
Near-Optimal Computation of Runs over General
Alphabet via Non-Crossing LCE Queries

Maxime Crochemore, Costas S. Iliopoulos,
Tomasz Kociumaka, Ritu Kundu, Solon P. Pissis,

Jakub Radoszewski, Wojciech Rytter, Tomasz Waleń

King’s College London, UK
University of Warsaw, Poland

SPIRE 2016
Beppu, Japan

October 18, 2016

M. Crochemore et al. Computation of Runs over General Alphabet 1/16



LCE Queries

LCE Queries

For positions i , j in a word w , LCE(i , j) is length of the longest
common prefix of w [i ..] and w [j ..].

w = a
1

a
2

b
3

a
4

b
5

a
6

a
7

b
8

a
9

b
10

b
11

a a b a b a a b a b b

LCE(2, 7) =

4

LCE Problem

For a given word w of length n, answer a sequence of q = O(n)
queries LCE(i , j) in an on-line manner.

M. Crochemore et al. Computation of Runs over General Alphabet 2/16



LCE Queries

LCE Queries

For positions i , j in a word w , LCE(i , j) is length of the longest
common prefix of w [i ..] and w [j ..].

w = a
1

a
2

b
3

a
4

b
5

a
6

a
7

b
8

a
9

b
10

b
11

a a b a b a a b a b b

LCE(2, 7) =

4

LCE Problem

For a given word w of length n, answer a sequence of q = O(n)
queries LCE(i , j) in an on-line manner.

M. Crochemore et al. Computation of Runs over General Alphabet 2/16



LCE Queries

LCE Queries

For positions i , j in a word w , LCE(i , j) is length of the longest
common prefix of w [i ..] and w [j ..].

w = a
1

a
2

b
3

a
4

b
5

a
6

a
7

b
8

a
9

b
10

b
11

a a b a b a a b a b b

LCE(2, 7) =

4

LCE Problem

For a given word w of length n, answer a sequence of q = O(n)
queries LCE(i , j) in an on-line manner.

M. Crochemore et al. Computation of Runs over General Alphabet 2/16



LCE Queries

LCE Queries

For positions i , j in a word w , LCE(i , j) is length of the longest
common prefix of w [i ..] and w [j ..].

w =

a

1

a

2

b

3

a

4

b

5

a

6

a

7

b

8

a

9

b

10

b

11

a a b a b a a b a b b

LCE(2, 7) = 4

LCE Problem

For a given word w of length n, answer a sequence of q = O(n)
queries LCE(i , j) in an on-line manner.

M. Crochemore et al. Computation of Runs over General Alphabet 2/16



LCE Queries

LCE Queries

For positions i , j in a word w , LCE(i , j) is length of the longest
common prefix of w [i ..] and w [j ..].

w =

a

1

a

2

b

3

a

4

b

5

a

6

a

7

b

8

a

9

b

10

b

11

a a b a b a a b a b b

LCE(2, 7) = 4

LCE Problem

For a given word w of length n, answer a sequence of q = O(n)
queries LCE(i , j) in an on-line manner.

M. Crochemore et al. Computation of Runs over General Alphabet 2/16



Algorithms for the LCE Problem

Integer alphabet

Letters can be sorted in O(n) time (e.g., integers {1, . . . , n}).

O(n) Range Minimum Queries on the LCP table

General alphabet

Symbols can be accessed only via comparisons (<,=, >)

O(n2) Symbol-by-symbol naive check

O(n log n) Reduction to integer alphabet

O(n log2/3 n) Kosolobov; IPL 2016

O(n log log n) Gawrychowski, K., Rytter, Waleń; CPM 2016

M. Crochemore et al. Computation of Runs over General Alphabet 3/16



Algorithms for the LCE Problem

Integer alphabet

Letters can be sorted in O(n) time (e.g., integers {1, . . . , n}).

O(n) Range Minimum Queries on the LCP table

General alphabet

Symbols can be accessed only via comparisons (<,=, >)

O(n2) Symbol-by-symbol naive check

O(n log n) Reduction to integer alphabet

O(n log2/3 n) Kosolobov; IPL 2016

O(n log log n) Gawrychowski, K., Rytter, Waleń; CPM 2016

M. Crochemore et al. Computation of Runs over General Alphabet 3/16



Algorithms for the LCE Problem

Integer alphabet

Letters can be sorted in O(n) time (e.g., integers {1, . . . , n}).

O(n) Range Minimum Queries on the LCP table

General alphabet

Symbols can be accessed only via comparisons (<,=, >)

O(n2) Symbol-by-symbol naive check

O(n log n) Reduction to integer alphabet

O(n log2/3 n) Kosolobov; IPL 2016

O(n log log n) Gawrychowski, K., Rytter, Waleń; CPM 2016

M. Crochemore et al. Computation of Runs over General Alphabet 3/16



Runs (Maximal Repetitions)

Definition

A run is a maximal periodic fragment w [i ..j ]. For p = per(w [i ..j ]),

2p ≤ |w [i ..j ]|,
p is not a period of w [i − 1..j ] and w [i ..j + 1].

a a b a b a a b a b b

period 1: w [1..2], w [6..7], w [10..11]

period 2: w [2..6], w [7..10]

period 3: w [5..8]

period 5: w [1..10]

M. Crochemore et al. Computation of Runs over General Alphabet 4/16



Runs (Maximal Repetitions)

Definition

A run is a maximal periodic fragment w [i ..j ]. For p = per(w [i ..j ]),

2p ≤ |w [i ..j ]|,
p is not a period of w [i − 1..j ] and w [i ..j + 1].

a a b a b a a b a b b

period 1: w [1..2], w [6..7], w [10..11]

period 2: w [2..6], w [7..10]

period 3: w [5..8]

period 5: w [1..10]

M. Crochemore et al. Computation of Runs over General Alphabet 4/16



Runs (Maximal Repetitions)

Definition

A run is a maximal periodic fragment w [i ..j ]. For p = per(w [i ..j ]),

2p ≤ |w [i ..j ]|,
p is not a period of w [i − 1..j ] and w [i ..j + 1].

a a b a b a a b a b b

period 1: w [1..2], w [6..7], w [10..11]

period 2: w [2..6], w [7..10]

period 3: w [5..8]

period 5: w [1..10]

