
Efficient Data Structures
for the Factor Periodicity Problem

Tomasz Kociumaka Jakub Radoszewski
Wojciech Rytter Tomasz Waleń

University of Warsaw, Poland

SPIRE 2012 Cartagena, October 23, 2012

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 1/19

Factor Periodicity Problem

w: ab b b b b b b b b b b b b

11 22

a a a a a a a ab b b b

Periods of w[11..22] are 5, 10, 11 and 12.
Notation Per(w[11..22])={5, 10, 11, 12}, per(w[11..22]) = 5.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 2/19

Factor Periodicity Problem

w: ab b b b b b b b b b b b b
11 22

a a a a a a a ab b b b

Periods of w[11..22] are 5, 10, 11 and 12.
Notation Per(w[11..22])={5, 10, 11, 12}, per(w[11..22]) = 5.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 2/19

Factor Periodicity Problem

w: ab b b b b b b b b b b b b
11 22

a a a a a a a ab b b b

Periods of w[11..22] are 5, 10, 11 and 12.
Notation Per(w[11..22])={5, 10, 11, 12}, per(w[11..22]) = 5.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 2/19

Factor Periodicity Problem

w: ab b b b b b b b b b b b b
11 22

a a a a a a a ab b b b

Periods of w[11..22] are 5

, 10, 11 and 12.
Notation Per(w[11..22])={5, 10, 11, 12}, per(w[11..22]) = 5.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 2/19

Factor Periodicity Problem

w: ab b b b b b b b b b b b b
11 22

a a a a a a a ab b b b

Periods of w[11..22] are 5, 10

, 11 and 12.
Notation Per(w[11..22])={5, 10, 11, 12}, per(w[11..22]) = 5.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 2/19

Factor Periodicity Problem

w: ab b b b b b b b b b b b b
11 22

a a a a a a a ab b b b

Periods of w[11..22] are 5, 10, 11

and 12.
Notation Per(w[11..22])={5, 10, 11, 12}, per(w[11..22]) = 5.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 2/19

Factor Periodicity Problem

w: ab b b b b b b b b b b b b
11 22

a a a a a a a ab b b b

Periods of w[11..22] are 5, 10, 11 and 12.

Notation Per(w[11..22])={5, 10, 11, 12}, per(w[11..22]) = 5.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 2/19

Factor Periodicity Problem

w: ab b b b b b b b b b b b b
11 22

a a a a a a a ab b b b

Periods of w[11..22] are 5, 10, 11 and 12.
Notation Per(w[11..22])={5, 10, 11, 12}, per(w[11..22]) = 5.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 2/19

Arithmetic sets

A word of length m might have Θ(m) periods, e.g. am.

Definition
A set A = {a, a+ d, a+ 2d, . . . , a+ kd} ⊆ Z is called
arithmetic. An integer d is called the difference of A.

Observe that an arithmetic set can be represented by three
integers: a, d and k.

Fact
Let v be a word of length m. Then Per(v) is a union of at
most logm disjoint arithmetic sets.

For example
Per(w[11..22]) = {5} ∪ {10, 11, 12} = {5, 10} ∪ {11, 12}.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 3/19

Arithmetic sets

A word of length m might have Θ(m) periods, e.g. am.

Definition
A set A = {a, a+ d, a+ 2d, . . . , a+ kd} ⊆ Z is called
arithmetic. An integer d is called the difference of A.

Observe that an arithmetic set can be represented by three
integers: a, d and k.

Fact
Let v be a word of length m. Then Per(v) is a union of at
most logm disjoint arithmetic sets.

For example
Per(w[11..22]) = {5} ∪ {10, 11, 12} = {5, 10} ∪ {11, 12}.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 3/19

Formal problem statement

Problem (Period Queries)

Design a data structure that for a fixed word w of length n
answers the following queries. Given integers i, j
(1 ≤ i ≤ j ≤ n) compute Per(w[i..j]) respresented as a union
of O(log n) arithmetic sets.

Definition
We say that p is an (1 + δ)-period of v if |v| ≥ (1 + δ)p.

Problem ((1 + δ)-Period Queries)

Let us fix a real number δ > 0. Design a data structure that
for a fixed word w of length n answers the following queries.
Given integers i, j (1 ≤ i ≤ j ≤ n) compute all (1 + δ)-periods
of w[i..j] respresented as a union of O(1) arithmetic sets.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 4/19

Formal problem statement

Problem (Period Queries)

Design a data structure that for a fixed word w of length n
answers the following queries. Given integers i, j
(1 ≤ i ≤ j ≤ n) compute Per(w[i..j]) respresented as a union
of O(log n) arithmetic sets.

