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Abstract. We consider a family of strings called closed strings and a
related array of Longest Closed Factors (LCF). We show that the re-
construction of a string from its LCF array is easier than the construc-
tion and verification of this array. Moreover, the reconstructed string is
unique. We improve also the time of construction/verification, reducing it
fromO(n logn/ log logn) (the best previously known) toO(n

√
logn). We

use connections between the LCF array and the longest previous/next
factor arrays.

1 Introduction

A closed string is a string with a proper (possibly empty) factor that occurs
in the string as a prefix and as a suffix, but not elsewhere. For example, a,
abaab, and ababababa are closed strings (with the corresponding factors ε, ab,
and abababa), whereas abaca and abc are not. Closed strings were first defined
by Fici in [8] and since then have found applications, mostly in the field of
combinatorics on words. Closed prefixes of Sturmian words were studied in [10].
A relation between closed factors and palindromic factors of a string was studied
in [3]. The first algorithmic study of closed factors and closed factorizations was
presented in [2].
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The longest closed factor array (LCF array) of a string X stores for every
suffix of X the length of its longest closed prefix. It was introduced in [2] in
connection with closed factorizations of a string. In [2] an O(n log n/ log log n)-
time algorithm for computing this array for a string of length n was presented.
Here we consider the problem of reconstructing a string from its LCF array.

We show that a (correct) LCF array corresponds to exactly one string, up
to a permutation of the alphabet. We present an O(n)-time randomized and
an O(nmin(log |Σ|, log log n+ log2 log |Σ|

log log log |Σ| ))-time deterministic algorithm for re-
constructing such a string if it exists. Here Σ is the alphabet of the string.
Finally we present an O(n

√
log n)-time construction algorithm for LCF array

which improves the algorithm of [2]. We use it for verification of the LCF array,
that is, for checking if it corresponds to any string. As a by-product we obtain
O(n
√
log n)-time computation of the so-called closest (rightmost) Longest Pre-

vious Factor array. The complexity of the LCF construction algorithm depends
on the assumption of a linearly sortable alphabet of the input string.

2 Preliminaries

Let X be a string of length n composed of characters X[1], . . . , X[n]. We de-
note |X| = n. By X[i..j] we denote a factor of X consisting of the letters
X[i], . . . , X[j]. A factor is called a prefix (suffix) of X if i = 1 (j = n re-
spectively). A factor is called proper if i > 1 or j < n. If i > j then the factor is
assumed to be the empty string ε. A border of X is a factor of X that occurs as
a prefix and as a suffix of X. By border(X) we denote the length of the longest
proper border of X.

The string X is called closed if it has a proper border that does not occur
elsewhere in X. In particular, every single-letter string is closed. It is easy to
see that a string is closed if and only if its longest proper border does not occur
elsewhere in X. The longest closed factor array of X is an array LCF [1..n] such
that LCF [i] is the length of the longest prefix of X[i..n] that is closed. We denote
by lcf [i] the factor X[i..i+ LCF [i]− 1].

The longest next factor array of X is an array LNF [1..n] such that LNF [i]
is the length of the longest prefix of X[i..n] that is a factor of X[i + 1..n]. We
denote by lnf [i] the factor X[i..i+ LNF [i]− 1].

LCF [i]

LNF [i]
next[i]

i

Fig. 1. Illustration of LCF , LNF and next arrays. Here LCF [i] = |lcf [i]| is the length
of the longest closed factor starting at position i and LNF [i] = |lnf [i]| is the length of
the longest factor starting at position i that occurs to the right of position i.
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Example 1. X = abaabababbabbb has the following LCF and LNF arrays:

position i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
X[i] a b a a b a b a b b a b b b

LCF [i] 6 5 2 6 5 4 7 6 5 3 1 3 2 1
LNF [i] 3 2 1 4 3 2 4 3 2 1 0 2 1 0

Here the lcf [ ] array is as follows: [abaaba, baaba, aa, ababab, babab, abab,
babbabb, abbabb, bbabb, bab, a, bbb, bb, b].

3 Reconstruction Algorithm

In this section we show efficient reconstruction of a string from its LCF array.
It is based on uniqueness of the output.

3.1 Uniqueness of Reconstruction

The following fact shows a correspondence between longest closed factors and
longest next factors. We denote next [i] = i+ LCF [i]− LNF [i]; see Fig. 1.

Lemma 2. The longest proper border of lcf [i] is lnf [i].

Proof. Let ` = border(lcf [i]) and t = i + LCF [i] − ` (t > i). X[i..i + ` − 1]
occurs also at the position t in X. Therefore, by the definition of the longest
next factor, ` ≤ LNF [i]. We will show that ` = LNF [i]. Assume to the contrary
that ` < LNF [i]. Let j be the first position greater than i where lnf [i] occurs in
X. Consider the factor Y = X[i..j + LNF [i]− 1].