M. Crochemore et al. Computation of Runs over General Alphabet 4/16



Runs (Maximal Repetitions)

Definition

A run is a maximal periodic fragment w [i ..j ]. For p = per(w [i ..j ]),

2p ≤ |w [i ..j ]|,
p is not a period of w [i − 1..j ] and w [i ..j + 1].

a a b a b a a b a b b

period 1: w [1..2], w [6..7], w [10..11]

period 2: w [2..6], w [7..10]

period 3: w [5..8]

period 5: w [1..10]

M. Crochemore et al. Computation of Runs over General Alphabet 4/16



Runs (Maximal Repetitions)

Definition

A run is a maximal periodic fragment w [i ..j ]. For p = per(w [i ..j ]),

2p ≤ |w [i ..j ]|,
p is not a period of w [i − 1..j ] and w [i ..j + 1].

a a b a b a a b a b b

period 1: w [1..2], w [6..7], w [10..11]

period 2: w [2..6], w [7..10]

period 3: w [5..8]

period 5: w [1..10]

M. Crochemore et al. Computation of Runs over General Alphabet 4/16



Runs (Maximal Repetitions)

Definition

A run is a maximal periodic fragment w [i ..j ]. For p = per(w [i ..j ]),

2p ≤ |w [i ..j ]|,
p is not a period of w [i − 1..j ] and w [i ..j + 1].

a a b a b a a b a b b

period 1: w [1..2], w [6..7], w [10..11]

period 2: w [2..6], w [7..10]

period 3: w [5..8]

period 5: w [1..10]

M. Crochemore et al. Computation of Runs over General Alphabet 4/16



Computing Runs

Integer alphabet:

Kolpakov, Kucherov (1999): O(n) time using LZ factorization

Bannai et. al (2015): O(n) time using Lyndon roots & LCE

General alphabet:

Kosolobov (2015): LZ factorization: Ω(n log n) comparisons

Kosolobov (2015): O(n2) time, O(n) comparisons

Improvements via LCE queries:

Kosolobov (2016): O(n log2/3 n) time, O(n) comparisons

Gawrychowski et al. (2016): O(n log log n) time, O(n) comp.

Improvements via non-crossing LCE queries:

This work: O(nα(n)) time, O(n) comparisons.

M. Crochemore et al. Computation of Runs over General Alphabet 5/16



Computing Runs

Integer alphabet:

Kolpakov, Kucherov (1999): O(n) time using LZ factorization

Bannai et. al (2015): O(n) time using Lyndon roots & LCE

General alphabet:

Kosolobov (2015): LZ factorization: Ω(n log n) comparisons

Kosolobov (2015): O(n2) time, O(n) comparisons

Improvements via LCE queries:

Kosolobov (2016): O(n log2/3 n) time, O(n) comparisons

Gawrychowski et al. (2016): O(n log log n) time, O(n) comp.

Improvements via non-crossing LCE queries:

This work: O(nα(n)) time, O(n) comparisons.

M. Crochemore et al. Computation of Runs over General Alphabet 5/16



Computing Runs

Integer alphabet:

Kolpakov, Kucherov (1999): O(n) time using LZ factorization

Bannai et. al (2015): O(n) time using Lyndon roots & LCE

General alphabet:

Kosolobov (2015): LZ factorization: Ω(n log n) comparisons

Kosolobov (2015): O(n2) time, O(n) comparisons

Improvements via LCE queries:

Kosolobov (2016): O(n log2/3 n) time, O(n) comparisons

Gawrychowski et al. (2016): O(n log log n) time, O(n) comp.

Improvements via non-crossing LCE queries:

This work: O(nα(n)) time, O(n) comparisons.

M. Crochemore et al. Computation of Runs over General Alphabet 5/16



Computing Runs

Integer alphabet:

Kolpakov, Kucherov (1999): O(n) time using LZ factorization

Bannai et. al (2015): O(n) time using Lyndon roots & LCE

General alphabet:

Kosolobov (2015): LZ factorization: Ω(n log n) comparisons

Kosolobov (2015): O(n2) time, O(n) comparisons

Improvements via LCE queries:

Kosolobov (2016): O(n log2/3 n) time, O(n) comparisons

Gawrychowski et al. (2016): O(n log log n) time, O(n) comp.

Improvements via non-crossing LCE queries:

This work: O(nα(n)) time, O(n) comparisons.

M. Crochemore et al. Computation of Runs over General Alphabet 5/16



Non-Crossing LCE Queries

Definition

Pairs of integers {i , j} and {i ′, j ′} are crossing if i < i ′ < j < j ′ or
i ′ < i < j ′ < j .

1 2 3 4 5 6 7 8 9 10 11

{1, 5} and {3, 8} crossing
{2, 6} and {3, 8} non-crossing
{2, 4} and {6, 9} non-crossing
{1, 5} and {3, 5} non-crossing
{2, 4} and {4, 8} non-crossing
{2, 5} and {5, 5} non-crossing

Theorem (Our main technical result)

The LCE problem can be solved in O(nα(n)) time in the general
alphabet model if args {i , j} of the LCE queries are non-crossing.

M. Crochemore et al. Computation of Runs over General Alphabet 6/16



Non-Crossing LCE Queries

Definition

Pairs of integers {i , j} and {i ′, j ′} are crossing if i < i ′ < j < j ′ or
i ′ < i < j ′ < j .

1 2 3 4 5 6 7 8 9 10 11

{1, 5} and {3, 8} crossing
{2, 6} and {3, 8} non-crossing
{2, 4} and {6, 9} non-crossing
{1, 5} and {3, 5} non-crossing
{2, 4} and {4, 8} non-crossing
{2, 5} and {5, 5} non-crossing

Theorem (Our main technical result)

The LCE problem can be solved in O(nα(n)) time in the general
alphabet model if args {i , j} of the LCE queries are non-crossing.

M. Crochemore et al. Computation of Runs over General Alphabet 6/16



Non-Crossing LCE Queries

Definition

Pairs of integers {i , j} and {i ′, j ′} are crossing if i < i ′ < j < j ′ or
i ′ < i < j ′ < j .

