Efficient Data Structures for the Factor Periodicity Problem

Tomasz Kociumaka Jakub Radoszewski Wojciech Rytter Tomasz Waleń

University of Warsaw, Poland

SPIRE 2012 Cartagena, October 23, 2012

Factor Periodicity Problem

W: abaababaabaababaabaabaabaabaabaabaab

Periods of w[11..22] are 5

Periods of w[11..22] are 5, 10

Periods of w[11..22] are 5, 10, 11

Periods of w[11..22] are 5, 10, 11 and 12.

Periods of w[11..22] are 5, 10, 11 and 12. Notation $Per(w[11..22]) = \{5, 10, 11, 12\}, per(w[11..22]) = 5.$ A word of length m might have $\Theta(m)$ periods, e.g. a^m .

Definition

A set $A = \{a, a + d, a + 2d, \dots, a + kd\} \subseteq \mathbb{Z}$ is called *arithmetic*. An integer d is called the *difference* of A.

Observe that an arithmetic set can be represented by three integers: a, d and k.

A word of length m might have $\Theta(m)$ periods, e.g. a^m .

Definition

A set $A = \{a, a + d, a + 2d, \dots, a + kd\} \subseteq \mathbb{Z}$ is called *arithmetic*. An integer d is called the *difference* of A.

Observe that an arithmetic set can be represented by three integers: a, d and k.

Fact

Let v be a word of length m. Then Per(v) is a union of at most $\log m$ disjoint arithmetic sets.

For example $Per(w[11..22]) = \{5\} \cup \{10, 11, 12\} = \{5, 10\} \cup \{11, 12\}.$

Problem (Period Queries)

Design a data structure that for a fixed word w of length n answers the following queries. Given integers i, j $(1 \le i \le j \le n)$ compute Per(w[i..j]) respresented as a union of $O(\log n)$ arithmetic sets.

Problem (Period Queries)

Design a data structure that for a fixed word w of length n answers the following queries. Given integers i, j $(1 \le i \le j \le n)$ compute Per(w[i..j]) respresented as a union of $O(\log n)$ arithmetic sets.

Definition

We say that p is an $(1 + \delta)$ -period of v if $|v| \ge (1 + \delta)p$.

Problem (Period Queries)

Design a data structure that for a fixed word w of length n answers the following queries. Given integers i, j $(1 \le i \le j \le n)$ compute Per(w[i..j]) respresented as a union of $O(\log n)$ arithmetic sets.

Definition

We say that p is an $(1 + \delta)$ -period of v if $|v| \ge (1 + \delta)p$.

Problem $((1 + \delta)$ -Period Queries)

Let us fix a real number $\delta > 0$. Design a data structure that for a fixed word w of length n answers the following queries. Given integers i, j $(1 \le i \le j \le n)$ compute all $(1 + \delta)$ -periods of w[i..j] respresented as a union of O(1) arithmetic sets.

Related work

- To the best of our knowledge no previous research on the general case of Period Queries.
- Even for computing the shortest period, only straightforward solutions:
 - memorize all answers ${\cal O}(n^2)$ space, ${\cal O}(1)$ query time
 - compute the answer from scratch for each query no extra space, ${\cal O}(n)$ query time
- Efficient data structures for primitivity testing (generalized by 2-Period Queries)
 - Karhumäki, Lifshits & Rytter; CPM 2007 $O(n\log n)$ space, O(1) query time,
 - Crochemore et. al; SPIRE 2010 $O(n \log^{\varepsilon} n)$ space, $O(\log n)$ query time.

Several results based on the common idea but different tools.

Space	All periods	$(1+\delta)$ -periods
O(n)	$O(\log^{1+\varepsilon} n)$	$O(\log^{\varepsilon} n)$
$O(n \log \log n)$	$O(\log n (\log \log n)^2)$	$O((\log \log n)^2)$
$O(n\log^{\varepsilon} n)$	$O(\log n \log \log n)$	$O(\log \log n)$
$O(n\log n)$	$O(\log n)$	O(1)

Several results based on the common idea but different tools.

Space	All periods	$(1+\delta)$ -periods
O(n)	$O(\log^{1+\varepsilon} n)$	$O(\log^{\varepsilon} n)$
$O(n \log \log n)$	$O(\log n (\log \log n)^2)$	$O((\log \log n)^2)$
$O(n\log^{\varepsilon} n)$	$O(\log n \log \log n)$	$O(\log \log n)$
$O(n \log n)$	$O(\log n)$	O(1)

Standard assumptions on the model of computation:

- word RAM model with $w = \Omega(\log n)$,
- randomization.

