The streaming k-mismatch problem

Raphaël Clifford

Tomasz Kociumaka

Ely Porat

Bar-Ilan University

SODA 2019

San Diego, California, January 7, 2019

Pattern matching

Exact pattern matching

Given two strings: a pattern P (of length m) and a text T (of length n), find all fragments of T matching P.

Classic algorithms
Knuth, Morris, Pratt 1978, SIAM J. Comput.

$$
\mathcal{O}(n+m) \text { time } \quad \mathcal{O}(m) \text { space }
$$

Galil, Seiferas
1983, J. Comput. Syst. Sci.
$\mathcal{O}(n+m)$ time
$\mathcal{O}(1)$ space 1
${ }^{1}$ Does not include read-only random access to P and T.

Pattern matching

Exact pattern matching

Given two strings: a pattern P (of length m) and a text T (of length n), find all fragments of T matching P.

P
 bbaabbb

T
$a b b a a b b b a a b b b b b b a a b b b b a a$

Classic algorithms

Knuth, Morris, Pratt 1978, SIAM J. Comput.

$$
\mathcal{O}(n+m) \text { time } \quad \mathcal{O}(m) \text { space }
$$

Galil, Seiferas 1983, J. Comput. Syst. Sci.
$\mathcal{O}(n+m)$ time
$\mathcal{O}(1)$ space 1
${ }^{1}$ Does not include read-only random access to P and T.

Pattern matching

Exact pattern matching

Given two strings: a pattern P (of length m) and a text T (of length n), find all fragments of T matching P.

Classic algorithms

Knuth, Morris, Pratt 1978, SIAM J. Comput.

$$
\mathcal{O}(n+m) \text { time } \quad \mathcal{O}(m) \text { space }
$$

Galil, Seiferas 1983, J. Comput. Syst. Sci.
$\mathcal{O}(n+m)$ time
$\mathcal{O}(1)$ space 1
${ }^{1}$ Does not include read-only random access to P and T.

Pattern matching

Exact pattern matching

Given two strings: a pattern P (of length m) and a text T (of length n), find all fragments of T matching P.

P
 $$
\mathrm{bba} \mathrm{abbb}
$$

T

Classic algorithms

Knuth, Morris, Pratt 1978, SIAM J. Comput.

$$
\mathcal{O}(n+m) \text { time } \quad \mathcal{O}(m) \text { space }
$$

Galil, Seiferas 1983, J. Comput. Syst. Sci.
$\mathcal{O}(n+m)$ time
$\mathcal{O}(1)$ space 1
${ }^{1}$ Does not include read-only random access to P and T.

Pattern matching

Exact pattern matching

Given two strings: a pattern P (of length m) and a text T (of length n), find all fragments of T matching P.

P
 $$
\mathrm{bba} \mathrm{abbb}
$$

T
$a b b a a b b b a a b b b b b b a a b b b b a a$

Classic algorithms

Knuth, Morris, Pratt 1978, SIAM J. Comput.

$$
\mathcal{O}(n+m) \text { time } \quad \mathcal{O}(m) \text { space }
$$

Galil, Seiferas 1983, J. Comput. Syst. Sci.
$\mathcal{O}(n+m)$ time
$\mathcal{O}(1)$ space 1
${ }^{1}$ Does not include read-only random access to P and T.

Streaming pattern matching

Data stream model:

- single sequential scan of the input data,
- online (partial answers after processing each symbol),
- small working space,

■ real-time (worst-case per symbol processing time).

Streaming pattern matching

Data stream model:

- single sequential scan of the input data,
- online (partial answers after processing each symbol),
- small working space,

■ real-time (worst-case per symbol processing time).

$$
\mathrm{b} \text { b a a b b b }
$$

\square

Streaming pattern matching

Data stream model:

- single sequential scan of the input data,
- online (partial answers after processing each symbol),
- small working space,

■ real-time (worst-case per symbol processing time).

$$
\mathrm{bba} \mathrm{abbb} \quad \mathrm{abba} \mathrm{abbb}
$$

Streaming pattern matching

Data stream model:

- single sequential scan of the input data,
- online (partial answers after processing each symbol),
- small working space,

■ real-time (worst-case per symbol processing time).
bbaabbb abbaabbba

Streaming pattern matching

Data stream model:

- single sequential scan of the input data,
- online (partial answers after processing each symbol),
- small working space,

■ real-time (worst-case per symbol processing time).

$$
\mathrm{bbaabbb} \quad \mathrm{abbaabbba} \mathrm{a}
$$

Streaming pattern matching

Data stream model:

- single sequential scan of the input data,
- online (partial answers after processing each symbol),
- small working space,

■ real-time (worst-case per symbol processing time).

$$
\mathrm{bbaabbb} \quad \mathrm{abba} \mathrm{abbba} \mathrm{a}
$$

Streaming pattern matching

Data stream model:

- single sequential scan of the input data,
- online (partial answers after processing each symbol),
- small working space,

■ real-time (worst-case per symbol processing time).

$$
\mathrm{bba} \mathrm{abbb} \quad \mathrm{abbaabbba} \mathrm{ab}
$$

Streaming pattern matching

Data stream model:

- single sequential scan of the input data,
- online (partial answers after processing each symbol),
- small working space,

■ real-time (worst-case per symbol processing time).

$$
\mathrm{bba} \mathrm{abbb} \quad \mathrm{abbaabbba} \mathrm{abbb}
$$

Streaming pattern matching

Data stream model:

- single sequential scan of the input data,
- online (partial answers after processing each symbol),
- small working space,

■ real-time (worst-case per symbol processing time).

$$
\mathrm{bba} \mathrm{abbb} \quad \mathrm{abba} \mathrm{abbba} \mathrm{abbbbbba} \mathrm{abbb}
$$

Streaming pattern matching

Data stream model:

- single sequential scan of the input data,
- online (partial answers after processing each symbol),
- small working space,

■ real-time (worst-case per symbol processing time).

$$
\mathrm{bba} \mathrm{abbb} \quad \mathrm{abba} \mathrm{abbba} \mathrm{abbbbbba} \mathrm{abbbba}
$$

Streaming pattern matching

Data stream model:

- single sequential scan of the input data,
- online (partial answers after processing each symbol),
- small working space,

■ real-time (worst-case per symbol processing time).
bba abbb abbaabbbaabbbbbbaabbbbaa

Lower bounds

- deterministic: $\Omega(m \log \sigma)$ bits,
- randomized: $\Omega(\log m)$ bits.

