Internal Pattern Matching Queries in a Text and Applications

Tomasz Kociumaka Jakub Radoszewski Wojciech Rytter Tomasz Waleń

University of Warsaw, Poland

SODA 2015

San Diego, California, USA January 4, 2015

T: abaababaabaabaab

T: abaababaabaabaab ↓ construction

DATA STRUCTURE

INDEXING SUBWORDS

Given a pattern P, find all occurrences of P in T.

INDEXING SUBWORDS

Given a pattern P, find all occurrences of P in T.

INDEXING SUBWORDS

Given a pattern P, find all occurrences of P in T.

SUBWORD EQUALITY

Given two subwords x, y of T, decide whether x = y.

INDEXING SUBWORDS

Given a pattern P, find all occurrences of P in T.

Indexing queries:

• a string is part of the query input.

Tomasz Kociumaka, J. Radoszewski, W. Rytter, T. Waleń

SUBWORD EQUALITY

Given two subwords x, y of T, decide whether x = y.

Internal queries:

 concern subwords of T only (identified by positions).

Internal Pattern Matching Queries in a Text

T: abaababaabaabaabaab

INDEXING SUBWORDS

Given a pattern P, find all occurrences of P in T.

Indexing queries:

• a string is part of the query input.

Tomasz Kociumaka, J. Radoszewski, W. Rytter, T. Waleń

SUBWORD EQUALITY

Given two subwords x, y of T, decide whether x = y.

Internal queries: \leftarrow this talk

 concern subwords of T only (identified by positions).

Internal Pattern Matching Queries in a Text

Solve a problem for inputs being subwords of a given text T.

Solve a problem for inputs being subwords of a given text T.

- $\mathcal{O}(1)$ query input size allows for $\mathcal{O}(1)$ query time,
 - $\Omega(|P|)$ required if the "pattern" P is in the input.

Solve a problem for inputs being subwords of a given text T.

- $\mathcal{O}(1)$ query input size allows for $\mathcal{O}(1)$ query time,
 - $\Omega(|P|)$ required if the "pattern" P is in the input.

Motivation:

• All input data must be known in advance

Solve a problem for inputs being subwords of a given text T.

- $\mathcal{O}(1)$ query input size allows for $\mathcal{O}(1)$ query time,
 - $\Omega(|P|)$ required if the "pattern" P is in the input.

Motivation:

- All input data must be known in advance
- Primitives for algorithms and data structures
 - linear size and $\mathcal{O}(1)$ query time crucial for applicability,
 - efficient construction important for applications in algorithms.

Range successor queries

Suffix tree + \bigcirc

problem-specific tools:

- Longest common prefix
- Min/Max suffix
- + efficient, often $\mathcal{O}(1)$ time queries with $\mathcal{O}(n)$ space,
- limited use.

Suffix tree a = bSuffix tree a = bSuffix tree a = bSuffix tree a = bSuffix tree bSuffix

problem-specific tools:

- Longest common prefix
- Min/Max suffix
- + efficient, often $\mathcal{O}(1)$ time queries with $\mathcal{O}(n)$ space,
- limited use.

Range successor queries

orthogonal range queries:

- Pattern matching-related
- Period queries
- + wide applicability,
- lower bounds for query time, slow construction.

Fact

$$x : \begin{bmatrix} a b a b a b a \end{bmatrix} \quad y : \begin{bmatrix} b b a b a b a b a b a b a b a \\ Occ(x, y) = \end{bmatrix}$$

Fact

Fact

$$x: \boxed{a b a b a b a} \quad y: \boxed{b b a b a b a b a b a b a a}$$
$$Occ(x, y) = \{3, 5,$$

Fact

$$x: \boxed{a b a b a b a} \quad y: \boxed{b b a b a b a b a b a b a a}$$
$$Occ(x, y) = \{3, 5, 7\}$$

Fact

Let Occ(x, y) be the positions in y where occurrences of x start. Occ(x, y) forms an arithmetic progression if $|y| \le 2|x|$.

$$T : [x: abababa] \quad y: bbabababababaa]$$
$$Occ(x, y) = \{3, 5, 7\}$$

Problem (INTERNAL PATTERN MATCHING QUERIES)

Given subwords x and y of T with $|y| \le 2|x|$, report all occurrences of x in y (as an arithmetic progression).