1 2 3 4 5 6 7 8 9 10 11

{1, 5} and {3, 8} crossing

{2, 6} and {3, 8} non-crossing
{2, 4} and {6, 9} non-crossing
{1, 5} and {3, 5} non-crossing
{2, 4} and {4, 8} non-crossing
{2, 5} and {5, 5} non-crossing

Theorem (Our main technical result)

The LCE problem can be solved in O(nα(n)) time in the general
alphabet model if args {i , j} of the LCE queries are non-crossing.

M. Crochemore et al. Computation of Runs over General Alphabet 6/16



Non-Crossing LCE Queries

Definition

Pairs of integers {i , j} and {i ′, j ′} are crossing if i < i ′ < j < j ′ or
i ′ < i < j ′ < j .

1 2 3 4 5 6 7 8 9 10 11

{1, 5} and {3, 8} crossing
{2, 6} and {3, 8} non-crossing

{2, 4} and {6, 9} non-crossing
{1, 5} and {3, 5} non-crossing
{2, 4} and {4, 8} non-crossing
{2, 5} and {5, 5} non-crossing

Theorem (Our main technical result)

The LCE problem can be solved in O(nα(n)) time in the general
alphabet model if args {i , j} of the LCE queries are non-crossing.

M. Crochemore et al. Computation of Runs over General Alphabet 6/16



Non-Crossing LCE Queries

Definition

Pairs of integers {i , j} and {i ′, j ′} are crossing if i < i ′ < j < j ′ or
i ′ < i < j ′ < j .

1 2 3 4 5 6 7 8 9 10 11

{1, 5} and {3, 8} crossing
{2, 6} and {3, 8} non-crossing
{2, 4} and {6, 9} non-crossing

{1, 5} and {3, 5} non-crossing
{2, 4} and {4, 8} non-crossing
{2, 5} and {5, 5} non-crossing

Theorem (Our main technical result)

The LCE problem can be solved in O(nα(n)) time in the general
alphabet model if args {i , j} of the LCE queries are non-crossing.

M. Crochemore et al. Computation of Runs over General Alphabet 6/16



Non-Crossing LCE Queries

Definition

Pairs of integers {i , j} and {i ′, j ′} are crossing if i < i ′ < j < j ′ or
i ′ < i < j ′ < j .

1 2 3 4 5 6 7 8 9 10 11

{1, 5} and {3, 8} crossing
{2, 6} and {3, 8} non-crossing
{2, 4} and {6, 9} non-crossing
{1, 5} and {3, 5} non-crossing

{2, 4} and {4, 8} non-crossing
{2, 5} and {5, 5} non-crossing

Theorem (Our main technical result)

The LCE problem can be solved in O(nα(n)) time in the general
alphabet model if args {i , j} of the LCE queries are non-crossing.

M. Crochemore et al. Computation of Runs over General Alphabet 6/16



Non-Crossing LCE Queries

Definition

Pairs of integers {i , j} and {i ′, j ′} are crossing if i < i ′ < j < j ′ or
i ′ < i < j ′ < j .

1 2 3 4 5 6 7 8 9 10 11

{1, 5} and {3, 8} crossing
{2, 6} and {3, 8} non-crossing
{2, 4} and {6, 9} non-crossing
{1, 5} and {3, 5} non-crossing
{2, 4} and {4, 8} non-crossing

{2, 5} and {5, 5} non-crossing

Theorem (Our main technical result)

The LCE problem can be solved in O(nα(n)) time in the general
alphabet model if args {i , j} of the LCE queries are non-crossing.

M. Crochemore et al. Computation of Runs over General Alphabet 6/16



Non-Crossing LCE Queries

Definition

Pairs of integers {i , j} and {i ′, j ′} are crossing if i < i ′ < j < j ′ or
i ′ < i < j ′ < j .

1 2 3 4 5 6 7 8 9 10 11

{1, 5} and {3, 8} crossing
{2, 6} and {3, 8} non-crossing
{2, 4} and {6, 9} non-crossing
{1, 5} and {3, 5} non-crossing
{2, 4} and {4, 8} non-crossing
{2, 5} and {5, 5} non-crossing

Theorem (Our main technical result)

The LCE problem can be solved in O(nα(n)) time in the general
alphabet model if args {i , j} of the LCE queries are non-crossing.

M. Crochemore et al. Computation of Runs over General Alphabet 6/16



Non-Crossing LCE Queries

Definition

Pairs of integers {i , j} and {i ′, j ′} are crossing if i < i ′ < j < j ′ or
i ′ < i < j ′ < j .

1 2 3 4 5 6 7 8 9 10 11

{1, 5} and {3, 8} crossing
{2, 6} and {3, 8} non-crossing
{2, 4} and {6, 9} non-crossing
{1, 5} and {3, 5} non-crossing
{2, 4} and {4, 8} non-crossing
{2, 5} and {5, 5} non-crossing

Theorem (Our main technical result)

The LCE problem can be solved in O(nα(n)) time in the general
alphabet model if args {i , j} of the LCE queries are non-crossing.

M. Crochemore et al. Computation of Runs over General Alphabet 6/16



Properties of Non-Crossing Families

Fact

A family of non-crossing pairs from {1, . . . , n} contains less than
3n distinct pairs.

1 2 3 4 5 6 7 8 9 10 11

Proof. Pairs {i , j} form the edge set of an outerplanar graph:

at most n loops

simple outerplanar graph has less than 2n edges.

M. Crochemore et al. Computation of Runs over General Alphabet 7/16



Properties of Non-Crossing Families

Fact

A family of non-crossing pairs from {1, . . . , n} contains less than
3n distinct pairs.

1 2 3 4 5 6 7 8 9 10 11

Proof. Pairs {i , j} form the edge set of an outerplanar graph:

at most n loops

simple outerplanar graph has less than 2n edges.

M. Crochemore et al. Computation of Runs over General Alphabet 7/16



Properties of Non-Crossing Families

Fact

A family of non-crossing pairs from {1, . . . , n} contains less than
3n distinct pairs.