Randomized algorithms

Porat, Porat
FOCS 2009
Breslauer, Galil
2014, ACM Trans. Algorithms
$\mathcal{O}(\log m)$ time $\mathcal{O}\left(\log ^{2} m\right)$ bits
$\mathcal{O}(1)$ time
$\mathcal{O}\left(\log ^{2} m\right)$ bits

Approximate pattern matching

Pattern matching with mismatches
Given a pattern P of length m and a text T of length n, compute the Hamming distances between P and all length- m fragments of T.
bbaabbb abababbabbababbbbaabbbbaa

Output: 3

Approximate pattern matching

Pattern matching with mismatches
Given a pattern P of length m and a text T of length n, compute the Hamming distances between P and all length- m fragments of T.
bbaabbb abbaabbbaabbbbbbaabbbbaa

Output: 30

Approximate pattern matching

Pattern matching with mismatches
Given a pattern P of length m and a text T of length n, compute the Hamming distances between P and all length- m fragments of T.
bbaabbb abbaabbbaabbbbbbaabbbbaa

Output: 303

Approximate pattern matching

Pattern matching with mismatches
Given a pattern P of length m and a text T of length n, compute the Hamming distances between P and all length- m fragments of T.
bbaabbb abbaabbbaabbbbbbaabbbbaa

Output: 3036

Approximate pattern matching

Pattern matching with mismatches
Given a pattern P of length m and a text T of length n, compute the Hamming distances between P and all length- m fragments of T.

	bba abbb
b b a a b b	$\mathrm{abba} a \mathrm{abbba} \mathrm{abbbbbba} \mathrm{abbbba}$
	Output: 30365

Approximate pattern matching

Pattern matching with mismatches
Given a pattern P of length m and a text T of length n, compute the Hamming distances between P and all length- m fragments of T.
bbaabbb $\quad \frac{b b a b b a b b b b a b b b b b b a a b b b b a a}{}$

Output: 303652

Approximate pattern matching

Pattern matching with mismatches

Given a pattern P of length m and a text T of length n, compute the Hamming distances between P and all length- m fragments of T.
bbaabbb abbaabbbaabbbbbbaabbbbaa
Output: 303652024334420255

Approximate pattern matching

Pattern matching with mismatches

Given a pattern P of length m and a text T of length n, compute the Hamming distances between P and all length- m fragments of T.
bba abbb abba abbba abbbbbba abbbba a
Output: 303652024334420255

Algorithms

Fischer, Patterson
1973, Complex. Comput.
Abrahamson
1987, SIAM J. Comput.
$\mathcal{O}(n \sigma \log m)$ time
$\mathcal{O}(n \sqrt{m \log m})$ time

Approximate pattern matching

Pattern matching with mismatches

Given a pattern P of length m and a text T of length n, compute the Hamming distances between P and all length- m fragments of T.

$$
\frac{\mathrm{bba} \mathrm{abbb} \quad \text { abbaabbbaabbbbbbaabbbbaa}}{\text { Output: } 303652024334420255}
$$

Algorithms

Fischer, Patterson
1973, Complex. Comput.
$\mathcal{O}(n \sigma \log m)$ time
Abrahamson
1987, SIAM J. Comput.
$\mathcal{O}(n \sqrt{m \log m})$ time
Lower bound

- no $\mathcal{O}\left(n m^{0.5-\varepsilon}\right)$-time combinatorial algorithms, conditioned on BMM

The k-mismatch problem

Problem

Given a pattern P, a text T, and a threshold k, find all fragments of the text T at Hamming distance at most k from P (along with the distances).

$$
\frac{\mathbf{k}=\mathbf{3}}{\mathrm{bbaabbb} \quad \frac{\mathrm{abbaabbbaabbbbbbaabbbbaa}}{303652024334420255}}
$$

The k-mismatch problem

Problem

Given a pattern P, a text T, and a threshold k, find all fragments of the text T at Hamming distance at most k from P (along with the distances).

$$
\frac{k=\mathbf{3}}{\text { Output: 3abbb } 0-1202-33--202--}
$$

The k-mismatch problem

Problem

Given a pattern P, a text T, and a threshold k, find all fragments of the text T at Hamming distance at most k from P (along with the distances).

$$
\begin{aligned}
& \mathbf{k}=\mathbf{3} \quad \text { Obbatput: } 303--202-33--202--
\end{aligned}
$$

Algorithms

Landau, Vishkin
1986, Theor. Comput. Sci.
$\mathcal{O}(n k)$ time
Amir, Lewenstein, Porat $\mathcal{O}(n \sqrt{k \log k})$ time
2004, J. Algorithms
$\mathcal{O}\left(n+n k^{3} \log k / m\right)$ time
Clifford et al.
SODA 2016
$\widetilde{\mathcal{O}}\left(n+n k^{2} / m\right)$ time
Gawrychowski, Uznański ICALP 2018
$\widetilde{\mathcal{O}}(n+n k / \sqrt{m})$ time
Tight for combinatorial algorithms (from BMM).

The k-mismatch problem: online and streaming algorithms

Algorithms

Time per symbol Space in bits

Lower bounds

The k-mismatch problem: online and streaming algorithms

Algorithms

Clifford et al.
2011, Inf. Comput. (CPM 2008)

Time per symbol Space in bits $\widetilde{\mathcal{O}}(\sqrt{k}) \quad \mathcal{O}(m \log m) \quad$ deterministic

Lower bounds

The k-mismatch problem: online and streaming algorithms

Algorithms

Clifford et al.
2011, Inf. Comput. (CPM 2008)

Time per symbol Space in bits $\widetilde{\mathcal{O}}(\sqrt{k}) \quad \mathcal{O}(m \log m) \quad$ deterministic

Lower bounds

Folklore

The k-mismatch problem: online and streaming algorithms

Algorithms
Clifford et al.
2011, Inf. Comput. (CPM 2008)

Time per symbol Space in bits

$$
\widetilde{\mathcal{O}}(\sqrt{k}) \quad \mathcal{O}(m \log m) \quad \text { deterministic }
$$

Lower bounds

Folklore

Gawrychowski, Uznański 2018, personal communication
$\Omega(m \log \sigma)$ deterministic
combinatorial

The k-mismatch problem: online and streaming algorithms

Algorithms
Clifford et al.
2011, Inf. Comput. (CPM 2008)
Porat, Porat
FOCS 2009

Time per symbol Space in bits

$\widetilde{\mathcal{O}}(\sqrt{k})$	$\mathcal{O}(m \log m)$	deterministic
$\widetilde{\mathcal{O}}\left(k^{2}\right)$	$\widetilde{\mathcal{O}}\left(k^{3}\right)$	randomized

$\mathcal{O}(m \log m)$ deterministic
$\widetilde{\mathcal{O}}\left(k^{3}\right) \quad$ randomized

Lower bounds
$\Omega(m \log \sigma)$ deterministic
$\Omega\left(k^{0.5-\varepsilon}\right)$
combinatorial

The k-mismatch problem: online and streaming algorithms

Algorithms

Clifford et al.
2011, Inf. Comput. (CPM 2008)
Porat, Porat
FOCS 2009

Time per symbol Space in bits
$\mathcal{O}(m \log m)$ deterministic $\widetilde{\mathcal{O}}\left(k^{3}\right) \quad$ randomized