Definition
We say that p is an (1 + δ)-period of v if |v| ≥ (1 + δ)p.

Problem ((1 + δ)-Period Queries)

Let us fix a real number δ > 0. Design a data structure that
for a fixed word w of length n answers the following queries.
Given integers i, j (1 ≤ i ≤ j ≤ n) compute all (1 + δ)-periods
of w[i..j] respresented as a union of O(1) arithmetic sets.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 4/19

Formal problem statement

Problem (Period Queries)

Design a data structure that for a fixed word w of length n
answers the following queries. Given integers i, j
(1 ≤ i ≤ j ≤ n) compute Per(w[i..j]) respresented as a union
of O(log n) arithmetic sets.

Definition
We say that p is an (1 + δ)-period of v if |v| ≥ (1 + δ)p.

Problem ((1 + δ)-Period Queries)

Let us fix a real number δ > 0. Design a data structure that
for a fixed word w of length n answers the following queries.
Given integers i, j (1 ≤ i ≤ j ≤ n) compute all (1 + δ)-periods
of w[i..j] respresented as a union of O(1) arithmetic sets.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 4/19

Related work

To the best of our knowledge no previous research on the
general case of Period Queries.
Even for computing the shortest period, only
straightforward solutions:
memorize all answers — O(n2) space, O(1) query time
compute the answer from scratch for each query —
no extra space, O(n) query time

Efficient data structures for primitivity testing
(generalized by 2-Period Queries)
Karhumäki, Lifshits & Rytter; CPM 2007
O(n log n) space, O(1) query time,
Crochemore et. al; SPIRE 2010
O(n logε n) space, O(log n) query time.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 5/19

Our results

Several results based on the common idea but different tools.

Space All periods (1 + δ)-periods
O(n) O(log1+ε n) O(logε n)
O(n log log n) O(log n(log log n)2) O((log log n)2)
O(n logε n) O(log n log log n) O(log log n)
O(n log n) O(log n) O(1)

Standard assumptions on the model of computation:

word RAM model with w = Ω(log n),

randomization.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 6/19

Our results

Several results based on the common idea but different tools.

Space All periods (1 + δ)-periods
O(n) O(log1+ε n) O(logε n)
O(n log log n) O(log n(log log n)2) O((log log n)2)
O(n logε n) O(log n log log n) O(log log n)
O(n log n) O(log n) O(1)

Standard assumptions on the model of computation:

word RAM model with w = Ω(log n),

randomization.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 6/19

Our approach

Let Borders(v) = {|u| : u is a border of v}.

Fact
Per(v) = |v| 	Borders(v) = {|v| − b : b ∈ Borders(v)}.

We compute Borders(v) ∩ {2k, . . . , 2k+1} separately for each
k ∈ {0, . . . , dlog |v|e}.

v

2k 2k 2k 2k

p s

border

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 7/19

Our approach

Let Borders(v) = {|u| : u is a border of v}.

Fact
Per(v) = |v| 	Borders(v) = {|v| − b : b ∈ Borders(v)}.

We compute Borders(v) ∩ {2k, . . . , 2k+1} separately for each
k ∈ {0, . . . , dlog |v|e}.

v

2k 2k 2k 2k

p s

border

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 7/19

Our approach

Let Borders(v) = {|u| : u is a border of v}.

Fact
Per(v) = |v| 	Borders(v) = {|v| − b : b ∈ Borders(v)}.

We compute Borders(v) ∩ {2k, . . . , 2k+1} separately for each
k ∈ {0, . . . , dlog |v|e}.

v

2k 2k 2k 2k

p s

border

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 7/19

Our approach

Let Borders(v) = {|u| : u is a border of v}.

Fact
Per(v) = |v| 	Borders(v) = {|v| − b : b ∈ Borders(v)}.

We compute Borders(v) ∩ {2k, . . . , 2k+1} separately for each
k ∈ {0, . . . , dlog |v|e}.

v

2k 2k 2k 2k

p s

border

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 7/19

Our approach

Let Borders(v) = {|u| : u is a border of v}.

Fact
Per(v) = |v| 	Borders(v) = {|v| − b : b ∈ Borders(v)}.