1 2 3 4 5 6 7 8 9 10 11

Proof. Pairs {i , j} form the edge set of an outerplanar graph:

at most n loops

simple outerplanar graph has less than 2n edges.
M. Crochemore et al. Computation of Runs over General Alphabet 7/16



Properties of Non-Crossing Families

Fact

Let us partition {1, . . . , n} into b contiguous blocks.
A family of non-crossing pairs involves less than 3b pairs of blocks
(block-pairs).

1 2 3 4 5 6 7 8 9 10 11

Proof.
Block-pairs form the edge set of an outerplanar graph on b vertices.

M. Crochemore et al. Computation of Runs over General Alphabet 8/16



Properties of Non-Crossing Families

Fact

Let us partition {1, . . . , n} into b contiguous blocks.
A family of non-crossing pairs involves less than 3b pairs of blocks
(block-pairs).

1 2 3 4 5 6 7 8 9 10 11

Proof.
Block-pairs form the edge set of an outerplanar graph on b vertices.

M. Crochemore et al. Computation of Runs over General Alphabet 8/16



Properties of Non-Crossing Families

Fact

Let us partition {1, . . . , n} into b contiguous blocks.
A family of non-crossing pairs involves less than 3b pairs of blocks
(block-pairs).

1 2 3 4 5 6 7 8 9 10 11

Proof.
Block-pairs form the edge set of an outerplanar graph on b vertices.

M. Crochemore et al. Computation of Runs over General Alphabet 8/16



Limited LCE Queries (CPM’16)

Intuition: An LCE(i , j) query is easy if the LCE value is small.

Limited LCE queries:

LCE≤`(i , j) = min(`,LCE(i , j))

w = a
1

a
2

b
3

a
4

b
5

a
6

a
7

b
8

a
9

b
10

b
11

a a b a b a a b a b ba a b a b a a b a b b

LCE≤3(2, 9) =

2

LCE≤3(2, 7) =

3

Lemma (Gawrychowski et al., CPM 2016)

A sequence of LCE≤`q(iq, jq) queries can be answered on-line in
O((n +

∑
log `q) · α(n)) time in the general alphabet model.

M. Crochemore et al. Computation of Runs over General Alphabet 9/16



Limited LCE Queries (CPM’16)

Intuition: An LCE(i , j) query is easy if the LCE value is small.

Limited LCE queries:

LCE≤`(i , j) = min(`,LCE(i , j))

w = a
1

a
2

b
3

a
4

b
5

a
6

a
7

b
8

a
9

b
10

b
11

a a b a b a a b a b ba a b a b a a b a b b

LCE≤3(2, 9) =

2

LCE≤3(2, 7) =

3

Lemma (Gawrychowski et al., CPM 2016)

A sequence of LCE≤`q(iq, jq) queries can be answered on-line in
O((n +

∑
log `q) · α(n)) time in the general alphabet model.

M. Crochemore et al. Computation of Runs over General Alphabet 9/16



Limited LCE Queries (CPM’16)

Intuition: An LCE(i , j) query is easy if the LCE value is small.

Limited LCE queries:

LCE≤`(i , j) = min(`,LCE(i , j))

w = a
1

a
2

b
3

a
4

b
5

a
6

a
7

b
8

a
9

b
10

b
11

a a b a b a a b a b ba a b a b a a b a b b

LCE≤3(2, 9) =

2

LCE≤3(2, 7) =

3

Lemma (Gawrychowski et al., CPM 2016)

A sequence of LCE≤`q(iq, jq) queries can be answered on-line in
O((n +

∑
log `q) · α(n)) time in the general alphabet model.

M. Crochemore et al. Computation of Runs over General Alphabet 9/16



Limited LCE Queries (CPM’16)

Intuition: An LCE(i , j) query is easy if the LCE value is small.

Limited LCE queries:

LCE≤`(i , j) = min(`,LCE(i , j))

w = a
1

a
2

b
3

a
4

b
5

a
6

a
7

b
8

a
9

b
10

b
11

a a b a b a a b a b ba a b a b a a b a b b

LCE≤3(2, 9) =

2

LCE≤3(2, 7) =

3

Lemma (Gawrychowski et al., CPM 2016)

A sequence of LCE≤`q(iq, jq) queries can be answered on-line in
O((n +

∑
log `q) · α(n)) time in the general alphabet model.

M. Crochemore et al. Computation of Runs over General Alphabet 9/16



Limited LCE Queries (CPM’16)

Intuition: An LCE(i , j) query is easy if the LCE value is small.

Limited LCE queries:

LCE≤`(i , j) = min(`,LCE(i , j))

w =

a

1

a

2

b

3

a

4

b

5

a

6

a

7

b

8

a

9

b

10

b

11

a a b a b a a b a b b

a a b a b a a b a b b

LCE≤3(2, 9) = 2

LCE≤3(2, 7) =

3

Lemma (Gawrychowski et al., CPM 2016)

A sequence of LCE≤`q(iq, jq) queries can be answered on-line in
O((n +

∑
log `q) · α(n)) time in the general alphabet model.

M. Crochemore et al. Computation of Runs over General Alphabet 9/16



Limited LCE Queries (CPM’16)

Intuition: An LCE(i , j) query is easy if the LCE value is small.

Limited LCE queries:

LCE≤`(i , j) = min(`,LCE(i , j))

w = a
1

a
2

b
3

a
4

b
5

a
6

a
7

b
8

a
9

b
10

b
11

a a b a b a a b a b ba a b a b a a b a b b

LCE≤3(2, 9) = 2

LCE≤3(2, 7) =

3

Lemma (Gawrychowski et al., CPM 2016)

A sequence of LCE≤`q(iq, jq) queries can be answered on-line in
O((n +

∑
log `q) · α(n)) time in the general alphabet model.

M. Crochemore et al. Computation of Runs over General Alphabet 9/16



Limited LCE Queries (CPM’16)

Intuition: An LCE(i , j) query is easy if the LCE value is small.

Limited LCE queries:

LCE≤`(i , j) = min(`,LCE(i , j))

w =

a

1

a

2

b

3

a

4

b

5

a

6

a

7

b

8

a

9

b

10

b

11

a a b a b a a b a b b

a a b a b a a b a b b

LCE≤3(2, 9) = 2

LCE≤3(2, 7) = 3

Lemma (Gawrychowski et al., CPM 2016)

A sequence of LCE≤`q(iq, jq) queries can be answered on-line in
O((n +

∑
log `q) · α(n)) time in the general alphabet model.