Lower bounds
Folklore
Huang et al. 2006, Inf. Process. Lett. Gawrychowski, Uznański 2018, personal communication
$\Omega(m \log \sigma) \quad$ deterministic
$\Omega(k+\log n) \quad$ randomized
$\Omega\left(k^{0.5-\varepsilon}\right)$
combinatorial

The k-mismatch problem: online and streaming algorithms

Algorithms

Clifford et al.
2011, Inf. Comput. (CPM 2008)
Porat, Porat
FOCS 2009
Clifford et al.
SODA 2016
Golan, Kopelowitz, Porat ICALP 2018

Time per symbol Space in bits
$\mathcal{O}(m \log m)$ deterministic
$\widetilde{\mathcal{O}}\left(k^{3}\right) \quad$ randomized
$\widetilde{\mathcal{O}}\left(k^{2}\right) \quad$ randomized
$\widetilde{\mathcal{O}}(k) \quad$ randomized

Lower bounds
Folklore
Huang et al.
2006, Inf. Process. Lett.
Gawrychowski, Uznański 2018, personal communication
$\Omega(m \log \sigma)$ deterministic
$\Omega(k+\log n) \quad$ randomized
$\Omega\left(k^{0.5-\varepsilon}\right)$
combinatorial

The k-mismatch problem: online and streaming algorithms

Algorithms

Clifford et al.
2011, Inf. Comput. (CPM 2008)
Porat, Porat
FOCS 2009
Clifford et al.
SODA 2016
Golan, Kopelowitz, Porat ICALP 2018

Time per symbol Space in bits

$\widetilde{\mathcal{O}}(\sqrt{k})$	$\mathcal{O}(m \log m)$	deterministic
$\widetilde{\mathcal{O}}\left(k^{2}\right)$	$\widetilde{\mathcal{O}}\left(k^{3}\right)$	randomized
$\widetilde{\mathcal{O}}(\sqrt{k})$	$\widetilde{\mathcal{O}}\left(k^{2}\right)$	randomized
$\widetilde{\mathcal{O}}(k)$	$\widetilde{\mathcal{O}}(k)$	randomized

$\mathcal{O}(m \log m)$ deterministic
$\widetilde{\mathcal{O}}\left(k^{3}\right) \quad$ randomized
$\widetilde{\mathcal{O}}\left(k^{2}\right) \quad$ randomized
$\widetilde{\mathcal{O}}(k) \quad$ randomized

Folklore
Huang et al.
2006, Inf. Process. Lett.
Gawrychowski, Uznański 2018, personal communication

Lower bounds
$\Omega(m \log \sigma)$ deterministic
$\Omega(k+\log n) \quad$ randomized
$\Omega\left(k^{0.5-\varepsilon}\right)$

The k-mismatch problem: online and streaming algorithms

Algorithms

Clifford et al.
2011, Inf. Comput. (CPM 2008)
Porat, Porat
FOCS 2009
Clifford et al.
SODA 2016
Golan, Kopelowitz, Porat ICALP 2018

This work

SODA 2019
Lower bounds
Folklore
Huang et al.
2006, Inf. Process. Lett.
Gawrychowski, Uznański 2018, personal communication

Time per symbol Space in bits
$\Omega\left(k^{0.5-\varepsilon}\right)$
$\mathcal{O}(m \log m)$ deterministic $\widetilde{\mathcal{O}}\left(k^{3}\right) \quad$ randomized
$\widetilde{\mathcal{O}}\left(k^{2}\right) \quad$ randomized
$\widetilde{\mathcal{O}}(k) \quad$ randomized
$\widetilde{\mathcal{O}}(k) \quad$ randomized
$\Omega(k+\log n) \quad$ randomized
$\Omega(m \log \sigma) \quad$ deterministic
combinatorial

Our main result

Theorem (This work)

There is a streaming k-mismatch algorithm which uses $\mathcal{O}\left(k \log m \log \frac{m}{k}\right)$ bits of space and takes $\mathcal{O}\left(\left(\sqrt{k \log k}+\log ^{3} m\right) \log \frac{m}{k}\right)$ time per symbol.

Our main result

Theorem (This work)

There is a streaming k-mismatch algorithm which uses $\mathcal{O}\left(k \log m \log \frac{m}{k}\right)$ bits of space and takes $\mathcal{O}\left(\left(\sqrt{k \log k}+\log ^{3} m\right) \log \frac{m}{k}\right)$ time per symbol.

Extra features of the new algorithm:
■ For each reported occurrence, the mismatch information can be computed on demand in $\mathcal{O}(k)$ time.

Our main result

Theorem (This work)

There is a streaming k-mismatch algorithm which uses $\mathcal{O}\left(k \log m \log \frac{m}{k}\right)$ bits of space and takes $\mathcal{O}\left(\left(\sqrt{k \log k}+\log ^{3} m\right) \log \frac{m}{k}\right)$ time per symbol.

Extra features of the new algorithm:
■ For each reported occurrence, the mismatch information can be computed on demand in $\mathcal{O}(k)$ time.

Our main result

Theorem (This work)

There is a streaming k-mismatch algorithm which uses $\mathcal{O}\left(k \log m \log \frac{m}{k}\right)$ bits of space and takes $\mathcal{O}\left(\left(\sqrt{k \log k}+\log ^{3} m\right) \log \frac{m}{k}\right)$ time per symbol.

Extra features of the new algorithm:
■ For each reported occurrence, the mismatch information can be computed on demand in $\mathcal{O}(k)$ time.
The only previous streaming algorithm computing mismatch information: Radoszewski, Starikovskaya (DCC 2017): $\widetilde{\mathcal{O}}(k)$ time per symbol, $\widetilde{\mathcal{O}}\left(k^{2}\right)$ space.

Our main result

Theorem (This work)

There is a streaming k-mismatch algorithm which uses $\mathcal{O}\left(k \log m \log \frac{m}{k}\right)$ bits of space and takes $\mathcal{O}\left(\left(\sqrt{k \log k}+\log ^{3} m\right) \log \frac{m}{k}\right)$ time per symbol.

Extra features of the new algorithm:
■ For each reported occurrence, the mismatch information can be computed on demand in $\mathcal{O}(k)$ time.
The only previous streaming algorithm computing mismatch information:
Radoszewski, Starikovskaya (DCC 2017): $\widetilde{\mathcal{O}}(k)$ time per symbol, $\widetilde{\mathcal{O}}\left(k^{2}\right)$ space.
■ Pattern preprocessing under the same bounds on space and time.

Our main result

Theorem (This work)

There is a streaming k-mismatch algorithm which uses $\mathcal{O}\left(k \log m \log \frac{m}{k}\right)$ bits of space and takes $\mathcal{O}\left(\left(\sqrt{k \log k}+\log ^{3} m\right) \log \frac{m}{k}\right)$ time per symbol.

