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Partial words

b b ♦ a b b ♦ a b b ♦ b a b b b ♦♦

b b ♦ a b b ♦ a b b ♦ b a b b b ♦♦
b b ♦ a ♦

≈

b b ♦ a b b ♦ a b b ♦ b a b b b ♦♦
b b ♦ a ♦

6≈

♦ — don’t care symbol (hole)

♦ ≈ c for every c ∈ Σ ∪ {♦}
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Indeterminate strings

a b
c
c d a
b
c a
d
b c a
c
d

b a
c
c
d
a b
c
a b c
d

a b
c
c d a
b
c a
d
b c a
c
d

b a
c
c
d
a b
c
a b c
d

a b
c
c d a
b
c a
d
b c a
c
d

b a
c
c
d
a b
c
a b c
d

a
b
b
d
c a
b
d

b

≈

a b
c
c d a
b
c a
d
b c a
c
d

b a
c
c
d
a b
c
a b c
d

a
b
b
d
c a
b
d

b

6≈

Symbols — non-empty subsets of Σ

Non-solid symbols — subsets of size at least 2

A ≈ B if A ∩B 6= ∅
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Covering a solid string

Definition (Apostolico, Farach, Iliopoulos; 1991)

A string S is a cover of a string T if each position in T lies
within an occurrence of S.

a a b a a
a a b a a

a a b a a
a a b a a

a a b a a

a a b a
a a b a

a a b a
a a b a

a a b a

a a b a a a b a a b a a a b a a a a b a a

a a
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Covering a solid string

Definition (Apostolico, Farach, Iliopoulos; 1991)
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S = aaba is not a cover.
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Results for solid strings

Linear-time algorithms for natural problems:

1991; Apostolico et al. shortest cover

1992; Breslauer shortest cover (online)

1994; Moore & Smyth all covers

2002; Li & Smyth all covers (online)

Numerous generalizations:

1992; Iliopoulos & Smyth k-covers

1993; Iliopoulos et al. seeds

2002; Sim et al. approximate covers

2012; Flouri et al. enhanced covers

2013; K. et al. partial covers
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Covering partial words and indeterminate strings

Definition
A solid string S is a cover of an indeterminate string T if each
position in T lies within an occurrence of S.

a a b a b
a a b a b

a a b a b
a a b a b
a a b a b

♦ a ♦ a b a ♦ a b a b a a ♦ a ♦ a b

S = aabab is a cover of T
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Results for partial words and indeterminate strings

Problem
Find a shortest cover of a given indeterminate string T .

n length of T

k number of non-solid symbols in T

σ alphabet size (σ ≤ n)

:

NP-hardness, already for binary partial words,

O(nk4 + 2O(k log k))-time algorithm,

2o(
√
k)nO(1) lower bound already for binary partial words

(under ETH).
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How to guess a cover? (in typical cases)

Checking whether a solid string S is a cover is easy.

We can afford verifying polynomially many candidates.

b b b a b b ♦ a b b b b a b b b ♦♦
b b b a b b b b a b

b b b a b b b b a b

b b b a b
b b b a b

b b b a b
b b b a b

b ♦ a b b b b a b b b ♦♦b b b a bb b ♦ a b b ♦ a b b b b a b b b ♦♦b b b a bb b ♦ a b b ♦ a b b b ♦♦b b ♦ a b b ♦ a b b ♦ b a b b b ♦♦b b ♦ a b b ♦ b a bb ♦ a b b b ♦♦
b ♦ b a b b b ♦ a bb b b a b b b b a b

Attempts:

1. Guess ` = |S|. Succeed if T [1..`] is solid.

2. Guess ` = |S| and i ∈ Occ(S, T ). Succeed if
T [i..i+ `− 1] is solid.

3. Guess ` = |S| and i ∈ Occ(S, T ). Succeed if
T [i..i+ `− 1] ∩ T [1..`] is solid.
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Which covers could we miss?

a a b a b
a a b a b

a a b a b
a a b a b
a a b a b

♦ a ♦ a b a ♦ a b a b a a ♦ a ♦ a b

♦ a ♦ a b a ♦ a b a b a a ♦ a ♦ a b
♦ a b a ♦
♦ a ♦ a b

a a b a b
a a b a b
a a b a b

♦ a ♦ a b a ♦ a b a b a a ♦ a ♦ a b
♦ a b a b
a a b a b

♦ a ♦ a b
a a b a b
a a b a b

♦ a ♦ a b a ♦ a b a b a a ♦ a ♦ a b
a a ♦ a ♦
a a b a b

a a b a b
♦ a ♦ a b
a a b a b

♦ a ♦ a b a ♦ a b a b a a ♦ a ♦ a b
♦ a ♦ a b
a a b a b

a a b a b
a a b a b
♦ a ♦ a b♦ a ♦ a b a ♦ a b a b a a ♦ a ♦ a b♦ a ♦ a b a ♦ a b a b a a ♦ a ♦♦ a ♦ a b a ♦ a b a b a a ♦♦ a ♦ a b a ♦ a b a b a♦ a ♦ a b a ♦ a b a b♦ a ♦ a b a ♦ a b♦ a ♦ a b a ♦♦ a ♦ a b♦ a ♦

If S was not found, then for each i ∈ Occ(S, T ) there
exists j such that T [1 + j] = T [i+ j] = ♦.