Let $Borders(v) = \{|u| : u \text{ is a border of } v\}.$

Fact $Per(v) = |v| \ominus Borders(v) = \{|v| - b : b \in Borders(v)\}.$

Let $Borders(v) = \{|u| : u \text{ is a border of } v\}.$

Fact

 $Per(v) = |v| \ominus Borders(v) = \{|v| - b : b \in Borders(v)\}.$

Let $Borders(v) = \{|u| : u \text{ is a border of } v\}.$

Fact

 $Per(v) = |v| \ominus Borders(v) = \{|v| - b : b \in Borders(v)\}.$

Let $Borders(v) = \{|u| : u \text{ is a border of } v\}.$

Fact

 $Per(v) = |v| \ominus Borders(v) = \{|v| - b : b \in Borders(v)\}.$

Let $Borders(v) = \{|u| : u \text{ is a border of } v\}.$

Fact

 $Per(v) = |v| \ominus Borders(v) = \{|v| - b : b \in Borders(v)\}.$

Let Occ(v, u) be the set of positions of v where an occurrence of u starts. Arithmetic sets naturally appear as the Occ sets.

Fact

Let $|v| \leq 2|u|$. Then Occ(v, u) is arithmetic. Moreover, if $|Occ(v, u)| \geq 3$ then its difference is equal to per(u).

Fact

Let $0 \le \ell < 2^k$. Then the word v has a border of length $2^k + \ell$ if and only if $\ell + 1 \in S$ and $2^k - \ell \in P$.

Consequently $Borders(v) \cap \{2^k, \ldots, 2^{k+1}\}$ is arithmetic.

Lemma

Lemma

Lemma

Lemma

Lemma

If $|P| \ge 3$ and $|S| \ge 3$, then per(p) = per(s). Consequently P and S are arithmetic of common difference.

Intersecting two arithmetic sets can be performed in ${\cal O}(1)$ time, when one of them is small or when they share a common difference.

Problem (Occurrence Queries)

Design a data structure that for a word w can answer the following queries. Given a basic factor u and a factor v of w such that $|v| \leq 2|u|$ (both represented by one of their occurrences) compute the arithmetic set Occ(v, u).

Theorem

Assume there is a data structure answering the Occurrence Queries in O(f(n)) time. Then this data structure can answer Period Queries in $O(f(n)\log n)$ time and $(1 + \delta)$ -Period Queries in O(f(n)) time.

- Fix $2^k \leq n$,
- Split w into parts of length 2^{k+1} with overlaps of size 2^k ,

- Fix $2^k \leq n$,
- Split w into parts of length 2^{k+1} with overlaps of size 2^k ,
- Consider a basic factor u, $|u| = 2^k$.

• Each occurrence of *u* occurs within a single part.

- Fix $2^k \leq n$,
- Split w into parts of length 2^{k+1} with overlaps of size 2^k ,
- Consider a basic factor u, $|u| = 2^k$.

- Each occurrence of u occurs within a single part.
- Occurrences in a single part form an arithmetic set.

• This array has
$$\Theta\left(rac{n^2}{2^k}
ight)$$
 cells.

- This array has $\Theta\left(\frac{n^2}{2^k}\right)$ cells.
- All factors of length 2^k have $\leq n$ occurrences in total, so $\leq n$ non-empty fields *perfect hashing* can be used.

- This array has $\Theta\left(\frac{n^2}{2^k}\right)$ cells.
- All factors of length 2^k have $\leq n$ occurrences in total, so $\leq n$ non-empty fields *perfect hashing* can be used.
- This gives $O(n \log n)$ size in total for all values of k.

• v lies within at most two consecutive parts,

- v lies within at most two consecutive parts,
- get the occurrences of u from the hash table,

- v lies within at most two consecutive parts,
- get the occurrences of u from the hash table,

- v lies within at most two consecutive parts,
- get the occurrences of u from the hash table,
- crop and merge these arithmetic sets to obtain the result.

- v lies within at most two consecutive parts,
- get the occurrences of u from the hash table,
- crop and merge these arithmetic sets to obtain the result.

Corollary

There exists a data structure of $O(n \log n)$ size that answers the Occurrence Queries in O(1) time.

Problem (Range Predecessor/Successor Queries)

Design a data structure that for a word w can answer the following queries. Given a factor u of w (represented by an occurrence in w) and $i \in \{1 ... n\}$ find PRED(u, i) — the last occurrence of u ending at a position $\leq i$, SUCC(u, i) — the first occurrence of u starting at a position $\geq i$.

Problem (Range Predecessor/Successor Queries)

Design a data structure that for a word w can answer the following queries. Given a factor u of w (represented by an occurrence in w) and $i \in \{1 \dots n\}$ find PRED(u, i) — the last occurrence of u ending at a position $\leq i$, SUCC(u, i) — the first occurrence of u starting at a position $\geq i$.