M. Crochemore et al. Computation of Runs over General Alphabet 9/16



Limited LCE Queries (CPM’16)

Intuition: An LCE(i , j) query is easy if the LCE value is small.

Limited LCE queries:

LCE≤`(i , j) = min(`,LCE(i , j))

w =

a

1

a

2

b

3

a

4

b

5

a

6

a

7

b

8

a

9

b

10

b

11

a a b a b a a b a b b

a a b a b a a b a b b

LCE≤3(2, 9) = 2

LCE≤3(2, 7) = 3

Lemma (Gawrychowski et al., CPM 2016)

A sequence of LCE≤`q(iq, jq) queries can be answered on-line in
O((n +

∑
log `q) · α(n)) time in the general alphabet model.

M. Crochemore et al. Computation of Runs over General Alphabet 9/16



Answering Non-Crossing LCE Queries: Idea

Non-crossing LCE queries in O(n log log n · α(n)) time:

1 Introduce a partition into blocks of size 2k for k = blog log nc.
2 For short queries (LCE(i , j) ≤ 3 · 2k), apply limited LCE:

O(log log n · α(n)) amortized time per query.

3 For long queries, exploit the fact that many such queries
involving the same block-pair yield certain structure.

4 For each block-pair (out of O(n/ log n) involved):
learn the structure using O(1) unlimited LCE queries
O(log n · α(n)) amortize time per query
exploit the structure answering the remaining queries
O(1) time per query.

Non-crossing LCE queries in O(nα(n)) time:

apply the idea above to O(log n) levels,

blocks of length 2k in level k (k = 0, . . . , log n).

M. Crochemore et al. Computation of Runs over General Alphabet 10/16



Answering Non-Crossing LCE Queries: Idea

Non-crossing LCE queries in O(n log log n · α(n)) time:
1 Introduce a partition into blocks of size 2k for k = blog log nc.

2 For short queries (LCE(i , j) ≤ 3 · 2k), apply limited LCE:
O(log log n · α(n)) amortized time per query.

3 For long queries, exploit the fact that many such queries
involving the same block-pair yield certain structure.

4 For each block-pair (out of O(n/ log n) involved):
learn the structure using O(1) unlimited LCE queries
O(log n · α(n)) amortize time per query
exploit the structure answering the remaining queries
O(1) time per query.

Non-crossing LCE queries in O(nα(n)) time:

apply the idea above to O(log n) levels,

blocks of length 2k in level k (k = 0, . . . , log n).

M. Crochemore et al. Computation of Runs over General Alphabet 10/16



Answering Non-Crossing LCE Queries: Idea

Non-crossing LCE queries in O(n log log n · α(n)) time:
1 Introduce a partition into blocks of size 2k for k = blog log nc.
2 For short queries (LCE(i , j) ≤ 3 · 2k), apply limited LCE:

O(log log n · α(n)) amortized time per query.

3 For long queries, exploit the fact that many such queries
involving the same block-pair yield certain structure.

4 For each block-pair (out of O(n/ log n) involved):
learn the structure using O(1) unlimited LCE queries
O(log n · α(n)) amortize time per query
exploit the structure answering the remaining queries
O(1) time per query.

Non-crossing LCE queries in O(nα(n)) time:

apply the idea above to O(log n) levels,

blocks of length 2k in level k (k = 0, . . . , log n).

M. Crochemore et al. Computation of Runs over General Alphabet 10/16



Answering Non-Crossing LCE Queries: Idea

Non-crossing LCE queries in O(n log log n · α(n)) time:
1 Introduce a partition into blocks of size 2k for k = blog log nc.
2 For short queries (LCE(i , j) ≤ 3 · 2k), apply limited LCE:

O(log log n · α(n)) amortized time per query.

3 For long queries, exploit the fact that many such queries
involving the same block-pair yield certain structure.

4 For each block-pair (out of O(n/ log n) involved):
learn the structure using O(1) unlimited LCE queries
O(log n · α(n)) amortize time per query
exploit the structure answering the remaining queries
O(1) time per query.

Non-crossing LCE queries in O(nα(n)) time:

apply the idea above to O(log n) levels,

blocks of length 2k in level k (k = 0, . . . , log n).

M. Crochemore et al. Computation of Runs over General Alphabet 10/16



Answering Non-Crossing LCE Queries: Idea

Non-crossing LCE queries in O(n log log n · α(n)) time:
1 Introduce a partition into blocks of size 2k for k = blog log nc.
2 For short queries (LCE(i , j) ≤ 3 · 2k), apply limited LCE:

O(log log n · α(n)) amortized time per query.

3 For long queries, exploit the fact that many such queries
involving the same block-pair yield certain structure.

4 For each block-pair (out of O(n/ log n) involved):
learn the structure using O(1) unlimited LCE queries
O(log n · α(n)) amortize time per query
exploit the structure answering the remaining queries
O(1) time per query.

Non-crossing LCE queries in O(nα(n)) time:

apply the idea above to O(log n) levels,

blocks of length 2k in level k (k = 0, . . . , log n).

M. Crochemore et al. Computation of Runs over General Alphabet 10/16



Answering Non-Crossing LCE Queries: Idea

Non-crossing LCE queries in O(n log log n · α(n)) time:
1 Introduce a partition into blocks of size 2k for k = blog log nc.
2 For short queries (LCE(i , j) ≤ 3 · 2k), apply limited LCE:

O(log log n · α(n)) amortized time per query.

3 For long queries, exploit the fact that many such queries
involving the same block-pair yield certain structure.

4 For each block-pair (out of O(n/ log n) involved):
learn the structure using O(1) unlimited LCE queries
O(log n · α(n)) amortize time per query
exploit the structure answering the remaining queries
O(1) time per query.

Non-crossing LCE queries in O(nα(n)) time:

apply the idea above to O(log n) levels,

blocks of length 2k in level k (k = 0, . . . , log n).

M. Crochemore et al. Computation of Runs over General Alphabet 10/16



Answering Long Queries Involving a Block-Pair

Intuition:

learn the structure using O(1) (unlimited) LCE queries,

exploit the structure answering the remaining queries.

