Covering Problems for Partial Words
and for Indeterminate Strings

Maxime Crochemore®?, Costas S. Iliopoulos!?, Tomasz Kociumaka®*,
Jakub Radoszewski***, Wojciech Rytter*:®, and Tomasz Waleri*

! Dept. of Informatics, King’s College London, London, UK
[maxime.crochemore,c.iliopoulos]@kcl.ac.uk
2 Université Paris-Est, France
3 Faculty of Engineering, Computing and Mathematics,
University of Western Australia, Perth, Australia
4 Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, Warsaw, Poland
[kociumaka, jrad,rytter,walen] @mimuw.edu.pl
5 Faculty of Mathematics and Computer Science,
Copernicus University, Torun, Poland

Abstract. We consider the problem of computing a solid cover of an
indeterminate string. An indeterminate string may contain non-solid
symbols, each of which specifies a subset of the alphabet that could
be present at the corresponding position. We also consider covering
partial words, which are a special case of indeterminate strings where
each non-solid symbol is a don’t care symbol. We prove that both in-
determinate string covering problem and partial word covering problem
are NP-complete for binary alphabet and show that both problems are
fixed-parameter tractable with respect to k, the number of non-solid
symbols. For the indeterminate string covering problem we obtain a
20klogk) L O _time algorithm. For the partial word covering problem
we obtain a 20(VF108%) 4 O _time algorithm. We prove that, unless
the Exponential Time Hypothesis is false, no 2°(VF) (M) _time solution
exists for this problem, which shows that our algorithm for this case is
close to optimal. We also present an algorithm for both problems which
is feasible in practice.

1 Introduction

A classic string is a sequence of symbols from a given alphabet Y. In an inde-
terminate string, some positions may contain, instead of a single symbol from X/
(called a solid symbol), a subset of X. Such a non-solid symbol indicates that
the exact symbol at the given position is not known, but is suspected to be one
of the specified symbols. The simplest type of indeterminate strings are partial
words, in which every non-solid symbol is a don’t care symbol, denoted here
(other popular notation is x).

* Supported by Polish budget funds for science in 2013-2017 as a research project
under the 'Diamond Grant’ program.
** The author receives financial support of Foundation for Polish Science.

Motivations for indeterminate strings can be found in computational biology,
musicology and other areas. In computational biology, analogous juxtapositions
may count as matches in protein sequences. In fact the FASTA format® represent-
ing nucleotide or peptide sequences specifically includes indeterminate letters.
In music, single notes may match chords, or notes separated by an octave may
match; see [10].

Algorithmic study of indeterminate strings is mainly devoted to pattern
matching. The first efficient algorithm was proposed by Fischer and Paterson
for strings with don’t care symbols [9]. Faster algorithms for this case were af-
terwards given in [21, 15, 16]. Pattern matching for general indeterminate strings,
known as generalized string matching, was first considered by Abrahamson [1].
Since then numerous variants of pattern matching in indeterminate strings were
considered. There were also practical approaches to the original problem; see
[10,22] for some recent examples. A survey on partial words, related mostly to
their combinatorics, can be found in a book by Blanchet-Sadri [6].

The notion of cover belongs to the area of quasiperiodicity, that is, a gen-
eralization of periodicity in which the occurrences of the period may overlap
[3]. A cover of a classical string s is a string that covers all positions of s with
its occurrences. Covers in classical strings were already extensively studied. A
linear-time algorithm finding the shortest cover of a string was given by Apos-
tolico et al. [4] and later on improved into an on-line algorithm by Breslauer [7].
A linear-time algorithm computing all the covers of a string was proposed by
Moore & Smyth [20]. Afterwards an on-line algorithm for the all-covers problem
was given by Li & Smyth [18]. Other types of quasiperiodicities are seeds [12, 17]
and numerous variants of covers and seeds, including approximate and partial
covers and seeds.

The main problem considered here is as follows: Given an indeterminate
string, find the length of its shortest solid cover; see Fig. 1. We can actually
compute a shortest solid cover itself and all the lengths of solid covers, at no
additional cost in the complexity. However, for simplicity we omit the description
of such extensions in this version of the paper.

bbaa bbaa bbab bbab
1 1 I 1 I
bbaa bbaa bbab bbab

bb<OOCabbd<dbacd bb<OOCabbd<dbacd

Fig. 1. Partial word bb{>{abb<{>bald with its two shortest covers. Note that the same
non-solid symbol can match two different solid symbols for two different occurrences
of the same cover.