We compute Borders(v) ∩ {2k, . . . , 2k+1} separately for each
k ∈ {0, . . . , dlog |v|e}.

v

2k 2k 2k 2k

p s

border

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 7/19

Close occurrences

Let Occ(v, u) be the set of positions of v where an occurrence
of u starts. Arithmetic sets naturally appear as the Occ sets.

Fact
Let |v| ≤ 2|u|. Then Occ(v, u) is arithmetic. Moreover, if
|Occ(v, u)| ≥ 3 then its difference is equal to per(u).

v
u

period of u

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 8/19

A formula for border lengths

v

2k 2k 2k 2k

p p′ ss′

P = Occ(s′s, p)S = Occ(pp′, s)
` `

` `

Fact

Let 0 ≤ ` < 2k. Then the word v has a border of length 2k + `
if and only if `+ 1 ∈ S and 2k − ` ∈ P .

Consequently Borders(v) ∩ {2k, . . . , 2k+1} is arithmetic.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 9/19

A formula for border lengths

v

2k 2k 2k 2k

p p′ ss′

P = Occ(s′s, p)

S = Occ(pp′, s)
` `

` `

Fact

Let 0 ≤ ` < 2k. Then the word v has a border of length 2k + `
if and only if `+ 1 ∈ S and 2k − ` ∈ P .

Consequently Borders(v) ∩ {2k, . . . , 2k+1} is arithmetic.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 9/19

A formula for border lengths

v

2k 2k 2k 2k

p p′ ss′

P = Occ(s′s, p)S = Occ(pp′, s)

` `

` `

Fact

Let 0 ≤ ` < 2k. Then the word v has a border of length 2k + `
if and only if `+ 1 ∈ S and 2k − ` ∈ P .

Consequently Borders(v) ∩ {2k, . . . , 2k+1} is arithmetic.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 9/19

A formula for border lengths

v

2k 2k 2k 2k

p p′ ss′

P = Occ(s′s, p)S = Occ(pp′, s)
` `

` `

Fact

Let 0 ≤ ` < 2k. Then the word v has a border of length 2k + `
if and only if `+ 1 ∈ S and 2k − ` ∈ P .

Consequently Borders(v) ∩ {2k, . . . , 2k+1} is arithmetic.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 9/19

A formula for border lengths

v

2k 2k 2k 2k

p p′ ss′

P = Occ(s′s, p)S = Occ(pp′, s)
` `

` `

Fact

Let 0 ≤ ` < 2k. Then the word v has a border of length 2k + `
if and only if `+ 1 ∈ S and 2k − ` ∈ P .

Consequently Borders(v) ∩ {2k, . . . , 2k+1} is arithmetic.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 9/19

A formula for border lengths

v

2k 2k 2k 2k

p p′ ss′

P = Occ(s′s, p)S = Occ(pp′, s)
` `

` `

Fact

Let 0 ≤ ` < 2k. Then the word v has a border of length 2k + `
if and only if `+ 1 ∈ S and 2k − ` ∈ P .

Consequently Borders(v) ∩ {2k, . . . , 2k+1} is arithmetic.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 9/19

Intersecting arithmetic sets

Lemma
If |P | ≥ 3 and |S| ≥ 3, then per(p) = per(s). Consequently
P and S are arithmetic of common difference.

v
p p′ ss′

PS

2per(s) 2per(p)

of period both per(p) and per(s)

Intersecting two arithmetic sets can be performed in O(1)
time, when one of them is small or when they share a common
difference.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 10/19

Intersecting arithmetic sets

Lemma
If |P | ≥ 3 and |S| ≥ 3, then per(p) = per(s). Consequently
P and S are arithmetic of common difference.

v
p p′ ss′

PS

2per(s) 2per(p)

of period both per(p) and per(s)

Intersecting two arithmetic sets can be performed in O(1)
time, when one of them is small or when they share a common
difference.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 10/19

Intersecting arithmetic sets

Lemma
If |P | ≥ 3 and |S| ≥ 3, then per(p) = per(s). Consequently
P and S are arithmetic of common difference.

v
p p′ ss′

PS

2per(s) 2per(p)

of period both per(p) and per(s)

Intersecting two arithmetic sets can be performed in O(1)
time, when one of them is small or when they share a common
difference.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 10/19