Algorithm:

Initially, no structure known.

We have to learn the answer to the first query.

The result can be exploited for queries with the same shift.

2k

3 · 2k ≥ 3 · 2k
3 · 2k≥ 3 · 2k3 · 2k ≥ 3 · 2k

2k

3 · 2k ≥ 3 · 2k
3 · 2k≥ 3 · 2k3 · 2k ≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 11/16



Answering Long Queries Involving a Block-Pair

Intuition:

learn the structure using O(1) (unlimited) LCE queries,

exploit the structure answering the remaining queries.

Algorithm:

Initially, no structure known.

We have to learn the answer to the first query.

The result can be exploited for queries with the same shift.

2k

3 · 2k

≥ 3 · 2k
3 · 2k≥ 3 · 2k3 · 2k ≥ 3 · 2k

2k

3 · 2k

≥ 3 · 2k
3 · 2k≥ 3 · 2k3 · 2k ≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 11/16



Answering Long Queries Involving a Block-Pair

Intuition:

learn the structure using O(1) (unlimited) LCE queries,

exploit the structure answering the remaining queries.

Algorithm:

Initially, no structure known.

We have to learn the answer to the first query.

The result can be exploited for queries with the same shift.

2k

3 · 2k

≥ 3 · 2k

3 · 2k≥ 3 · 2k3 · 2k ≥ 3 · 2k

2k

3 · 2k

≥ 3 · 2k

3 · 2k≥ 3 · 2k3 · 2k ≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 11/16



Answering Long Queries Involving a Block-Pair

Intuition:

learn the structure using O(1) (unlimited) LCE queries,

exploit the structure answering the remaining queries.

Algorithm:

Initially, no structure known.

We have to learn the answer to the first query.

The result can be exploited for queries with the same shift.

2k

3 · 2k

≥ 3 · 2k
3 · 2k

≥ 3 · 2k3 · 2k ≥ 3 · 2k

2k

3 · 2k

≥ 3 · 2k
3 · 2k

≥ 3 · 2k3 · 2k ≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 11/16



Answering Long Queries Involving a Block-Pair

Intuition:

learn the structure using O(1) (unlimited) LCE queries,

exploit the structure answering the remaining queries.

Algorithm:

Initially, no structure known.

We have to learn the answer to the first query.

The result can be exploited for queries with the same shift.

2k

3 · 2k

≥ 3 · 2k

3 · 2k

≥ 3 · 2k

3 · 2k ≥ 3 · 2k

2k

3 · 2k

≥ 3 · 2k

3 · 2k

≥ 3 · 2k

3 · 2k ≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 11/16



Answering Long Queries Involving a Block-Pair

Intuition:

learn the structure using O(1) (unlimited) LCE queries,

exploit the structure answering the remaining queries.

Algorithm:

Initially, no structure known.

We have to learn the answer to the first query.

The result can be exploited for queries with the same shift.

2k

3 · 2k

≥ 3 · 2k

3 · 2k≥ 3 · 2k

3 · 2k

≥ 3 · 2k

2k

3 · 2k

≥ 3 · 2k

3 · 2k≥ 3 · 2k

3 · 2k

≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 11/16



Answering Long Queries Involving a Block-Pair

Intuition:

learn the structure using O(1) (unlimited) LCE queries,

exploit the structure answering the remaining queries.

Algorithm:

Initially, no structure known.

We have to learn the answer to the first query.

The result can be exploited for queries with the same shift.

2k

3 · 2k

≥ 3 · 2k

3 · 2k≥ 3 · 2k3 · 2k

≥ 3 · 2k

2k

3 · 2k

≥ 3 · 2k

3 · 2k≥ 3 · 2k3 · 2k

≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 11/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k
3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k

≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k

≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k

≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k

≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k

≥ 3 · 2k

3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k

≥ 3 · 2k

3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k

3 · 2k

≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k

3 · 2k

≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k

3 · 2k

≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k

3 · 2k

≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k

≥ 3 · 2k

≥ 3 · 2k

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k

≥ 3 · 2k

≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k

≥ 3 · 2k

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k

≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Long Queries Involving a Block-Pair

Algorithm (continued):

Long query with a different shift yields periodic structure.

Fragments following the blocks have a common period p.

We use LCE queries to learn how far the period continues.

This structure suffices to answer almost all long queries.

If period-break positions meet, we need to learn the answer.

We have enough structure to answer all long queries.

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

2k

≥ 3 · 2k

3 · 2k

≥ p + 2k

p ≤ 2k+1

≥ p + 2k

3 · 2k≥ 3 · 2k3 · 2k≥ 3 · 2k≥ 3 · 2k

M. Crochemore et al. Computation of Runs over General Alphabet 12/16



Answering Non-Crossing LCE Queries: Overview

Blocks of size 2k at
level k .

Input queries passed
to level 0.

Level k learns by
asking level k + 1.
Queries asked to
level k :

input queries,
LCE(i , j) for
|i − j | ≤ 2k .

Block-pairs involved
at level k form a
non-crossing family.

0

1

k

k + 1

blog nc

...

...

Input queries

M. Crochemore et al. Computation of Runs over General Alphabet 13/16



Answering Non-Crossing LCE Queries: Overview

Blocks of size 2k at
level k .

Input queries passed
to level 0.

Level k learns by
asking level k + 1.
Queries asked to
level k :

input queries,
LCE(i , j) for
|i − j | ≤ 2k .

Block-pairs involved
at level k form a
non-crossing family.

0

1

k

k + 1

blog nc

...

...

Input queries

M. Crochemore et al. Computation of Runs over General Alphabet 13/16



Answering Non-Crossing LCE Queries: Overview

Blocks of size 2k at
level k .

Input queries passed
to level 0.

Level k learns by
asking level k + 1.
Queries asked to
level k :

input queries,
LCE(i , j) for
|i − j | ≤ 2k .

Block-pairs involved
at level k form a
non-crossing family.

0

1

k

k + 1

blog nc

...

...

Input queries

M. Crochemore et al. Computation of Runs over General Alphabet 13/16



Answering Non-Crossing LCE Queries: Overview

Blocks of size 2k at
level k .

Input queries passed
to level 0.