Claim. Y is closed.

Proof. Y has a border lnf [i]. Moreover, it is its longest border, as any longer
border would imply a next factor longer than lnf [i]. By the definition of j, the
string lnf [i] occurs exactly twice in Y . Hence, Y is a closed factor of X. ut

Claim. |Y | > LCF [i].

Proof. We have |Y | = j+LNF [i]− i and LCF [i] = t+ `− i. By the assumption,
LNF [i] > `. The longest proper border of lcf [i] is a prefix of lnf [i] and so occurs
at position j. If j < t, then this would mean the third occurrence within lcf [i],
which is impossible. Hence, j ≥ t. Consequently, |Y | > LCF [i]. ut

We conclude that Y is a closed factor longer than lcf [i], a contradiction. ut

We proceed with the first algorithm for recovering a string X from its LCF
array. The algorithm is simple for positions i where LCF [i] = 1.

Fact 3. The number of distinct letters of X equals the number of 1-entries in its
LCF array. Moreover, each i such that LCF [i] = 1 corresponds to the rightmost
occurrence of one of the letters in X.
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If LCF [i] > 1 then X[i] can be recovered from one of following positions in
X using the function below.

Algorithm ComputeSingleSymbol(i)
Input: X[i+ 1..n], LCF [i..n]
Output: X[i]
bord := border(X[i+ 1..i+ LCF [i]− 1]);
X[i] := X[i+ LCF [i]− 1− bord ];

In the correctness proof of the function we use the following auxiliary lemma.

Lemma 4. If LCF [i] > 1 then border(X[i+ 1..i+ LCF [i]− 1]) = LNF [i]− 1.

Proof. Let S = X[i + 1..i + LNF [i] − 1] and T = X[i + 1..i + LCF [i] − 1].
By Lemma 2, lnf [i] is a border of lcf [i]. Hence, S is a border of T . Assume
to the contrary that T has a longer proper border S′. Then lnf [i] = X[i]S
is a suffix of S′, as it is a suffix of T . Hence, lnf [i] occurs also at position
i+1+ |S′| −LNF [i] < i+LCF [i]−LNF [i] = next [i], which contradicts the fact
that lcf [i] is closed. ut

Lemma 5. Assume LCF [i] > 1. Then the function ComputeSingleSymbol cor-
rectly computes X[i].

Proof. By Lemma 4, we have bord = LNF [i] − 1. Consequently, next [i] = i +
LCF [i]− 1− bord , which yields the correctness of the function. ut

Fact 3 and Lemma 5 show that a string can be restored from its LCF array.

Theorem 6. If there exists a string with the given LCF array then it is uniquely
determined up to permutation of the corresponding alphabet.

Proof. For each position i such that LCF [i] = 1 we introduce a unique letter
X[i]. For each of the remaining positions, X[i] can be determined from the
following letters using function ComputeSingleSymbol. ut

The algorithm of Theorem 6 is not efficient yet. In the following section we
introduce an additional combinatorial fact and algorithmic tools that make the
solution efficient.

3.2 Efficient Reconstruction

In the reconstruction algorithm we compute the string X together with the
corresponding LNF array. We use the following crucial fact.

Lemma 7. For every 1 ≤ i < n, LNF [i] ≤ LNF [i+ 1] + 1.
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Proof. Assume to the contrary that for some i, LNF [i] > LNF [i+1]+ 1. Recall
that lnf [i] occurs at position next [i] in X. This concludes that the string Y =
X[i + 1..i + LNF [i] − 1] of length LNF [i] − 1 > LNF [i + 1] occurs at position
next [i] + 1 > i+ 1. This contradicts the definition of LNF [i+ 1]. ut

In the pseudocode of algorithm Reconstruction we use Lemma 7 on top of
the reconstruction algorithm from the previous section, based on function Com-
puteSingleSymbol. The alphabet of the reconstructed string is {1, 2, . . .}.

Algorithm Reconstruction
Input: LCF [1..n] array
Output: the corresponding string X[1..n]
bord := 0;
for i := n downto 1 do

{ Invariant: If i < n then bord = LNF [i+ 1]. }

if LCF [i] = 1 then
X[i] := NewLetter();
bord := 0; { LNF [i] = 0 }

else

{ Efficient implementation of ComputeSingleSymbol(i) }
while X[i+ 1..i+ bord ] 6= X[i+ LCF [i]− bord ..i+ LCF [i]− 1] do

{ bord > border(X[i+ 1..i+ LCF [i]− 1]) }
bord := bord − 1;

X[i] := X[i+ LCF [i]− 1− bord ];
bord := bord + 1; { LNF [i] = bord }

return X;

Clearly, the total number of steps of the while-loop in the algorithm Recon-
struction is at most n. Hence, the time complexity of the algorithm depends on
how fast we can check equality of two factors of a string, with the letters of the
string being appended on-line from right to left.