Intersecting arithmetic sets

Lemma
If |P | ≥ 3 and |S| ≥ 3, then per(p) = per(s). Consequently
P and S are arithmetic of common difference.

v
p p′ ss′

PS

2per(s) 2per(p)

of period both per(p) and per(s)

Intersecting two arithmetic sets can be performed in O(1)
time, when one of them is small or when they share a common
difference.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 10/19

Intersecting arithmetic sets

Lemma
If |P | ≥ 3 and |S| ≥ 3, then per(p) = per(s). Consequently
P and S are arithmetic of common difference.

v
p p′ ss′

PS

2per(s) 2per(p)

of period both per(p) and per(s)

Intersecting two arithmetic sets can be performed in O(1)
time, when one of them is small or when they share a common
difference.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 10/19

Summary of the combinatorial part

Problem (Occurrence Queries)

Design a data structure that for a word w can answer the
following queries. Given a basic factor u and a factor v of w
such that |v| ≤ 2|u| (both represented by one of their
occurrences) compute the arithmetic set Occ(v, u).

Theorem
Assume there is a data structure answering the Occurrence
Queries in O(f(n)) time. Then this data structure can answer
Period Queries in O(f(n) log n) time and (1 + δ)-Period
Queries in O(f(n)) time.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 11/19

Occurrence Queries in O(1) time

Fix 2k ≤ n,

Split w into parts of length 2k+1 with overlaps of size 2k,

Consider a basic factor u, |u| = 2k.

w

2k+1

2k+1

arithmetic sets

Each occurrence of u occurs within a single part.

Occurrences in a single part form an arithmetic set.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 12/19

Occurrence Queries in O(1) time

Fix 2k ≤ n,

Split w into parts of length 2k+1 with overlaps of size 2k,

Consider a basic factor u, |u| = 2k.

w

2k+1

2k+1

arithmetic sets

Each occurrence of u occurs within a single part.

Occurrences in a single part form an arithmetic set.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 12/19

Occurrence Queries in O(1) time

Fix 2k ≤ n,

Split w into parts of length 2k+1 with overlaps of size 2k,

Consider a basic factor u, |u| = 2k.

w

2k+1

2k+1 arithmetic sets

Each occurrence of u occurs within a single part.

Occurrences in a single part form an arithmetic set.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 12/19

Occurrence Queries in O(1) time

Imagine a (large) array with columns indexed by parts and rows
by identifiers of all basic factors of length 2k. The identifiers
are obtained from the DBF (Dictionary of Basic Factors)

id(u′)

id(u′′)

id(u)

[
0, 2k+1

] [
2k, 3 · 2k

] [
2 · 2k, 4 · 2k

][
3 · 2k, 5 · 2k

]

This array has Θ
(

n2

2k

)
cells.

All factors of length 2k have ≤ n occurrences in total, so
≤ n non-empty fields — perfect hashing can be used.
This gives O(n log n) size in total for all values of k.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 13/19

Occurrence Queries in O(1) time

Imagine a (large) array with columns indexed by parts and rows
by identifiers of all basic factors of length 2k. The identifiers
are obtained from the DBF (Dictionary of Basic Factors)

id(u′)

id(u′′)

id(u)

[
0, 2k+1

] [
2k, 3 · 2k

] [
2 · 2k, 4 · 2k

][
3 · 2k, 5 · 2k

]

This array has Θ
(

n2

2k

)
cells.

All factors of length 2k have ≤ n occurrences in total, so
≤ n non-empty fields — perfect hashing can be used.
This gives O(n log n) size in total for all values of k.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 13/19

Occurrence Queries in O(1) time

Imagine a (large) array with columns indexed by parts and rows
by identifiers of all basic factors of length 2k. The identifiers
are obtained from the DBF (Dictionary of Basic Factors)

id(u′)

id(u′′)

id(u)

[
0, 2k+1

] [
2k, 3 · 2k

] [
2 · 2k, 4 · 2k

][
3 · 2k, 5 · 2k

]

This array has Θ
(

n2

2k

)
cells.

All factors of length 2k have ≤ n occurrences in total, so
≤ n non-empty fields — perfect hashing can be used.

This gives O(n log n) size in total for all values of k.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 13/19

Occurrence Queries in O(1) time

Imagine a (large) array with columns indexed by parts and rows
by identifiers of all basic factors of length 2k. The identifiers
are obtained from the DBF (Dictionary of Basic Factors)

id(u′)

id(u′′)

id(u)

[
0, 2k+1

] [
2k, 3 · 2k

] [
2 · 2k, 4 · 2k

][
3 · 2k, 5 · 2k

]

This array has Θ
(

n2

2k

)
cells.