Level k learns by
asking level k + 1.

Queries asked to
level k :

input queries,
LCE(i , j) for
|i − j | ≤ 2k .

Block-pairs involved
at level k form a
non-crossing family.

0

1

k

k + 1

blog nc

...

...

Input queries

M. Crochemore et al. Computation of Runs over General Alphabet 13/16



Answering Non-Crossing LCE Queries: Overview

Blocks of size 2k at
level k .

Input queries passed
to level 0.

Level k learns by
asking level k + 1.
Queries asked to
level k :

input queries,
LCE(i , j) for
|i − j | ≤ 2k .

Block-pairs involved
at level k form a
non-crossing family.

0

1

k

k + 1

blog nc

...

...

Input queries

M. Crochemore et al. Computation of Runs over General Alphabet 13/16



Answering Non-Crossing LCE Queries: Overview

Blocks of size 2k at
level k .

Input queries passed
to level 0.

Level k learns by
asking level k + 1.
Queries asked to
level k :

input queries,
LCE(i , j) for
|i − j | ≤ 2k .

Block-pairs involved
at level k form a
non-crossing family.

0

1

k

k + 1

blog nc

...

...

Input queries

M. Crochemore et al. Computation of Runs over General Alphabet 13/16



Running Time Analysis

1 O(nα(n)) amortized preprocessing time (for LCE≤` queries).

2 Each level k answers at most 24n/2k queries:
queries in level k − 1 involve 3n/2k−1 block-pairs;
each block-pairs triggers at most 4 queries to level k.

3 Each query to level k takes O(kα(n)) amortized time:
a LCE≤3·2k query: O(kα(n)) amortized time
answering long queries (using block-pair state): O(1) time
excluding queries triggered on level k + 1.

4 Total running time:

O (nα(n)) +

log n∑
k=1

24n
2k
· O(kα(n)) = O(nα(n)).

Theorem (Our main technical result)

The LCE problem can be solved in O(nα(n)) time in the general
alphabet model if the LCE(i , j) queries are non-crossing.

M. Crochemore et al. Computation of Runs over General Alphabet 14/16



Running Time Analysis

1 O(nα(n)) amortized preprocessing time (for LCE≤` queries).
2 Each level k answers at most 24n/2k queries:

queries in level k − 1 involve 3n/2k−1 block-pairs;
each block-pairs triggers at most 4 queries to level k.

3 Each query to level k takes O(kα(n)) amortized time:
a LCE≤3·2k query: O(kα(n)) amortized time
answering long queries (using block-pair state): O(1) time
excluding queries triggered on level k + 1.

4 Total running time:

O (nα(n)) +

log n∑
k=1

24n
2k
· O(kα(n)) = O(nα(n)).

Theorem (Our main technical result)

The LCE problem can be solved in O(nα(n)) time in the general
alphabet model if the LCE(i , j) queries are non-crossing.

M. Crochemore et al. Computation of Runs over General Alphabet 14/16



Running Time Analysis

1 O(nα(n)) amortized preprocessing time (for LCE≤` queries).
2 Each level k answers at most 24n/2k queries:

queries in level k − 1 involve 3n/2k−1 block-pairs;
each block-pairs triggers at most 4 queries to level k.

3 Each query to level k takes O(kα(n)) amortized time:
a LCE≤3·2k query: O(kα(n)) amortized time
answering long queries (using block-pair state): O(1) time
excluding queries triggered on level k + 1.

4 Total running time:

O (nα(n)) +

log n∑
k=1

24n
2k
· O(kα(n)) = O(nα(n)).

Theorem (Our main technical result)

The LCE problem can be solved in O(nα(n)) time in the general
alphabet model if the LCE(i , j) queries are non-crossing.

M. Crochemore et al. Computation of Runs over General Alphabet 14/16



Running Time Analysis

1 O(nα(n)) amortized preprocessing time (for LCE≤` queries).
2 Each level k answers at most 24n/2k queries:

queries in level k − 1 involve 3n/2k−1 block-pairs;
each block-pairs triggers at most 4 queries to level k.

3 Each query to level k takes O(kα(n)) amortized time:
a LCE≤3·2k query: O(kα(n)) amortized time
answering long queries (using block-pair state): O(1) time
excluding queries triggered on level k + 1.

4 Total running time:

O (nα(n)) +

log n∑
k=1

24n
2k
· O(kα(n)) = O(nα(n)).

Theorem (Our main technical result)

The LCE problem can be solved in O(nα(n)) time in the general
alphabet model if the LCE(i , j) queries are non-crossing.

M. Crochemore et al. Computation of Runs over General Alphabet 14/16



Running Time Analysis

1 O(nα(n)) amortized preprocessing time (for LCE≤` queries).
2 Each level k answers at most 24n/2k queries:

queries in level k − 1 involve 3n/2k−1 block-pairs;
each block-pairs triggers at most 4 queries to level k.

3 Each query to level k takes O(kα(n)) amortized time:
a LCE≤3·2k query: O(kα(n)) amortized time
answering long queries (using block-pair state): O(1) time
excluding queries triggered on level k + 1.

4 Total running time:

O (nα(n)) +

log n∑
k=1

24n
2k
· O(kα(n)) = O(nα(n)).

Theorem (Our main technical result)

The LCE problem can be solved in O(nα(n)) time in the general
alphabet model if the LCE(i , j) queries are non-crossing.

M. Crochemore et al. Computation of Runs over General Alphabet 14/16



Runs Computation

The algorithm of Bannai et al. (SODA 2015):

1 Construct the Lyndon tree of w with respect to the
lexicographic order.

O(n) non-crossing LCE queries in w .

2 Check which nodes correspond to Lyndon roots of runs.

O(n) non-crossing LCE queries in w (extension to the right),
O(n) non-crossing LCE queries in wR (extension to the left).

3 Construct the Lyndon tree of w with respect to the reverse
lexicographic order.

O(n) non-crossing LCE queries in w .

4 Check which nodes correspond to Lyndon roots of runs.

O(n) non-crossing LCE queries in w (extension to the right),
O(n) non-crossing LCE queries in wR (extension to the left).

Theorem

Runs in a word of length n over a general ordered alphabet can be
computed in O(nα(n)) time.