Extra features of the new algorithm:
■ For each reported occurrence, the mismatch information can be computed on demand in $\mathcal{O}(k)$ time.
The only previous streaming algorithm computing mismatch information: Radoszewski, Starikovskaya (DCC 2017): $\widetilde{\mathcal{O}}(k)$ time per symbol, $\widetilde{\mathcal{O}}\left(k^{2}\right)$ space.
■ Pattern preprocessing under the same bounds on space and time.
All previous algorithms require non-streaming preprocessing.

Outline of the talk

Introduction

Exact streaming pattern matching

Our streaming k-mismatch algorithm

Conclusions and open problems

Outline of the talk

Introduction

Exact streaming pattern matching

Our streaming k-mismatch algorithm

Conclusions and open problems

Online pattern matching in $\mathcal{O}(\log n)$ bits 1
 Karp and Rabin (1987, IBM J. Res. Dev.)

Karp-Rabin fingerprints

Assign $\mathcal{O}(\log m)$-bit integer fingerprints $\Psi(\cdot)$ to strings of length up to m so that if $X \neq Y$, then $\operatorname{Pr}[\Psi(X)=\Psi(Y)] \leq m^{-\Theta(1)}$.
${ }^{1}$ Plus read-only access to the text.

Online pattern matching in $\mathcal{O}(\log n)$ bits 1 Karp and Rabin (1987, IBM J. Res. Dev.)

Karp-Rabin fingerprints

Assign $\mathcal{O}(\log m)$-bit integer fingerprints $\Psi(\cdot)$ to strings of length up to m so that if $X \neq Y$, then $\operatorname{Pr}[\Psi(X)=\Psi(Y)] \leq m^{-\Theta(1)}$.

Rolling fingerprints:

Any of $\Psi(X), \Psi(Y), \Psi(X Y)$ can be retrieved from the other two.
${ }^{1}$ Plus read-only access to the text.

Online pattern matching in $\mathcal{O}(\log n)$ bits 1 Karp and Rabin (1987, IBM J. Res. Dev.)

Karp-Rabin fingerprints

Assign $\mathcal{O}(\log m)$-bit integer fingerprints $\Psi(\cdot)$ to strings of length up to m so that if $X \neq Y$, then $\operatorname{Pr}[\Psi(X)=\Psi(Y)] \leq m^{-\Theta(1)}$.

Rolling fingerprints:

Any of $\Psi(X), \Psi(Y), \Psi(X Y)$ can be retrieved from the other two.

${ }^{1}$ Plus read-only access to the text.

Online pattern matching in $\mathcal{O}(\log n)$ bits 1 Karp and Rabin (1987, IBM J. Res. Dev.)

Karp-Rabin fingerprints

Assign $\mathcal{O}(\log m)$-bit integer fingerprints $\Psi(\cdot)$ to strings of length up to m so that if $X \neq Y$, then $\operatorname{Pr}[\Psi(X)=\Psi(Y)] \leq m^{-\Theta(1)}$.

Rolling fingerprints:

Any of $\Psi(X), \Psi(Y), \Psi(X Y)$ can be retrieved from the other two.

${ }^{1}$ Plus read-only access to the text.

Online pattern matching in $\mathcal{O}(\log n)$ bits 1 Karp and Rabin (1987, IBM J. Res. Dev.)

Karp-Rabin fingerprints

Assign $\mathcal{O}(\log m)$-bit integer fingerprints $\Psi(\cdot)$ to strings of length up to m so that if $X \neq Y$, then $\operatorname{Pr}[\Psi(X)=\Psi(Y)] \leq m^{-\Theta(1)}$.

Rolling fingerprints:

Any of $\Psi(X), \Psi(Y), \Psi(X Y)$ can be retrieved from the other two.

${ }^{1}$ Plus read-only access to the text.

Online pattern matching in $\mathcal{O}(\log n)$ bits 1 Karp and Rabin (1987, IBM J. Res. Dev.)

Karp-Rabin fingerprints

Assign $\mathcal{O}(\log m)$-bit integer fingerprints $\Psi(\cdot)$ to strings of length up to m so that if $X \neq Y$, then $\operatorname{Pr}[\Psi(X)=\Psi(Y)] \leq m^{-\Theta(1)}$.

Rolling fingerprints:

Any of $\Psi(X), \Psi(Y), \Psi(X Y)$ can be retrieved from the other two.

${ }^{1}$ Plus read-only access to the text.

Online pattern matching in $\mathcal{O}(\log n)$ bits 1 Karp and Rabin (1987, IBM J. Res. Dev.)

Karp-Rabin fingerprints

Assign $\mathcal{O}(\log m)$-bit integer fingerprints $\Psi(\cdot)$ to strings of length up to m so that if $X \neq Y$, then $\operatorname{Pr}[\Psi(X)=\Psi(Y)] \leq m^{-\Theta(1)}$.

Rolling fingerprints:

Any of $\Psi(X), \Psi(Y), \Psi(X Y)$ can be retrieved from the other two.

${ }^{1}$ Plus read-only access to the text.

Online pattern matching in $\mathcal{O}(\log n)$ bits 1 Karp and Rabin (1987, IBM J. Res. Dev.)

Karp-Rabin fingerprints

Assign $\mathcal{O}(\log m)$-bit integer fingerprints $\Psi(\cdot)$ to strings of length up to m so that if $X \neq Y$, then $\operatorname{Pr}[\Psi(X)=\Psi(Y)] \leq m^{-\Theta(1)}$.

Rolling fingerprints:

Any of $\Psi(X), \Psi(Y), \Psi(X Y)$ can be retrieved from the other two.

${ }^{1}$ Plus read-only access to the text.

Online pattern matching in $\mathcal{O}(\log n)$ bits 1 Karp and Rabin (1987, IBM J. Res. Dev.)

Karp-Rabin fingerprints

Assign $\mathcal{O}(\log m)$-bit integer fingerprints $\Psi(\cdot)$ to strings of length up to m so that if $X \neq Y$, then $\operatorname{Pr}[\Psi(X)=\Psi(Y)] \leq m^{-\Theta(1)}$.

Rolling fingerprints:

Any of $\Psi(X), \Psi(Y), \Psi(X Y)$ can be retrieved from the other two.

${ }^{1}$ Plus read-only access to the text.

Online pattern matching in $\mathcal{O}(\log n)$ bits 1 Karp and Rabin (1987, IBM J. Res. Dev.)

Karp-Rabin fingerprints

Assign $\mathcal{O}(\log m)$-bit integer fingerprints $\Psi(\cdot)$ to strings of length up to m so that if $X \neq Y$, then $\operatorname{Pr}[\Psi(X)=\Psi(Y)] \leq m^{-\Theta(1)}$.

Rolling fingerprints:

Any of $\Psi(X), \Psi(Y), \Psi(X Y)$ can be retrieved from the other two.

${ }^{1}$ Plus read-only access to the text.

Streaming pattern matching in $\mathcal{O}\left(\log ^{2} n\right)$ bits
 Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin-Karp algorithm needs $T[i-m]$ to process $T[i]$. How to avoid accessing this character?