All factors of length 2k have ≤ n occurrences in total, so
≤ n non-empty fields — perfect hashing can be used.
This gives O(n log n) size in total for all values of k.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 13/19

Occurrence Queries in O(1) time

Answering queries:

w

2k+1

2k+1

v

id(u)

v lies within at most two consecutive parts,

get the occurrences of u from the hash table,
crop and merge these arithmetic sets to obtain the result.

Corollary

There exists a data structure of O(n log n) size that answers
the Occurrence Queries in O(1) time.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 14/19

Occurrence Queries in O(1) time

Answering queries:

w

2k+1

2k+1

v

id(u)

v lies within at most two consecutive parts,
get the occurrences of u from the hash table,

crop and merge these arithmetic sets to obtain the result.

Corollary

There exists a data structure of O(n log n) size that answers
the Occurrence Queries in O(1) time.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 14/19

Occurrence Queries in O(1) time

Answering queries:

w

2k+1

2k+1

v

id(u)

v lies within at most two consecutive parts,
get the occurrences of u from the hash table,

crop and merge these arithmetic sets to obtain the result.

Corollary

There exists a data structure of O(n log n) size that answers
the Occurrence Queries in O(1) time.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 14/19

Occurrence Queries in O(1) time

Answering queries:

w

2k+1

2k+1

v

id(u)

v lies within at most two consecutive parts,
get the occurrences of u from the hash table,
crop and merge these arithmetic sets to obtain the result.

Corollary

There exists a data structure of O(n log n) size that answers
the Occurrence Queries in O(1) time.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 14/19

Occurrence Queries in O(1) time

Answering queries:

w

2k+1

2k+1

v

id(u)

v lies within at most two consecutive parts,
get the occurrences of u from the hash table,
crop and merge these arithmetic sets to obtain the result.

Corollary

There exists a data structure of O(n log n) size that answers
the Occurrence Queries in O(1) time.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 14/19

Range Predecessor/Successor Queries

Problem (Range Predecessor/Successor Queries)

Design a data structure that for a word w can answer the
following queries. Given a factor u of w (represented by an
occurrence in w) and i ∈ {1 . . . n} find PRED(u, i) — the
last occurrence of u ending at a position ≤ i, SUCC(u, i) —
the first occurrence of u starting at a position ≥ i.

The Occurrence Queries can be reduced to three Range
Predecessor/Successor Queries, where u is a basic factor of w.

w
v

i j

SUCC(u, i) i′

SUCC(u, i′ + 1)

PRED(u, j)

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 15/19

Range Predecessor/Successor Queries

Problem (Range Predecessor/Successor Queries)

Design a data structure that for a word w can answer the
following queries. Given a factor u of w (represented by an
occurrence in w) and i ∈ {1 . . . n} find PRED(u, i) — the
last occurrence of u ending at a position ≤ i, SUCC(u, i) —
the first occurrence of u starting at a position ≥ i.

The Occurrence Queries can be reduced to three Range
Predecessor/Successor Queries, where u is a basic factor of w.

w
v

i j

SUCC(u, i) i′

SUCC(u, i′ + 1)

PRED(u, j)

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 15/19

Range Predecessor/Successor Queries

Problem (Range Predecessor/Successor Queries)

Design a data structure that for a word w can answer the
following queries. Given a factor u of w (represented by an
occurrence in w) and i ∈ {1 . . . n} find PRED(u, i) — the
last occurrence of u ending at a position ≤ i, SUCC(u, i) —
the first occurrence of u starting at a position ≥ i.

The Occurrence Queries can be reduced to three Range
Predecessor/Successor Queries, where u is a basic factor of w.

w
v

i jSUCC(u, i) i′

SUCC(u, i′ + 1)

PRED(u, j)

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 15/19

Range Predecessor/Successor Queries

Problem (Range Predecessor/Successor Queries)

Design a data structure that for a word w can answer the
following queries. Given a factor u of w (represented by an
occurrence in w) and i ∈ {1 . . . n} find PRED(u, i) — the
last occurrence of u ending at a position ≤ i, SUCC(u, i) —
the first occurrence of u starting at a position ≥ i.