Problem (Range Predecessor/Successor Queries)

Design a data structure that for a word w can answer the following queries. Given a factor u of w (represented by an occurrence in w) and $i \in \{1 \dots n\}$ find PRED(u, i) — the last occurrence of u ending at a position $\leq i$, SUCC(u, i) — the first occurrence of u starting at a position $\geq i$.

$$w = \underbrace{\frac{v}{SUCC(u,i)}}_{i} \underbrace{i' = j}_{j}$$

Problem (Range Predecessor/Successor Queries)

Design a data structure that for a word w can answer the following queries. Given a factor u of w (represented by an occurrence in w) and $i \in \{1 \dots n\}$ find PRED(u, i) — the last occurrence of u ending at a position $\leq i$, SUCC(u, i) — the first occurrence of u starting at a position $\geq i$.

$$w \underbrace{\frac{v}{SUCC(u,i) \underbrace{i i'}{j}}_{SUCC(u,i'+1)} j}_{j}$$

Problem (Range Predecessor/Successor Queries)

Design a data structure that for a word w can answer the following queries. Given a factor u of w (represented by an occurrence in w) and $i \in \{1 \dots n\}$ find PRED(u, i) — the last occurrence of u ending at a position $\leq i$, SUCC(u, i) — the first occurrence of u starting at a position $\geq i$.

Problem (Range Predecessor/Successor Queries)

Design a data structure that for a word w can answer the following queries. Given a factor u of w (represented by an occurrence in w) and $i \in \{1 \dots n\}$ find PRED(u, i) — the last occurrence of u ending at a position $\leq i$, SUCC(u, i) — the first occurrence of u starting at a position $\geq i$.

Theorem (Nekrich, Navarro; 2012)

There exist data structures that given the locus of u in the suffix tree of w answer the Range Predecessor/Successor queries in and satisfy the following space and time bounds:

Space	Query time
O(n)	$O(\log^{\varepsilon} n)$
$O(n \log \log n)$	$O((\log \log n)^2)$
$O(n\log^{\varepsilon} n)$	$O(\log \log n)$

Theorem (Weighted LA — Kopelovitz, Lewenstein; 2007)

There exists a data structure of size O(n), which given an interval [i..j] finds the locus of w[i..j] in the suffix tree of w in $O(\log \log n)$ time.

Theorem (this paper)

There exist data structures that satisfy following time and space bounds for size, Period Queries query time and $(1 + \delta)$ -Period Queries query time:

Space	Period Queries	$(1+\delta)$ -Period Q.
O(n)	$O(\log^{1+\varepsilon} n)$	$O(\log^{\varepsilon} n)$
$O(n \log \log n)$	$O(\log n (\log \log n)^2)$	$O((\log \log n)^2)$
$O(n\log^{\varepsilon} n)$	$O(\log n \log \log n)$	$O(\log \log n)$
$O(n \log n)$	$O(\log n)$	O(1)

Further research

Space	Period Queries	$(1+\delta)$ -Period Q.
O(n)	$O(\log^{1+\varepsilon} n)$	$O(\log^{\varepsilon} n)$
$O(n \log \log n)$	$O(\log n(\log \log n)^2)$	$O((\log \log n)^2)$
$O(n\log^{\varepsilon} n)$	$O(\log n \log \log n)$	$O(\log \log n)$
$O(n \log n)$	$O(\log n)$	O(1)

Further research

Currently in progress:

Space	Period Queries	2-Period Queries
O(n)	$O(\log^{1+\varepsilon} n)$	$O(\log^{\varepsilon} n)$
$O(n \log \log n)$	$O(\log n (\log \log n)^2)$	$O((\log \log n)^2)$
$O(n\log^{\varepsilon} n)$	$O(\log n \log \log n)$	$O(\log \log n)$
$O(n\log n)$	$O(\log n)$	O(1)
O(n)	—	O(1)

Further research

Currently in progress:

Space	Period Queries	2-Period Queries
O(n)	$O(\log^{1+\varepsilon} n)$	$O(\log^{\varepsilon} n)$
$O(n \log \log n)$	$O(\log n \log \log n)$	$O(\log \log n)$
$O(n\log n)$	$O(\log n)$	O(1)
O(n)	—	O(1)

Currently in progress:

Space	Period Queries	2-Period Queries
O(n)	$O(\log^{1+\varepsilon} n)$	$O(\log^{\varepsilon} n)$
$O(n \log \log n)$	$O(\log n \log \log n)$	$O(\log \log n)$
$O(n\log n)$	$O(\log n)$	O(1)
O(n)	—	O(1)

Open problems:

- Can the $O(n \log n)$ time preprocessing be improved with o(n) query time?
- Can the shortest period be found faster than $O(\log n)$ with $o(n^2)$ space?

Thank you!