Moreover, T [1..j] ≈ T [i..i+ j − 1].

Here ambiguous positions (A) are: 1

, 3, 5, 7, 8, 10, 12,
14, and 16.
In general, there are at most 1 + k(k−1)

2
= O(k2)

ambiguous positions.
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Covering set of a cover

a b a a a b

a b a a a b

a b a a a b

a b a a a b

a b a a a b
a b a a a b

a b a a a b

a b a a a b

a b a a a b

a b a a a b

a b a a a b

a b a ♦ a ♦♦♦ a ♦♦ a a b a a a b

1 5 9 133 63 5 6 9 1311 3 5 6 9 131 3 5 6 139

Definition
A set P ⊆ Occ(S, T ) is a covering set for S if every position
in T is covered by at least one occurrence of S in P .

When P is a covering set?
minP = 1,
maxP = |T | − |S|+ 1,
|q − p| ≤ |S| for any two consecutive p, q ∈ P .
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How to check covering sets?

We could miss covers S with Occ(S, T ) ⊆ A.
We will find covers which admit a covering set P ⊆ A.
There are 2O(k

2) possibilities for P . How to check one?

♦ a ♦ a b a ♦ a b a b a a ♦ a ♦ a b
♦ a ♦ a b a ♦ a b a b a a ♦ a ♦ a b♦ a ♦ a b a ♦ a b a b a a ♦ a ♦♦ a ♦ a b a ♦ a b a b a a ♦♦ a ♦ a b a ♦ a b a b a♦ a ♦ a b a ♦♦ a ♦ a b♦ a ♦
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1

18 ♦ ♦ ♦ ♦ ♦

3

10 ♦ b b - -

5

8 b ♦ b - -

7

8 ♦ b a - -

12

7 a ♦ b - -

14

5 ♦ ♦ - - -

16

3 ♦ b - - -
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♦ a ♦

i ` 1 3 6 13 15
1 18 ♦ ♦ ♦ ♦ ♦
3 10 ♦ b b - -
5 8 b ♦ b - -
7 8 ♦ b a - -
12 7 a ♦ b - -
14 5 ♦ ♦ - - -
16 3 ♦ b - - -

Crochemore, Iliopoulos, Kociumaka, Radoszewski, Rytter, Waleń Covering Partial Words and Indeterminate Strings 11/16



How to check covering sets?

We could miss covers S with Occ(S, T ) ⊆ A.
We will find covers which admit a covering set P ⊆ A.
There are 2O(k

2) possibilities for P . How to check one?

P = {1, 3, 7, 12, 14, 16}

|S| = 3 12− 7 > 3 NO

i ` 1 3 6 13 15
1 18 ♦ ♦ ♦ ♦ ♦
3 10 ♦ b b - -
5 8 b ♦ b - -
7 8 ♦ b a - -
12 7 a ♦ b - -
14 5 ♦ ♦ - - -
16 3 ♦ b - - -

Crochemore, Iliopoulos, Kociumaka, Radoszewski, Rytter, Waleń Covering Partial Words and Indeterminate Strings 11/16



How to check covering sets?

We could miss covers S with Occ(S, T ) ⊆ A.
We will find covers which admit a covering set P ⊆ A.
There are 2O(k

2) possibilities for P . How to check one?

P = {1, 3, 7, 12, 14, 16}
|S| = 3 12− 7 > 3 NO

i ` 1 3 6 13 15
1 18 ♦ ♦ ♦ ♦ ♦
3 10 ♦ b b - -
5 8 b ♦ b - -
7 8 ♦ b a - -
12 7 a ♦ b - -
14 5 ♦ ♦ - - -
16 3 ♦ b - - -

Crochemore, Iliopoulos, Kociumaka, Radoszewski, Rytter, Waleń Covering Partial Words and Indeterminate Strings 11/16



How to check covering sets?

We could miss covers S with Occ(S, T ) ⊆ A.
We will find covers which admit a covering set P ⊆ A.
There are 2O(k

2) possibilities for P . How to check one?

P = {1, 7, 12}

|S| = 7 mismatch at position 6 NO

i ` 1 3 6 13 15
1 18 ♦ ♦ ♦ ♦ ♦
3 10 ♦ b b - -
5 8 b ♦ b - -
7 8 ♦ b a - -
12 7 a ♦ b - -
14 5 ♦ ♦ - - -
16 3 ♦ b - - -

Crochemore, Iliopoulos, Kociumaka, Radoszewski, Rytter, Waleń Covering Partial Words and Indeterminate Strings 11/16



How to check covering sets?