The Occurrence Queries can be reduced to three Range
Predecessor/Successor Queries, where u is a basic factor of w.

w
v

i jSUCC(u, i) i′

SUCC(u, i′ + 1)

PRED(u, j)

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 15/19

Range Predecessor/Successor Queries

Problem (Range Predecessor/Successor Queries)

Design a data structure that for a word w can answer the
following queries. Given a factor u of w (represented by an
occurrence in w) and i ∈ {1 . . . n} find PRED(u, i) — the
last occurrence of u ending at a position ≤ i, SUCC(u, i) —
the first occurrence of u starting at a position ≥ i.

The Occurrence Queries can be reduced to three Range
Predecessor/Successor Queries, where u is a basic factor of w.

w
v

i jSUCC(u, i) i′

SUCC(u, i′ + 1)

PRED(u, j)

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 15/19

Range Predecessor/Successor Queries

Problem (Range Predecessor/Successor Queries)

Design a data structure that for a word w can answer the
following queries. Given a factor u of w (represented by an
occurrence in w) and i ∈ {1 . . . n} find PRED(u, i) — the
last occurrence of u ending at a position ≤ i, SUCC(u, i) —
the first occurrence of u starting at a position ≥ i.

The Occurrence Queries can be reduced to three Range
Predecessor/Successor Queries, where u is a basic factor of w.

w
v

i jSUCC(u, i) i′

SUCC(u, i′ + 1)

PRED(u, j)

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 15/19

Range Predecessor/Successor Queries

Theorem (Nekrich, Navarro; 2012)

There exist data structures that given the locus of u in the
suffix tree of w answer the Range Predecessor/Successor
queries in and satisfy the following space and time bounds:

Space Query time
O(n) O(logε n)
O(n log log n) O((log log n)2)
O(n logε n) O(log log n)

Theorem (Weighted LA — Kopelovitz, Lewenstein; 2007)

There exists a data structure of size O(n), which given an
interval [i..j] finds the locus of w[i..j] in the suffix tree of w in
O(log log n) time.

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 16/19

Summary

Theorem (this paper)

There exist data structures that satisfy following time and
space bounds for size, Period Queries query time and
(1 + δ)-Period Queries query time:

Space Period Queries (1 + δ)-Period Q.
O(n) O(log1+ε n) O(logε n)
O(n log log n) O(log n(log log n)2) O((log log n)2)
O(n logε n) O(log n log log n) O(log log n)
O(n log n) O(log n) O(1)

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 17/19

Further research

Currently in progress:

Space Period Queries (1 + δ)-Period Q.
O(n) O(log1+ε n) O(logε n)
O(n log log n) O(log n(log log n)2) O((log log n)2)
O(n logε n) O(log n log log n) O(log log n)
O(n log n) O(log n) O(1)

Open problems:

Can the O(n log n) time preprocessing be improved with
o(n) query time?

Can the shortest period be found faster than O(log n)
with o(n2) space?

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 18/19

Further research

Currently in progress:

Space Period Queries 2-Period Queries
O(n) O(log1+ε n) O(logε n)
O(n log log n) O(log n(log log n)2) O((log log n)2)
O(n logε n) O(log n log log n) O(log log n)
O(n log n) O(log n) O(1)
O(n) — O(1)

Open problems:

Can the O(n log n) time preprocessing be improved with
o(n) query time?

Can the shortest period be found faster than O(log n)
with o(n2) space?

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 18/19

Further research

Currently in progress:

Space Period Queries 2-Period Queries
O(n) O(log1+ε n) O(logε n)

O(n log log n) O(log n log log n) O(log log n)

O(n log n) O(log n) O(1)
O(n) — O(1)

Open problems:

Can the O(n log n) time preprocessing be improved with
o(n) query time?

Can the shortest period be found faster than O(log n)
with o(n2) space?

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 18/19

Further research

Currently in progress:

Space Period Queries 2-Period Queries
O(n) O(log1+ε n) O(logε n)

O(n log log n) O(log n log log n) O(log log n)

O(n log n) O(log n) O(1)
O(n) — O(1)

Open problems:

Can the O(n log n) time preprocessing be improved with
o(n) query time?

Can the shortest period be found faster than O(log n)
with o(n2) space?

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 18/19

Thank you for your attention

Thank you!

Tomasz Kociumaka Efficient Data Structures for the Factor Periodicity Problem 19/19