Streaming pattern matching in $\mathcal{O}\left(\log ^{2} n\right)$ bits
 Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin-Karp algorithm needs $T[i-m]$ to process $T[i]$. How to avoid accessing this character?

$\Psi(P)$
b b a a b b b

Streaming pattern matching in $\mathcal{O}\left(\log ^{2} n\right)$ bits
 Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin-Karp algorithm needs $T[i-m]$ to process $T[i]$.
How to avoid accessing this character?
1 Recursively look for the occurrences of $P^{\prime}:=P[1 \ldots\lceil m / 2\rceil]$.

Streaming pattern matching in $\mathcal{O}\left(\log ^{2} n\right)$ bits
 Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin-Karp algorithm needs $T[i-m]$ to process $T[i]$.
How to avoid accessing this character?
1 Recursively look for the occurrences of $P^{\prime}:=P[1 \ldots\lceil m / 2\rceil]$.
2 Maintain $\Psi(T[1 \ldots i])$.

Streaming pattern matching in $\mathcal{O}\left(\log ^{2} n\right)$ bits
 Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin-Karp algorithm needs $T[i-m]$ to process $T[i]$.
How to avoid accessing this character?
1 Recursively look for the occurrences of $P^{\prime}:=P[1 \ldots\lceil m / 2\rceil]$.
2 Maintain $\Psi(T[1 \ldots i])$.

Streaming pattern matching in $\mathcal{O}\left(\log ^{2} n\right)$ bits
 Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin-Karp algorithm needs $T[i-m]$ to process $T[i]$.
How to avoid accessing this character?
1 Recursively look for the occurrences of $P^{\prime}:=P[1 \ldots\lceil m / 2\rceil]$.
2 Maintain $\Psi(T[1 \ldots i])$.

Streaming pattern matching in $\mathcal{O}\left(\log ^{2} n\right)$ bits
 Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin-Karp algorithm needs $T[i-m]$ to process $T[i]$.
How to avoid accessing this character?
1 Recursively look for the occurrences of $P^{\prime}:=P[1 \ldots\lceil m / 2\rceil]$.
2 Maintain $\Psi(T[1 \ldots i])$.

Streaming pattern matching in $\mathcal{O}\left(\log ^{2} n\right)$ bits
 Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin-Karp algorithm needs $T[i-m]$ to process $T[i]$.
How to avoid accessing this character?
1 Recursively look for the occurrences of $P^{\prime}:=P[1 . .\lceil m / 2\rceil]$.
2 Maintain $\Psi(T[1 \ldots i])$.
3 If P^{\prime} is detected at position j, retrieve and store $\Psi(T[1 \ldots j-1])$.

Streaming pattern matching in $\mathcal{O}\left(\log ^{2} n\right)$ bits
 Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin-Karp algorithm needs $T[i-m]$ to process $T[i]$.
How to avoid accessing this character?
1 Recursively look for the occurrences of $P^{\prime}:=P[1 . .\lceil m / 2\rceil]$.
2 Maintain $\Psi(T[1 \ldots i])$.
3 If P^{\prime} is detected at position j, retrieve and store $\Psi(T[1 \ldots j-1])$.

Streaming pattern matching in $\mathcal{O}\left(\log ^{2} n\right)$ bits
 Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin-Karp algorithm needs $T[i-m]$ to process $T[i]$.
How to avoid accessing this character?
1 Recursively look for the occurrences of $P^{\prime}:=P[1 . .\lceil m / 2\rceil]$.
2 Maintain $\Psi(T[1 \ldots i])$.
3 If P^{\prime} is detected at position j, retrieve and store $\Psi(T[1 \ldots j-1])$.

Streaming pattern matching in $\mathcal{O}\left(\log ^{2} n\right)$ bits
 Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin-Karp algorithm needs $T[i-m]$ to process $T[i]$.
How to avoid accessing this character?
1 Recursively look for the occurrences of $P^{\prime}:=P[1 . .\lceil m / 2\rceil]$.
2 Maintain $\Psi(T[1 \ldots i])$.
3 If P^{\prime} is detected at position j, retrieve and store $\Psi(T[1 \ldots j-1])$.

Streaming pattern matching in $\mathcal{O}\left(\log ^{2} n\right)$ bits
 Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin-Karp algorithm needs $T[i-m]$ to process $T[i]$.
How to avoid accessing this character?
1 Recursively look for the occurrences of $P^{\prime}:=P[1 . .\lceil m / 2\rceil]$.
2 Maintain $\Psi(T[1 \ldots i])$.
3 If P^{\prime} is detected at position j, retrieve and store $\Psi(T[1 \ldots j-1])$.

Streaming pattern matching in $\mathcal{O}\left(\log ^{2} n\right)$ bits
 Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin-Karp algorithm needs $T[i-m]$ to process $T[i]$.
How to avoid accessing this character?
1 Recursively look for the occurrences of $P^{\prime}:=P[1 . .\lceil m / 2\rceil]$.
2 Maintain $\Psi(T[1 \ldots i])$.
3 If P^{\prime} is detected at position j, retrieve and store $\Psi(T[1 \ldots j-1])$.

Streaming pattern matching in $\mathcal{O}\left(\log ^{2} n\right)$ bits
 Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin-Karp algorithm needs $T[i-m]$ to process $T[i]$.
How to avoid accessing this character?
1 Recursively look for the occurrences of $P^{\prime}:=P[1 . .\lceil m / 2\rceil]$.
2 Maintain $\Psi(T[1 \ldots i])$.
3 If P^{\prime} is detected at position j, retrieve and store $\Psi(T[1 \ldots j-1])$.
4 Combine $\Psi(T[1 \ldots j-1])$ with $\Psi(T[1 \ldots i])$ to check if $P=T[j \ldots i]$.

Streaming pattern matching in $\mathcal{O}\left(\log ^{2} n\right)$ bits
 Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin-Karp algorithm needs $T[i-m]$ to process $T[i]$.
How to avoid accessing this character?
1 Recursively look for the occurrences of $P^{\prime}:=P[1 . .\lceil m / 2\rceil]$.
2 Maintain $\Psi(T[1 \ldots i])$.
3 If P^{\prime} is detected at position j, retrieve and store $\Psi(T[1 \ldots j-1])$.
4 Combine $\Psi(T[1 \ldots j-1])$ with $\Psi(T[1 \ldots i])$ to check if $P=T[j \ldots i]$.

Streaming pattern matching in $\mathcal{O}\left(\log ^{2} n\right)$ bits Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin-Karp algorithm needs $T[i-m]$ to process $T[i]$.
How to avoid accessing this character?
1 Recursively look for the occurrences of $P^{\prime}:=P[1 \ldots\lceil m / 2\rceil]$.
2 Maintain $\Psi(T[1 \ldots i])$.
3 If P^{\prime} is detected at position j, retrieve and store $\Psi(T[1 \ldots j-1])$.
4 Combine $\Psi(T[1 \ldots j-1])$ with $\Psi(T[1 \ldots i])$ to check if $P=T[j \ldots i]$.