We could miss covers S with Occ(S, T ) ⊆ A.
We will find covers which admit a covering set P ⊆ A.
There are 2O(k

2) possibilities for P . How to check one?

P = {1, 7, 12}
|S| = 7 mismatch at position 6 NO
i ` 1 3 6 13 15
1 18 ♦ ♦ ♦ ♦ ♦
3 10 ♦ b b - -
5 8 b ♦ b - -
7 8 ♦ b a - -
12 7 a ♦ b - -
14 5 ♦ ♦ - - -
16 3 ♦ b - - -

Crochemore, Iliopoulos, Kociumaka, Radoszewski, Rytter, Waleń Covering Partial Words and Indeterminate Strings 11/16



How to check covering sets?

We could miss covers S with Occ(S, T ) ⊆ A.
We will find covers which admit a covering set P ⊆ A.
There are 2O(k

2) possibilities for P . How to check one?

P = {1, 3, 7, 12, 14}

|S| = 5 S[1] = a S[3] = b YES

i ` 1 3 6 13 15
1 18 ♦ ♦ ♦ ♦ ♦
3 10 ♦ b b - -
5 8 b ♦ b - -
7 8 ♦ b a - -
12 7 a ♦ b - -
14 5 ♦ ♦ - - -
16 3 ♦ b - - -

Crochemore, Iliopoulos, Kociumaka, Radoszewski, Rytter, Waleń Covering Partial Words and Indeterminate Strings 11/16



How to check covering sets?

We could miss covers S with Occ(S, T ) ⊆ A.
We will find covers which admit a covering set P ⊆ A.
There are 2O(k

2) possibilities for P . How to check one?

P = {1, 3, 7, 12, 14}
|S| = 5 S[1] = a S[3] = b YES
i ` 1 3 6 13 15
1 18 ♦ ♦ ♦ ♦ ♦
3 10 ♦ b b - -
5 8 b ♦ b - -
7 8 ♦ b a - -
12 7 a ♦ b - -
14 5 ♦ ♦ - - -
16 3 ♦ b - - -

Crochemore, Iliopoulos, Kociumaka, Radoszewski, Rytter, Waleń Covering Partial Words and Indeterminate Strings 11/16



Do we need to verify all subsets?

We could only miss covers S such that for each i ∈ Occ(S, T )
we have T [1 + j] = T [i+ j] = ♦ for some j < |S|.

Every occurrence of i ∈ P covers a non-solid position.

a b a a a b
a b a a a b

a b a a a b

a b a a a b
a b a a a b

a b a a a b

a b a a a b
a b a a a b

a b a ♦ a ♦♦♦ a ♦♦ a a b a a a b

If P is minimal, every position is covered by 1 or 2
occurrences i ∈ P .
It suffices to consider P with |P| ≤ 2k,(

|A|
≤ 2k

)
= O(22k log |A|) = 2O(k log k).
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How to fill few holes?

i ` 1 3 6 13 15
1 18 ♦ ♦ ♦ ♦ ♦
3 10 ♦ b b - -
5 8 b ♦ b - -
7 8 ♦ b a - -
12 7 a ♦ b - -
14 5 ♦ ♦ - - -
16 3 ♦ b - - -

Can guessing still help?

1. maxP = |T | − |S|+ 1 (O(|A|) choices)

2. Some i ∈ P (O(|A|) choices).

3. How to fill ♦’s in the i-th row (O(|A|h) choices).
Fail if more than h ♦’s, check candidates otherwise.
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Which subsets do we still need to check?

Which covers could we still miss?

T [1..|S|] ∩ T [i..i+ |S| − 1] has at least h+ 1 holes for
each i ∈ Occ(S, T ).

Every occurrence i ∈ P covers at least h+ 1 non-solid
symbols.

|P | ≤ 2 k
h+1

if P is minimal.(
|A|
≤ 2 k

h+1

)
= 2O( k log k

h ).

In total:

O(|A|h+2) = 2O(h log k) for guessing,

O(|A|h+2) = 2O(
k
h
log k) for finding missed covers,

2O(
√
k log k) for h =

√
k.
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Conclusions and open problems

Our results:

O(nk4 + 2O(k log k))-time algorithm,

O(nk4 + 2O(
√
k log k))-time version for partial words,

2o(
√
k)nO(1) lower bound already for binary partial words

(under ETH).

Open problems:
Are indeterminate strings inherently harder?
For constant alphabets, no!

What is the right exponent for partial words?
For constant alphabets, at most O(

√
k log k)!

Polynomial kernel?
For partial words, yes! (obtained through NP-hardness)
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Thank you

Thank you for your attention!

Full version available at http://arxiv.org/abs/1412.3696.
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