Fact

Let Occ(x, y) be the positions in y where occurrences of x start. Occ(x, y) forms an arithmetic progression if $|y| \le 2|x|$.

$$T : [x: abababa] \quad y: bbababababababaa]$$
$$Occ(x, y) = \{3, 5, 7\}$$

Problem (INTERNAL PATTERN MATCHING QUERIES)

Given subwords x and y of T with $|y| \le 2|x|$, report all occurrences of x in y (as an arithmetic progression).

•
$$\Theta\left(\frac{|y|}{|x|}\right)$$
 space is necessary to encode $Occ(x, y)$,

• Occ(x, y) can be computed with $\Theta\left(\frac{|y|}{|x|}\right)$ IPM QUERIES.

Problem (INTERNAL PATTERN MATCHING QUERIES)

Given subwords x and y of T with $|y| \le 2|x|$, report all occurrences of x in y (as an arithmetic progression).

Theorem

IPM QUERIES can be answered in $\mathcal{O}(1)$ time by a data structure of size $\mathcal{O}(n)$, which can be constructed in $\mathcal{O}(n)$ time.

Problem (INTERNAL PATTERN MATCHING QUERIES)

Given subwords x and y of T with $|y| \le 2|x|$, report all occurrences of x in y (as an arithmetic progression).

Theorem

IPM QUERIES can be answered in $\mathcal{O}(1)$ time by a data structure of size $\mathcal{O}(n)$, which can be constructed in $\mathcal{O}(n)$ time.

Technical assumptions:

• Word-RAM model with word-size $w = \Omega(\log n)$.

Problem (INTERNAL PATTERN MATCHING QUERIES)

Given subwords x and y of T with $|y| \le 2|x|$, report all occurrences of x in y (as an arithmetic progression).

Theorem

IPM QUERIES can be answered in $\mathcal{O}(1)$ time by a data structure of size $\mathcal{O}(n)$, which can be constructed in $\mathcal{O}(n)$ time.

Technical assumptions:

- Word-RAM model with word-size $w = \Omega(\log n)$.
- Construction:
 - randomized (Las Vegas, expected time),

Applications

Problem (PREFIX-SUFFIX QUERIES)

Problem (PREFIX-SUFFIX QUERIES)

Problem (PREFIX-SUFFIX QUERIES)

Problem (PREFIX-SUFFIX QUERIES)

Problem (PREFIX-SUFFIX QUERIES)

Given subwords x and y of T and $d \in \mathbb{N}$, report all prefixes of x of length between d and 2d that are also suffixes of y.

• $\mathcal{O}(1)$ time using IPM QUERIES.

Problem (PREFIX-SUFFIX QUERIES)

Given subwords x and y of T and $d \in \mathbb{N}$, report all prefixes of x of length between d and 2d that are also suffixes of y.

• $\mathcal{O}(1)$ time using IPM QUERIES.

Problem (PERIOD QUERIES)

Given a subword x of T, report all periods of x.

Problem (PREFIX-SUFFIX QUERIES)

Given subwords x and y of T and $d \in \mathbb{N}$, report all prefixes of x of length between d and 2d that are also suffixes of y.

• $\mathcal{O}(1)$ time using IPM QUERIES.

Problem (PERIOD QUERIES)

Given a subword x of T, report all periods of x.

• $\mathcal{O}(\log |x|)$ time using IPM QUERIES.

Tomasz Kociumaka, J. Radoszewski, W. Rytter, T. Waleń Internal Pattern Matching Queries in a Text

client

Problem (Cormode & Muthukrishnan; SODA 2005)

Given subwords x and y, compute LZ(x|y), i.e., the section of the Lempel-Ziv (LZ77) factorization LZ(y\$x) that corresponds to x.

Problem (Cormode & Muthukrishnan; SODA 2005)

Given subwords x and y, compute LZ(x|y), i.e., the section of the Lempel-Ziv (LZ77) factorization LZ(y\$x) that corresponds to x.

- data structure of $\mathcal{O}(n)$ size,
- query time improved from $\mathcal{O}(C\log \frac{|x|}{C}\log^{\varepsilon} n)$ to
 - $\mathcal{O}(C\log\log \frac{|\mathbf{x}|}{C}\log^{\varepsilon} n)$ where C is the output size,
- \bullet combines orthogonal range queries with $\mathrm{IPM}\ \mathrm{QUERIES}.$

Problem (CYCLIC EQUIVALENCE QUERIES)

Decide whether given subwords x and y are cyclic shifts of each other (x = uv and y = vu for some strings u and v).

• $\mathcal{O}(1)$ query time using IPM QUERIES.