M. Crochemore et al. Computation of Runs over General Alphabet 15/16



Runs Computation

The algorithm of Bannai et al. (SODA 2015):
1 Construct the Lyndon tree of w with respect to the

lexicographic order.

O(n) non-crossing LCE queries in w .
2 Check which nodes correspond to Lyndon roots of runs.

O(n) non-crossing LCE queries in w (extension to the right),
O(n) non-crossing LCE queries in wR (extension to the left).

3 Construct the Lyndon tree of w with respect to the reverse
lexicographic order.

O(n) non-crossing LCE queries in w .

4 Check which nodes correspond to Lyndon roots of runs.

O(n) non-crossing LCE queries in w (extension to the right),
O(n) non-crossing LCE queries in wR (extension to the left).

Theorem

Runs in a word of length n over a general ordered alphabet can be
computed in O(nα(n)) time.

M. Crochemore et al. Computation of Runs over General Alphabet 15/16



Runs Computation

The algorithm of Bannai et al. (SODA 2015):
1 Construct the Lyndon tree of w with respect to the

lexicographic order.

O(n) non-crossing LCE queries in w .

2 Check which nodes correspond to Lyndon roots of runs.

O(n) non-crossing LCE queries in w (extension to the right),
O(n) non-crossing LCE queries in wR (extension to the left).

3 Construct the Lyndon tree of w with respect to the reverse
lexicographic order.

O(n) non-crossing LCE queries in w .

4 Check which nodes correspond to Lyndon roots of runs.

O(n) non-crossing LCE queries in w (extension to the right),
O(n) non-crossing LCE queries in wR (extension to the left).

Theorem

Runs in a word of length n over a general ordered alphabet can be
computed in O(nα(n)) time.

M. Crochemore et al. Computation of Runs over General Alphabet 15/16



Runs Computation

The algorithm of Bannai et al. (SODA 2015):
1 Construct the Lyndon tree of w with respect to the

lexicographic order.

O(n) non-crossing LCE queries in w .

2 Check which nodes correspond to Lyndon roots of runs.

O(n) non-crossing LCE queries in w (extension to the right),
O(n) non-crossing LCE queries in wR (extension to the left).

3 Construct the Lyndon tree of w with respect to the reverse
lexicographic order.

O(n) non-crossing LCE queries in w .

4 Check which nodes correspond to Lyndon roots of runs.

O(n) non-crossing LCE queries in w (extension to the right),
O(n) non-crossing LCE queries in wR (extension to the left).

Theorem

Runs in a word of length n over a general ordered alphabet can be
computed in O(nα(n)) time.

M. Crochemore et al. Computation of Runs over General Alphabet 15/16



Runs Computation

The algorithm of Bannai et al. (SODA 2015):
1 Construct the Lyndon tree of w with respect to the

lexicographic order.
O(n) non-crossing LCE queries in w .

2 Check which nodes correspond to Lyndon roots of runs.

O(n) non-crossing LCE queries in w (extension to the right),
O(n) non-crossing LCE queries in wR (extension to the left).

3 Construct the Lyndon tree of w with respect to the reverse
lexicographic order.

O(n) non-crossing LCE queries in w .

4 Check which nodes correspond to Lyndon roots of runs.

O(n) non-crossing LCE queries in w (extension to the right),
O(n) non-crossing LCE queries in wR (extension to the left).

Theorem

Runs in a word of length n over a general ordered alphabet can be
computed in O(nα(n)) time.

M. Crochemore et al. Computation of Runs over General Alphabet 15/16



Runs Computation

The algorithm of Bannai et al. (SODA 2015):
1 Construct the Lyndon tree of w with respect to the

lexicographic order.
O(n) non-crossing LCE queries in w .

2 Check which nodes correspond to Lyndon roots of runs.
O(n) non-crossing LCE queries in w (extension to the right),
O(n) non-crossing LCE queries in wR (extension to the left).

3 Construct the Lyndon tree of w with respect to the reverse
lexicographic order.

O(n) non-crossing LCE queries in w .

4 Check which nodes correspond to Lyndon roots of runs.

O(n) non-crossing LCE queries in w (extension to the right),
O(n) non-crossing LCE queries in wR (extension to the left).

Theorem

Runs in a word of length n over a general ordered alphabet can be
computed in O(nα(n)) time.

M. Crochemore et al. Computation of Runs over General Alphabet 15/16



Runs Computation

The algorithm of Bannai et al. (SODA 2015):
1 Construct the Lyndon tree of w with respect to the

lexicographic order.
O(n) non-crossing LCE queries in w .

2 Check which nodes correspond to Lyndon roots of runs.
O(n) non-crossing LCE queries in w (extension to the right),
O(n) non-crossing LCE queries in wR (extension to the left).

3 Construct the Lyndon tree of w with respect to the reverse
lexicographic order.

O(n) non-crossing LCE queries in w .
4 Check which nodes correspond to Lyndon roots of runs.

O(n) non-crossing LCE queries in w (extension to the right),
O(n) non-crossing LCE queries in wR (extension to the left).

Theorem

Runs in a word of length n over a general ordered alphabet can be
computed in O(nα(n)) time.

M. Crochemore et al. Computation of Runs over General Alphabet 15/16



Runs Computation

The algorithm of Bannai et al. (SODA 2015):
1 Construct the Lyndon tree of w with respect to the

lexicographic order.
O(n) non-crossing LCE queries in w .

2 Check which nodes correspond to Lyndon roots of runs.
O(n) non-crossing LCE queries in w (extension to the right),
O(n) non-crossing LCE queries in wR (extension to the left).

3 Construct the Lyndon tree of w with respect to the reverse
lexicographic order.

O(n) non-crossing LCE queries in w .
4 Check which nodes correspond to Lyndon roots of runs.

O(n) non-crossing LCE queries in w (extension to the right),
O(n) non-crossing LCE queries in wR (extension to the left).

Theorem

Runs in a word of length n over a general ordered alphabet can be
computed in O(nα(n)) time.

M. Crochemore et al. Computation of Runs over General Alphabet 15/16



Questions?

Thank you for your attention!

M. Crochemore et al. Computation of Runs over General Alphabet 16/16