Streaming pattern matching in $\mathcal{O}\left(\log ^{2} n\right)$ bits
 Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin-Karp algorithm needs $T[i-m]$ to process $T[i]$.
How to avoid accessing this character?
1 Recursively look for the occurrences of $P^{\prime}:=P[1 . .\lceil m / 2\rceil]$.
2 Maintain $\Psi(T[1 \ldots i])$.
3 If P^{\prime} is detected at position j, retrieve and store $\Psi(T[1 \ldots j-1])$.
4 Combine $\Psi(T[1 \ldots j-1])$ with $\Psi(T[1 \ldots i])$ to check if $P=T[j \ldots i]$.

Streaming pattern matching in $\mathcal{O}\left(\log ^{2} n\right)$ bits
 Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin-Karp algorithm needs $T[i-m]$ to process $T[i]$.
How to avoid accessing this character?
1 Recursively look for the occurrences of $P^{\prime}:=P[1 . .\lceil m / 2\rceil]$.
2 Maintain $\Psi(T[1 \ldots i])$.
3 If P^{\prime} is detected at position j, retrieve and store $\Psi(T[1 \ldots j-1])$.
4 Combine $\Psi(T[1 \ldots j-1])$ with $\Psi(T[1 \ldots i])$ to check if $P=T[j \ldots i]$.

Streaming pattern matching in $\mathcal{O}\left(\log ^{2} n\right)$ bits
 Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin-Karp algorithm needs $T[i-m]$ to process $T[i]$.
How to avoid accessing this character?
1 Recursively look for the occurrences of $P^{\prime}:=P[1 . .\lceil m / 2\rceil]$.
2 Maintain $\Psi(T[1 \ldots i])$.
3 If P^{\prime} is detected at position j, retrieve and store $\Psi(T[1 \ldots j-1])$.
4 Combine $\Psi(T[1 \ldots j-1])$ with $\Psi(T[1 \ldots i])$ to check if $P=T[j \ldots i]$.

Streaming pattern matching in $\mathcal{O}\left(\log ^{2} n\right)$ bits Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin-Karp algorithm needs $T[i-m]$ to process $T[i]$.
How to avoid accessing this character?
1 Recursively look for the occurrences of $P^{\prime}:=P[1 \ldots\lceil m / 2\rceil]$.
2 Maintain $\Psi(T[1 \ldots i])$.
3 If P^{\prime} is detected at position j, retrieve and store $\Psi(T[1 \ldots j-1])$.
4 Combine $\Psi(T[1 \ldots j-1])$ with $\Psi(T[1 \ldots i])$ to check if $P=T[j \ldots i]$.

Streaming pattern matching in $\mathcal{O}\left(\log ^{2} n\right)$ bits Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin-Karp algorithm needs $T[i-m]$ to process $T[i]$.
How to avoid accessing this character?
1 Recursively look for the occurrences of $P^{\prime}:=P[1 \ldots\lceil m / 2\rceil]$.
2 Maintain $\Psi(T[1 \ldots i])$.
3 If P^{\prime} is detected at position j, retrieve and store $\Psi(T[1 \ldots j-1])$.
4 Combine $\Psi(T[1 \ldots j-1])$ with $\Psi(T[1 \ldots i])$ to check if $P=T[j \ldots i]$.

Streaming pattern matching in $\mathcal{O}\left(\log ^{2} n\right)$ bits
 Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Issue: Rabin-Karp algorithm needs $T[i-m]$ to process $T[i]$.
How to avoid accessing this character?
1 Recursively look for the occurrences of $P^{\prime}:=P[1 \ldots\lceil m / 2\rceil]$.
2 Maintain $\Psi(T[1 \ldots i])$.
3 If P^{\prime} is detected at position j, retrieve and store $\Psi(T[1 \ldots j-1])$.
4 Combine $\Psi(T[1 \ldots j-1])$ with $\Psi(T[1 \ldots i])$ to check if $P=T[j \ldots i]$.

Structure of the viable occurrences of P^{\prime}

Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Viable occurrences of P^{\prime}

Occurrences of P^{\prime} in T starting at positions $j \in\left\{i-m, \ldots, i-\left|P^{\prime}\right|\right\}$.

- For each viable occurrence, we need to store $\Psi(T[1 . . j-1])$.
- There can be $\Theta(m)$ viable occurrences. . .

Structure of the viable occurrences of P^{\prime}

Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Viable occurrences of P^{\prime}

Occurrences of P^{\prime} in T starting at positions $j \in\left\{i-m, \ldots, i-\left|P^{\prime}\right|\right\}$.

- For each viable occurrence, we need to store $\Psi(T[1 . . j-1])$.
- There can be $\Theta(m)$ viable occurrences... but their starting positions form an arithmetic progression.

Structure of the viable occurrences of P^{\prime}

Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Viable occurrences of P^{\prime}

Occurrences of P^{\prime} in T starting at positions $j \in\left\{i-m, \ldots, i-\left|P^{\prime}\right|\right\}$.

- For each viable occurrence, we need to store $\Psi(T[1 . . j-1])$.
- There can be $\Theta(m)$ viable occurrences... but their starting positions form an arithmetic progression.
■ We store only the first two fingerprints and the last one...

Structure of the viable occurrences of P^{\prime}

Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Viable occurrences of P^{\prime}

Occurrences of P^{\prime} in T starting at positions $j \in\left\{i-m, \ldots, i-\left|P^{\prime}\right|\right\}$.

- For each viable occurrence, we need to store $\Psi(T[1 . . j-1])$.
- There can be $\Theta(m)$ viable occurrences... but their starting positions form an arithmetic progression.
■ We store only the first two fingerprints and the last one... and update the representation when necessary.

Structure of the viable occurrences of P^{\prime}

Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Viable occurrences of P^{\prime}

Occurrences of P^{\prime} in T starting at positions $j \in\left\{i-m, \ldots, i-\left|P^{\prime}\right|\right\}$.

- For each viable occurrence, we need to store $\Psi(T[1 . . j-1])$.
- There can be $\Theta(m)$ viable occurrences... but their starting positions form an arithmetic progression.
■ We store only the first two fingerprints and the last one... and update the representation when necessary.

Structure of the viable occurrences of P^{\prime}

Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Viable occurrences of P^{\prime}

Occurrences of P^{\prime} in T starting at positions $j \in\left\{i-m, \ldots, i-\left|P^{\prime}\right|\right\}$.

- For each viable occurrence, we need to store $\Psi(T[1 \ldots j-1])$.
- There can be $\Theta(m)$ viable occurrences... but their starting positions form an arithmetic progression.
■ We store only the first two fingerprints and the last one... and update the representation when necessary.

Structure of the viable occurrences of P^{\prime}

Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Viable occurrences of P^{\prime}

Occurrences of P^{\prime} in T starting at positions $j \in\left\{i-m, \ldots, i-\left|P^{\prime}\right|\right\}$.