Theorem 8. A string of length n over alphabet Σ can be reconstructed from
its longest closed factor array with an O(n)-time randomized algorithm or an
O(nmin(log |Σ|, log log n+ log2 log |Σ|

log log log |Σ| ))-time deterministic algorithm.

Proof. For the randomized algorithm, we use Karp-Rabin fingerprinting (see e.g.
[6]) to check equality of factors of the string given on-line in O(1) time.

For the deterministic algorithm, we use one of the incremental suffix tree
constructions. The first one is the algorithm by Blumer et al. [4] which computes
suffix trees for growing suffixes of the string in O(n log |Σ|) total time. The
other comes from a recent paper by Fischer and Gawrychowski [9], where the
authors show how to update the suffix tree in O(log log n + log2 log |Σ|

log log log |Σ| ) time
after prepending a character (see Corollary 4 and Theorem 5 in [9]). Finally,
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given a suffix tree, determining equality of factors reduces to LCA-computation.
This can be done, however, with O(1) overhead using LCA queries for a dynamic
tree; see [5]. ut

Theorem 8 provides an efficient reconstruction algorithm from the LCF array
only if the corresponding string exists. Otherwise the reconstruction algorithm
may fail or reconstruct a string which does not have the given LCF array. In
the latter case it suffices to construct its LCF array and check if it matches the
input LCF array. We deal with this case in the following section.

4 LCF Array Computation and Verification

A successor of an integer x in a set X is defined as succ(x,X) = min{y ∈
X : y > x}. For an integer array A[1..n], a range successor query consists in
computing succ(x, {A[i], . . . , A[j]}) for any 1 ≤ i ≤ j ≤ n. Babenko et al. ([1],
Section 2.5) show the following result:

Lemma 9 ([1]). A collection of q range successor queries in an array of length
n can be answered offline in O((n+ q)

√
log n) time.

As shown in [2], computation of the LCF array reduces to O(n) range suc-
cessor queries in the suffix array of the string. Hence, we can use Lemma 9 to
improve the running time of both LCF array computation and verification.

lnf [i]

. . . . . .

SUF [p..q]

Fig. 2. Illustration of the formula next [i] = succ(i,SUF [p..q]). To compute next [i], we
need to find the first occurrence of lnf [i] after the position i.

Theorem 10.
(a) The LCF array of a string can be computed in O(n

√
log n) time.

(b) Verification of LCF array can be done in O(n
√
log n) randomized time or

O(n(
√
log n+ log2 log |Σ|

log log log |Σ| )) deterministic time.
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Proof. For the start, recall that a suffix tree of a string (that is, a compact trie
of its suffixes) over a linearly-sortable alphabet can be constructed in O(n) time
[6].

We reformulate the algorithm of [2]. Recall that LCF [i] = LNF [i]+next [i]−i.
The LNF array, together with the nodes of the suffix tree corresponding to lnf [i],
can be computed in O(n) time; see Lemma 6 in [2]. Let SUF [p..q] be the sequence
of leaves in the suffix tree corresponding to the subtree corresponding to lnf [i].
Then next [i] = succ(i, {SUF [p], . . . ,SUF [q]}); see Fig. 2.

Thus Lemma 9 implies an O(n
√
log n)-time algorithm for computing LCF

array. Part (b) follows from part (a) and Theorem 8. ut

5 Final Remarks

For a string X of length n, the longest previous factor (LPF ) array and the clos-
est longest previous factor (prev) array are defined as follows. For i = 1, . . . , n,
LPF [i] is the maximum ` such that X[j..j+`−1] = X[i..i+`−1], for some j < i.
For i = 1, . . . , n, prev [i] is the maximum j < i such that X[j..j + LPF [i]− 1] =
X[i..i+LPF [i]− 1]. Note that the LPF array is not the same as the LNF array
of the reversed string.

The LPF array can be computed in O(n) time [7]. Using exactly the same
approach as in Section 4 but with range predecessors instead of range successors,
we obtain the following result:

Theorem 11. The closest longest previous factor array prev of a string of length
n can be computed in O(n

√
log n) time.

Our Theorem 6 provides an example of a unique reconstruction of a string
from its closed factors. Another example is Theorem 9 in [10], which states that
every (finite or infinite) Sturmian word is uniquely determined, up to isomor-
phisms of the alphabet, by its sequence of open and closed prefixes. Both results
are quite independent (none follows from the other).
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