the blocks have a common period *p*.
- We use LCE queries to **learn** how far the period continues.

- Long query with a different shift yields periodic structure.
- Fragments following the blocks have a common period *p*.
- \bullet We use ${\rm LCE}$ queries to ${\rm learn}$ how far the period continues.
- This structure suffices to answer almost all long queries.

- Long query with a different shift yields periodic structure.
- Fragments following the blocks have a common period *p*.
- \bullet We use ${\rm LCE}$ queries to ${\rm learn}$ how far the period continues.
- This structure suffices to answer almost all long queries.

- Long query with a different shift yields periodic structure.
- Fragments following the blocks have a common period *p*.
- \bullet We use ${\rm LCE}$ queries to ${\rm learn}$ how far the period continues.
- This structure suffices to answer almost all long queries.

- Long query with a different shift yields periodic structure.
- Fragments following the blocks have a common period *p*.
- \bullet We use ${\rm LCE}$ queries to ${\rm learn}$ how far the period continues.
- This structure suffices to answer almost all long queries.

- Long query with a different shift yields periodic structure.
- Fragments following the blocks have a common period *p*.
- \bullet We use ${\rm LCE}$ queries to ${\rm learn}$ how far the period continues.
- This structure suffices to answer almost all long queries.

- Long query with a different shift yields periodic structure.
- Fragments following the blocks have a common period *p*.
- \bullet We use ${\rm LCE}$ queries to ${\rm learn}$ how far the period continues.
- This structure suffices to answer almost all long queries.

- Long query with a different shift yields periodic structure.
- Fragments following the blocks have a common period p.
- \bullet We use ${\rm LCE}$ queries to ${\rm learn}$ how far the period continues.
- This structure suffices to answer almost all long queries.
- If period-break positions meet, we need to learn the answer.

- Long query with a different shift yields periodic structure.
- Fragments following the blocks have a common period *p*.
- \bullet We use ${\rm LCE}$ queries to ${\rm learn}$ how far the period continues.
- This structure suffices to answer almost all long queries.
- If period-break positions meet, we need to learn the answer.

- Long query with a different shift yields periodic structure.
- Fragments following the blocks have a common period p.
- \bullet We use ${\rm LCE}$ queries to ${\rm learn}$ how far the period continues.
- This structure suffices to answer almost all long queries.
- If period-break positions meet, we need to learn the answer.
- We have enough structure to answer all long queries.

- Long query with a different shift yields periodic structure.
- Fragments following the blocks have a common period p.
- \bullet We use ${\rm LCE}$ queries to ${\rm learn}$ how far the period continues.
- This structure suffices to answer almost all long queries.
- If period-break positions meet, we need to learn the answer.
- We have enough structure to answer all long queries.

• Blocks of size 2^k at level k.

to level 0.

 $\log n$ Input queries passed ÷ k+1k . 1 0 Input queries

- Blocks of size 2^k at level k.
- Input queries passed to level 0.
- Level k learns by asking level k + 1.

- Blocks of size 2^k at level k.
- Input queries passed to level 0.
- Level k learns by asking level k + 1.
- Queries asked to level k:
 - input queries,
 - LCE(i,j) for $|i-j| \le 2^k$.

- Blocks of size 2^k at level k.
- Input queries passed to level 0.
- Level k learns by asking level k + 1.
- Queries asked to level k:
 - input queries,
 - LCE(i,j) for $|i-j| \le 2^k$.
- Block-pairs involved at level k form a non-crossing family.

• $\mathcal{O}(n\alpha(n))$ amortized preprocessing time (for LCE_{$\leq \ell$} queries).

- **(** $\mathcal{O}(n\alpha(n))$ amortized preprocessing time (for LCE_{< ℓ} queries).
- 2 Each level k answers at most $24n/2^k$ queries:
 - queries in level k 1 involve $3n/2^{k-1}$ block-pairs;
 - each block-pairs triggers at most 4 queries to level k.

- **9** $\mathcal{O}(n\alpha(n))$ amortized preprocessing time (for LCE_{< ℓ} queries).
- 2 Each level k answers at most $24n/2^k$ queries:
 - queries in level k 1 involve $3n/2^{k-1}$ block-pairs;
 - each block-pairs triggers at most 4 queries to level k.
- So Each query to level k takes $\mathcal{O}(k\alpha(n))$ amortized time:
 - a $\text{LCE}_{<3\cdot 2^k}$ query: $\mathcal{O}(k\alpha(n))$ amortized time
 - answering long queries (using block-pair state): O(1) time excluding queries triggered on level k + 1.