- For each viable occurrence, we need to store $\Psi(T[1 . . j-1])$.
- There can be $\Theta(m)$ viable occurrences... but their starting positions form an arithmetic progression.
■ We store only the first two fingerprints and the last one... and update the representation when necessary.

Structure of the viable occurrences of P^{\prime}

Porat and Porat (FOCS 2009), Breslauer and Galil (2014, ACM Trans. Algorithms)

Viable occurrences of P^{\prime}

Occurrences of P^{\prime} in T starting at positions $j \in\left\{i-m, \ldots, i-\left|P^{\prime}\right|\right\}$.

- For each viable occurrence, we need to store $\Psi(T[1 . . j-1])$.
- There can be $\Theta(m)$ viable occurrences... but their starting positions form an arithmetic progression.
■ We store only the first two fingerprints and the last one... and update the representation when necessary.

Outline of the talk

Introduction

Exact streaming pattern matching

Our streaming k-mismatch algorithm

Conclusions and open problems

Contribution \#1: Rolling k-mismatch sketches

The k-mismatch sketches

A sketch function sk_{k} mapping words $X,|X| \leq n$, to $\mathcal{O}(k \log n)$-bit values $\mathrm{sk}_{k}(X)$ designed so that $\mathrm{sk}_{k}(X)$ and $\mathrm{sk}_{k}(Y)$ are sufficient to:

■ decide whether $\mathrm{HD}(X, Y) \leq k$

$$
\begin{aligned}
& X \underset{\mathrm{baabbba}}{y \mathrm{bba} \mathrm{~b} \mathrm{~b} \mathrm{~b}}
\end{aligned}
$$

Contribution \#1: Rolling k-mismatch sketches

The k-mismatch sketches

A sketch function sk_{k} mapping words $X,|X| \leq n$, to $\mathcal{O}(k \log n)$-bit values $\mathrm{sk}_{k}(X)$ designed so that $\mathrm{sk}_{k}(X)$ and $\mathrm{sk}_{k}(Y)$ are sufficient to:

■ decide whether $\mathrm{HD}(X, Y) \leq k$

Contribution \#1: Rolling k-mismatch sketches

The k-mismatch sketches

A sketch function sk_{k} mapping words $X,|X| \leq n$, to $\mathcal{O}(k \log n)$-bit values $\mathrm{sk}_{k}(X)$ designed so that $\mathrm{sk}_{k}(X)$ and $\mathrm{sk}_{k}(Y)$ are sufficient to:

■ decide whether $\mathrm{HD}(X, Y) \leq k$

Contribution \#1: Rolling k-mismatch sketches

The k-mismatch sketches

A sketch function sk_{k} mapping words $X,|X| \leq n$, to $\mathcal{O}(k \log n)$-bit values $\mathrm{sk}_{k}(X)$ designed so that $\mathrm{sk}_{k}(X)$ and $\mathrm{sk}_{k}(Y)$ are sufficient to:

■ decide whether $\mathrm{HD}(X, Y) \leq k$, and

- retrieve the mismatch information if $\mathrm{HD}(X, Y) \leq k$,

Contribution \#1: Rolling k-mismatch sketches

The k-mismatch sketches

A sketch function sk_{k} mapping words $X,|X| \leq n$, to $\mathcal{O}(k \log n)$-bit values $\mathrm{sk}_{k}(X)$ designed so that $\mathrm{sk}_{k}(X)$ and $\mathrm{sk}_{k}(Y)$ are sufficient to:

- decide whether $\mathrm{HD}(X, Y) \leq k$, and
- retrieve the mismatch information if $\mathrm{HD}(X, Y) \leq k$, both in $\widetilde{\mathcal{O}}(k)$ time.

Contribution \#1: Rolling k-mismatch sketches

The k-mismatch sketches

A sketch function sk_{k} mapping words $X,|X| \leq n$, to $\mathcal{O}(k \log n)$-bit values $\mathrm{sk}_{k}(X)$ designed so that $\mathrm{sk}_{k}(X)$ and $\mathrm{sk}_{k}(Y)$ are sufficient to:

- decide whether $\mathrm{HD}(X, Y) \leq k$, and
- retrieve the mismatch information if $\mathrm{HD}(X, Y) \leq k$, both in $\widetilde{\mathcal{O}}(k)$ time.

Manipulation in $\widetilde{\mathcal{O}}(k)$ time:

- concatenation,
- prefix and suffix removal,

■ appending $\mathcal{O}(k)$ chars,

- $\mathcal{O}(k)$ substitutions.

Contribution \#1: Rolling k-mismatch sketches

The k-mismatch sketches

A sketch function sk_{k} mapping words $X,|X| \leq n$, to $\mathcal{O}(k \log n)$-bit values $\mathrm{sk}_{k}(X)$ designed so that $\mathrm{sk}_{k}(X)$ and $\mathrm{sk}_{k}(Y)$ are sufficient to:

- decide whether $\mathrm{HD}(X, Y) \leq k$, and
- retrieve the mismatch information if $\mathrm{HD}(X, Y) \leq k$, both in $\widetilde{\mathcal{O}}(k)$ time.

Manipulation in $\widetilde{\mathcal{O}}(k)$ time: Techniques:

- concatenation,
- prefix and suffix removal,

■ appending $\mathcal{O}(k)$ chars,

- $\mathcal{O}(k)$ substitutions.

■ Reed-Solomon error correcting codes,

- Karp-Rabin fingerprints,
- polynomial factorization, evaluation, and interpolation.

Contribution \#2: Encoding viable k-mismatch occurrences

Theorem

The k-mismatch occurrences of a length-m pattern in a length- $2 m$ text, each with the mismatch information (MI), can be encoded in $\widetilde{\mathcal{O}}(k)$ bits.

■ The starting positions do not form an arithmetic progression...

Contribution \#2: Encoding viable k-mismatch occurrences

Theorem

The k-mismatch occurrences of a length-m pattern in a length- $2 m$ text, each with the mismatch information (MI), can be encoded in $\widetilde{\mathcal{O}}(k)$ bits.

■ The starting positions do not form an arithmetic progression... but we still consider the smallest progression containing all of them.

Contribution \#2: Encoding viable k-mismatch occurrences

Theorem

The k-mismatch occurrences of a length-m pattern in a length- $2 m$ text, each with the mismatch information (MI), can be encoded in $\widetilde{\mathcal{O}}(k)$ bits.

■ The starting positions do not form an arithmetic progression... but we still consider the smallest progression containing all of them.

- This progression is spanned by $\mathcal{O}(\log m) k$-mismatch occurrences.

Contribution \#2: Encoding viable k-mismatch occurrences

Theorem

The k-mismatch occurrences of a length-m pattern in a length- $2 m$ text, each with the mismatch information (MI), can be encoded in $\widetilde{\mathcal{O}}(k)$ bits.

■ The starting positions do not form an arithmetic progression... but we still consider the smallest progression containing all of them.

- This progression is spanned by $\mathcal{O}(\log m) k$-mismatch occurrences.
- Their MI encodes the MI for all alignments in the progression.