Problem (CYCLIC EQUIVALENCE QUERIES)

Decide whether given subwords x and y are cyclic shifts of each other (x = uv and y = vu for some strings u and v).

• $\mathcal{O}(1)$ query time using IPM QUERIES.

Definition (δ -subrepetition)

A δ -subrepetition is a fragment x such that $per(x) \leq \frac{|x|}{1+\delta}$ and x cannot be extended (to the left or right) preserving per(x).

- Improved algorithm for finding δ -subrepetitions in a word:
 - first (expected) linear-time algorithm for $\delta = \Theta(1)$.

Problem (CYCLIC EQUIVALENCE QUERIES)

Decide whether given subwords x and y are cyclic shifts of each other (x = uv and y = vu for some strings u and v).

• $\mathcal{O}(1)$ query time using IPM QUERIES.

Definition (δ -subrepetition)

A δ -subrepetition is a fragment x such that $per(x) \leq \frac{|x|}{1+\delta}$ and x cannot be extended (to the left or right) preserving per(x).

- Improved algorithm for finding δ -subrepetitions in a word:
 - first (expected) linear-time algorithm for $\delta = \Theta(1)$.
- More applications through wavelet suffix trees:
 - substring suffix rank & selection,
 - substring compression using Burrows-Wheeler transform.

High-level Ideas

Main idea:

- Design (locally consistent) representative assignment
 - representatives of length 2^k with $\frac{|x|}{4} < 2^k \le \frac{|x|}{2}$,
 - store information about location of representative only.

Main idea:

- Design (locally consistent) representative assignment
 - representatives of length 2^k with $\frac{|x|}{4} < 2^k \le \frac{|x|}{2}$,
 - store information about location of representative only.

Main idea:

- Design (locally consistent) representative assignment
 - representatives of length 2^k with $\frac{|x|}{4} < 2^k \le \frac{|x|}{2}$,
 - store information about location of representative only.

Query algorithm:

1. Compute the representative z assigned to x.

Main idea:

- Design (locally consistent) representative assignment
 - representatives of length 2^k with $\frac{|x|}{4} < 2^k \le \frac{|x|}{2}$,
 - store information about location of representative only.

- 1. Compute the representative z assigned to x.
- 2. Find occurrences of z within y.

Main idea:

- Design (locally consistent) representative assignment
 - representatives of length 2^k with $\frac{|x|}{4} < 2^k \le \frac{|x|}{2}$,
 - store information about location of representative only.

- 1. Compute the representative z assigned to x.
- 2. Find occurrences of z (as representatives) within y.

Main idea:

- Design (locally consistent) representative assignment
 - representatives of length 2^k with $\frac{|x|}{4} < 2^k \le \frac{|x|}{2}$,
 - store information about location of representative only.

- 1. Compute the representative z assigned to x.
- 2. Find occurrences of z (as representatives) within y.
- 3. Check which occurrences of z extend to occurrences of x.

Main idea:

- Design (locally consistent) representative assignment
 - representatives of length 2^k with $\frac{|\mathbf{x}|}{4} < 2^k \leq \frac{|\mathbf{x}|}{2}$,
 - store information about location of representative only.

- 1. Compute the representative z assigned to x.
- 2. Find occurrences of z (as representatives) within y.
- 3. Check which occurrences of z extend to occurrences of x.

• use combinatorial and algorithmic tools for repetitions.

• use combinatorial and algorithmic tools for repetitions.

• use combinatorial and algorithmic tools for repetitions.

Query algorithm:

1. Extend z to a run. (Suppose it does not cover x.)

• use combinatorial and algorithmic tools for repetitions.

- 1. Extend z to a run. (Suppose it does not cover x.)
- 2. Find runs of the same period in y.

• use combinatorial and algorithmic tools for repetitions.

- 1. Extend z to a run. (Suppose it does not cover x.)
- 2. Find runs of the same period in y.
- 3. Generate candidates using run endpoints.

• use combinatorial and algorithmic tools for repetitions.

- 1. Extend z to a run. (Suppose it does not cover x.)
- 2. Find runs of the same period in y.
- 3. Generate candidates using run endpoints.
- 4. Check which candidates are indeed occurrences.

Representative: any periodic subword of appropriate length.

• use combinatorial and algorithmic tools for repetitions.

Query algorithm:

1. Extend z to a run. (Suppose it covers x.)

Representative: any periodic subword of appropriate length.

• use combinatorial and algorithmic tools for repetitions.