- **(** $\mathcal{O}(n\alpha(n))$ amortized preprocessing time (for LCE_{< ℓ} queries).
- 2 Each level k answers at most $24n/2^k$ queries:
 - queries in level k 1 involve $3n/2^{k-1}$ block-pairs;
 - each block-pairs triggers at most 4 queries to level k.
- Solution Each query to level k takes $\mathcal{O}(k\alpha(n))$ amortized time:
 - a $\text{LCE}_{<3\cdot 2^k}$ query: $\mathcal{O}(k\alpha(n))$ amortized time
 - answering long queries (using block-pair state): O(1) time excluding queries triggered on level k + 1.
- Total running time:

$$\mathcal{O}(n\alpha(n)) + \sum_{k=1}^{\log n} \frac{24n}{2^k} \cdot \mathcal{O}(k\alpha(n)) = \mathcal{O}(n\alpha(n)).$$

- **9** $\mathcal{O}(n\alpha(n))$ amortized preprocessing time (for LCE_{< ℓ} queries).
- 2 Each level k answers at most $24n/2^k$ queries:
 - queries in level k 1 involve $3n/2^{k-1}$ block-pairs;
 - each block-pairs triggers at most 4 queries to level k.
- Solution Each query to level k takes $\mathcal{O}(k\alpha(n))$ amortized time:
 - a $\text{LCE}_{<3\cdot 2^k}$ query: $\mathcal{O}(k\alpha(n))$ amortized time
 - answering long queries (using block-pair state): O(1) time excluding queries triggered on level k + 1.
- Total running time:

$$\mathcal{O}(n\alpha(n)) + \sum_{k=1}^{\log n} \frac{24n}{2^k} \cdot \mathcal{O}(k\alpha(n)) = \mathcal{O}(n\alpha(n)).$$

Theorem (Our main technical result)

The LCE problem can be solved in $\mathcal{O}(n\alpha(n))$ time in the general alphabet model if the LCE(*i*, *j*) queries are non-crossing.

The algorithm of Bannai et al. (SODA 2015):

The algorithm of Bannai et al. (SODA 2015):

Construct the Lyndon tree of w with respect to the lexicographic order.

- The algorithm of Bannai et al. (SODA 2015):
 - Construct the Lyndon tree of w with respect to the lexicographic order.
 - One Check which nodes correspond to Lyndon roots of runs.

- The algorithm of Bannai et al. (SODA 2015):
 - Construct the Lyndon tree of w with respect to the lexicographic order.
 - One Check which nodes correspond to Lyndon roots of runs.

- Construct the Lyndon tree of w with respect to the reverse lexicographic order.
- G Check which nodes correspond to Lyndon roots of runs.

- The algorithm of Bannai et al. (SODA 2015):
 - Construct the Lyndon tree of w with respect to the lexicographic order.
 - $\mathcal{O}(n)$ non-crossing LCE queries in w.
 - One Check which nodes correspond to Lyndon roots of runs.
 - Construct the Lyndon tree of w with respect to the reverse lexicographic order.
 - One Check which nodes correspond to Lyndon roots of runs.

The algorithm of Bannai et al. (SODA 2015):

- Construct the Lyndon tree of w with respect to the lexicographic order.
 - $\mathcal{O}(n)$ non-crossing LCE queries in w.
- One Check which nodes correspond to Lyndon roots of runs.
 - $\mathcal{O}(n)$ non-crossing LCE queries in w (extension to the right),
 - $\mathcal{O}(n)$ non-crossing LCE queries in w^R (extension to the left).
- Construct the Lyndon tree of w with respect to the reverse lexicographic order.
- Check which nodes correspond to Lyndon roots of runs.

The algorithm of Bannai et al. (SODA 2015):

- Construct the Lyndon tree of w with respect to the lexicographic order.
 - $\mathcal{O}(n)$ non-crossing LCE queries in w.
- One Check which nodes correspond to Lyndon roots of runs.
 - $\mathcal{O}(n)$ non-crossing LCE queries in w (extension to the right),
 - $\mathcal{O}(n)$ non-crossing LCE queries in w^R (extension to the left).
- Construct the Lyndon tree of w with respect to the reverse lexicographic order.
 - $\mathcal{O}(n)$ non-crossing LCE queries in w.
- G Check which nodes correspond to Lyndon roots of runs.
 - $\mathcal{O}(n)$ non-crossing LCE queries in w (extension to the right),
 - $\mathcal{O}(n)$ non-crossing LCE queries in w^R (extension to the left).

The algorithm of Bannai et al. (SODA 2015):

- Construct the Lyndon tree of w with respect to the lexicographic order.
 - $\mathcal{O}(n)$ non-crossing LCE queries in w.
- One Check which nodes correspond to Lyndon roots of runs.
 - $\mathcal{O}(n)$ non-crossing LCE queries in w (extension to the right),
 - $\mathcal{O}(n)$ non-crossing LCE queries in w^R (extension to the left).
- Construct the Lyndon tree of w with respect to the reverse lexicographic order.
 - $\mathcal{O}(n)$ non-crossing LCE queries in w.
- One Check which nodes correspond to Lyndon roots of runs.
 - $\mathcal{O}(n)$ non-crossing LCE queries in w (extension to the right),
 - $\mathcal{O}(n)$ non-crossing LCE queries in w^{R} (extension to the left).

Theorem

Runs in a word of length n over a general ordered alphabet can be computed in $O(n\alpha(n))$ time.

Thank you for your attention!