Contribution \#2: Encoding viable k-mismatch occurrences

Theorem

The k-mismatch occurrences of a length-m pattern in a length- $2 m$ text, each with the mismatch information (MI), can be encoded in $\widetilde{\mathcal{O}}(k)$ bits.

■ The starting positions do not form an arithmetic progression... but we still consider the smallest progression containing all of them.

- This progression is spanned by $\mathcal{O}(\log m) k$-mismatch occurrences.
- Their MI encodes the MI for all alignments in the progression.

Contribution \#2: Encoding viable k-mismatch occurrences

Theorem

The k-mismatch occurrences of a length-m pattern in a length- $2 m$ text, each with the mismatch information (MI), can be encoded in $\widetilde{\mathcal{O}}(k)$ bits.

- The starting positions do not form an arithmetic progression... but we still consider the smallest progression containing all of them.
- This progression is spanned by $\mathcal{O}(\log m) k$-mismatch occurrences.
- Their MI encodes the MI for all alignments in the progression.

Contribution \#2: Encoding viable k-mismatch occurrences

Theorem

The k-mismatch occurrences of a length-m pattern in a length- $2 m$ text, each with the mismatch information (MI), can be encoded in $\widetilde{\mathcal{O}}(k)$ bits.

■ The starting positions do not form an arithmetic progression... but we still consider the smallest progression containing all of them.

- This progression is spanned by $\mathcal{O}(\log m) k$-mismatch occurrences.
- Their MI encodes the MI for all alignments in the progression.

Consequence

A k-mismatch streaming algorithm with $\widetilde{\mathcal{O}}(k)$ space and time per symbol.

Contribution \#3: New solution for nearly periodic patterns

Bottleneck: manipulation of sketches at every position.

Contribution \#3: New solution for nearly periodic patterns

Bottleneck: manipulation of sketches at every position.
Hope: sketches needed only when a viable occurrence is processed.

$$
\begin{gathered}
\frac{b b a a \mathrm{bba}}{} \quad \frac{\mathrm{bbaabba}}{\mathrm{abbababababab}} \quad
\end{gathered}
$$

Contribution \#3: New solution for nearly periodic patterns

Bottleneck: manipulation of sketches at every position.
Hope: sketches needed only when a viable occurrence is processed.

Approximate period
An integer p is a d-period of P if $\operatorname{HD}(P[1 \ldots m-p], P[p+1 \ldots m]) \leq d$.

Contribution \#3: New solution for nearly periodic patterns

Bottleneck: manipulation of sketches at every position.
Hope: sketches needed only when a viable occurrence is processed.
bbaaabba
bbaaabba $\quad \frac{b b a a b b a}{a b b b a a b a b b a b}$

Approximate period
An integer p is a d-period of P if $\operatorname{HD}(P[1 \ldots m-p], P[p+1 \ldots m]) \leq d$.
Improved specialized algorithm
A deterministic streaming k-mismatches algorithm for patterns P with an $\mathcal{O}(k)$-period $\mathcal{O}(k)$. Complexity: $\widetilde{\mathcal{O}}(k)$ bits and $\widetilde{\mathcal{O}}(\sqrt{k})$ time per symbol.

Outline of the talk

Introduction

Exact streaming pattern matching

Our streaming k-mismatch algorithm

Conclusions and open problems

Conclusions and open problems

Theorem

There is a streaming k-mismatch algorithm which uses $\mathcal{O}\left(k \log m \log \frac{m}{k}\right)$ bits of space and takes $\mathcal{O}\left(\left(\sqrt{k \log k}+\log ^{3} m\right) \log \frac{m}{k}\right)$ time per symbol.

Conclusions and open problems

Theorem

There is a streaming k-mismatch algorithm which uses $\mathcal{O}\left(k \log m \log \frac{m}{k}\right)$ bits of space and takes $\mathcal{O}\left(\left(\sqrt{k \log k}+\log ^{3} m\right) \log \frac{m}{k}\right)$ time per symbol.

Possible directions for further research:

Conclusions and open problems

Theorem

There is a streaming k-mismatch algorithm which uses $\mathcal{O}\left(k \log m \log \frac{m}{k}\right)$ bits of space and takes $\mathcal{O}\left(\left(\sqrt{k \log k}+\log ^{3} m\right) \log \frac{m}{k}\right)$ time per symbol.

Possible directions for further research:
1 Fewer logarithmic factors from the query time?

Conclusions and open problems

Theorem

There is a streaming k-mismatch algorithm which uses $\mathcal{O}\left(k \log m \log \frac{m}{k}\right)$ bits of space and takes $\mathcal{O}\left(\left(\sqrt{k \log k}+\log ^{3} m\right) \log \frac{m}{k}\right)$ time per symbol.

Possible directions for further research:
1 Fewer logarithmic factors from the query time?
2 Does small alphabet help in the $\widetilde{\mathcal{O}}(k)$-space regime?

- Not clear even if random access is allowed.
- $\widetilde{\mathcal{O}}(1)$ time possible in $\widetilde{\mathcal{O}}\left(k^{2}\right)$ space.

Conclusions and open problems

Theorem

There is a streaming k-mismatch algorithm which uses $\mathcal{O}\left(k \log m \log \frac{m}{k}\right)$ bits of space and takes $\mathcal{O}\left(\left(\sqrt{k \log k}+\log ^{3} m\right) \log \frac{m}{k}\right)$ time per symbol.

Possible directions for further research:
1 Fewer logarithmic factors from the query time?
2 Does small alphabet help in the $\widetilde{\mathcal{O}}(k)$-space regime?

- Not clear even if random access is allowed.
- $\widetilde{\mathcal{O}}(1)$ time possible in $\widetilde{\mathcal{O}}\left(k^{2}\right)$ space.

3 Improved amortized running time?

Conclusions and open problems

Theorem

There is a streaming k-mismatch algorithm which uses $\mathcal{O}\left(k \log m \log \frac{m}{k}\right)$ bits of space and takes $\mathcal{O}\left(\left(\sqrt{k \log k}+\log ^{3} m\right) \log \frac{m}{k}\right)$ time per symbol.

Possible directions for further research:
1 Fewer logarithmic factors from the query time?
2 Does small alphabet help in the $\widetilde{\mathcal{O}}(k)$-space regime?

- Not clear even if random access is allowed.
- $\widetilde{\mathcal{O}}(1)$ time possible in $\widetilde{\mathcal{O}}\left(k^{2}\right)$ space.

3 Improved amortized running time?
4 Any $\omega(k+\log n)$ lower bounds?

- $\Omega(k \log n)$ might be feasible.
- $\omega(\log n)$ for constant k might give hints for exact matching.

Questions?

Thank you for your attention!

Questions?

Thank you for your attention!

Advertisement

University of Bristol is hiring!

Assistant/associate professorship in algorithms and complexity. Visit tinyurl.com/bristolukjob or talk to Raphaël Clifford.