- 1. Extend z to a run. (Suppose it covers x.)
- 2. Find runs of the same period in y.

Representative: any periodic subword of appropriate length.

• use combinatorial and algorithmic tools for repetitions.

- 1. Extend z to a run. (Suppose it covers x.)
- 2. Find runs of the same period in y.
- 3. Synchronize runs using Lyndon roots.

Representative: any periodic subword of appropriate length.

• use combinatorial and algorithmic tools for repetitions.

- 1. Extend z to a run. (Suppose it covers x.)
- 2. Find runs of the same period in y.
- 3. Synchronize runs using Lyndon roots.
- 4. Output occurrences in bulk.

Non-periodic Representatives

Non-periodic representatives:

Non-periodic representatives:

- occurrences of z in y cannot overlap too much;
 - $\mathcal{O}(1)$ occurrences within y.

Non-periodic representatives:

- occurrences of z in y cannot overlap too much;
 - $\mathcal{O}(1)$ occurrences within y.

Representative assignment:

- occurrences of z in y cannot overlap too much;
 - $\mathcal{O}(1)$ occurrences within *y*.
- Representative assignment:
 - minimal subword of appropriate length wrt. a random order
 - guaranteed local consistence,

- occurrences of z in y cannot overlap too much;
 - $\mathcal{O}(1)$ occurrences within *y*.
- Representative assignment:
 - minimal subword of appropriate length wrt. a random order
 - guaranteed local consistence,
 - neighbouring patterns often share the representative,

- occurrences of z in y cannot overlap too much;
 - $\mathcal{O}(1)$ occurrences within *y*.
- Representative assignment:
 - minimal subword of appropriate length wrt. a random order
 - guaranteed local consistence,
 - neighbouring patterns often share the representative,

- occurrences of z in y cannot overlap too much;
 - $\mathcal{O}(1)$ occurrences within *y*.
- Representative assignment:
 - minimal subword of appropriate length wrt. a random order
 - guaranteed local consistence,
 - neighbouring patterns often share the representative,

- occurrences of z in y cannot overlap too much;
 - $\mathcal{O}(1)$ occurrences within *y*.
- Representative assignment:
 - minimal subword of appropriate length wrt. a random order
 - guaranteed local consistence,
 - neighbouring patterns often share the representative,

- occurrences of z in y cannot overlap too much;
 - $\mathcal{O}(1)$ occurrences within *y*.
- Representative assignment:
 - minimal subword of appropriate length wrt. a random order
 - guaranteed local consistence,
 - neighbouring patterns often share the representative,

- occurrences of z in y cannot overlap too much;
 - $\mathcal{O}(1)$ occurrences within *y*.
- Representative assignment:
 - minimal subword of appropriate length wrt. a random order
 - guaranteed local consistence,
 - neighbouring patterns often share the representative,
 - in total $\mathcal{O}(n)$ representatives with $\mathcal{O}(n)$ occurrences as a representative.

- a O(n)-size data structure for IPM QUERIES with O(1)-time queries and O(n)-expected time construction,
- \bullet several applications of $\mathrm{IPM}\ \mathrm{QUERIES}$:
 - further internal queries,
 - faster algorithms.

- a O(n)-size data structure for IPM QUERIES with O(1)-time queries and O(n)-expected time construction,
- \bullet several applications of $\mathrm{IPM}\ \mathrm{QUERIES}$:
 - further internal queries,
 - faster algorithms.

Open problems:

• More applications of IPM QUERIES.

- a O(n)-size data structure for IPM QUERIES with O(1)-time queries and O(n)-expected time construction,
- \bullet several applications of $\mathrm{IPM}\ \mathrm{QUERIES}$:
 - further internal queries,
 - faster algorithms.

Open problems:

- More applications of IPM QUERIES.
- Design a deterministic construction algorithm...
 - or an algorithm running in $\mathcal{O}(n)$ time w.h.p.

- a O(n)-size data structure for IPM QUERIES with O(1)-time queries and O(n)-expected time construction,
- \bullet several applications of $\mathrm{IPM}\ \mathrm{QUERIES}$:
 - further internal queries,
 - faster algorithms.

Open problems:

- More applications of IPM QUERIES.
- Design a deterministic construction algorithm...
 - or an algorithm running in $\mathcal{O}(n)$ time w.h.p.
- Can shortest periods be computed in $o(\log |x|)$ time?
 - Is there any lower bound for this problem?

Thank you for your attention!