Throughout the paper we use the following notations: n for the length of the
given indeterminate string, k£ for the number of non-solid symbols in the input,
and o for the size of the alphabet. We assume that 2 < ¢ < n and that each

6 http://en.wikipedia.org/wiki/FASTA format

non-solid symbol in the indeterminate string is represented by a bit vector of
size o. Thus the size of the input is O(n + ok).

The first attempts to the problem of indeterminate string covering were made
in [2,5,11]. However, they considered indeterminate strings as covers and pre-
sented some partial results for this case. The common assumption of these papers
is that o = O(1); moreover, in [2,5] the authors considered only so-called con-
servative indeterminate strings, for which k£ = O(1).

Our results: In Section 3 we show an O(no*/2k€(M)-time algorithm for covering
indeterminate strings with a simple implementation. In Section 4 we obtain an
O(20(klogk) 1 5O time algorithm. In the same section we devise a more
efficient solution for partial words with O(?O(ﬁlog k) +nk®M)-time complexity.
Finally in Section 5 we show that both problems are NP-complete already for
binary alphabet. As a by-product we obtain that under the Exponential Time
Hypothesis no O(Qo(ﬂ)no(l))—time solution exists for both problems.

2 Preliminaries

An indeterminate string (i-string, for short) T of length |T'| = n over a finite
alphabet X is a sequence T'[1]...T[n] such that T[i] C X, T[i] # 0. If |T[¢]| = 1,
that is, T'[¢] represents a single symbol of X, we say that T'[i] is a solid symbol.
For convenience we often write that T'[i] = ¢ instead of T'[i] = {c} in this case
(c € X). Otherwise we say that T'[i] is a non-solid symbol. In what follows by k
we denote the number of non-solid symbols in the considered i-string 7" and by
o we denote |X|. If kK = 0, we call T' a (solid) string. We say that two i-strings
U and V match (denoted as U =~ V) if |U| = |V| and for each i = 1,...,|U]| we
have U[i] N V[i] # 0.

Ezample 1. Let A = a{b,c}, B = a{a,b}, C = aa be indeterminate strings (C
is a solid string). Then A ~ B, B ~ C, however, A % C.

If all T[i] are either solid or equal to X then T is called a partial word. In
this case the non-solid “don’t care” symbol is denoted as <.

By TVi..j] we denote a factor T'[i]...T[j] of T. If i« = 1 then it is called a
prefix and if j = n then it is called a suffix. We say that a pattern i-string S
occurs in a text i-string T at position j if S matches T'[j..j +|S|—1]. A border of
T is a solid string which matches both a prefix and a suffix of T'. A border-length
of T is a positive integer equal to the length of a border of T. A cover of T is
a solid string S such that, for each ¢ = 1,...,n, there exists an occurrence of S
in T" that contains the position 4, i.e., an occurrence of S at one of the positions
{i —|S|+1,...,i}. Note that, just as in solid strings, every cover of T is also a
border of T.

Example 2. The shortest cover of an i-string 7" need not be one of the shortest
covers of the solid strings matching T'. E.g., for the i-string a{>b, where { =
{a, b}, the shortest cover ab has length 2, whereas none of the solid strings aab,
abb has a cover of length 2.

The following simple observation is an important tool in our algorithms.

Observation 3. There are at most k* values (shifts) i € {1,...,n} such that
T[14 4] and T[i + €] are both non-solid for some £.

For convenience, we compute the set T[¢| N T[j] for each pair T[i], T[j] of
non-solid symbols of T, and label different sets with different integers, so that
afterwards we can refer to any of them in O(1) space. In particular, after such
O(ok?)-time preprocessing, we can check in O(1) time if any two positions of T
match.

A longest common prefix (LCP) query in T, denoted as lep(4, j), is a query
for the longest matching prefix of the i-strings T[i..n] and T'[j..n]. Recall that
for a solid string we can construct in O(n) time a data structure that answers
LCP-queries in O(1) time, see [8]. Note that an LCP-query in an i-string can be
reduced to O(k) LCP-queries in a solid string:

Lemma 4. For an i-string with k non-solid symbols, after O(nk?)-time prepro-
cessing, one can compute the LCP of any two positions in O(k) time.

Lemma 4 lets us efficiently check if given pairs of factors of an i-string match
and thus it has useful consequences.

Corollary 5. Given i-strings S and T of total length n containing k non-solid
symbols in total, one can compute Occ(S,T), the list of all positions where S
occurs in T, in O(nk?) time.

Corollary 6. The set of all border-lengths of an i-string can be computed in
O(nk?) time.

Note that a solid string of length at least % is a cover of T' if and only if it is a
border of T'. Therefore Corollary 6 enables us to easily solve the covering problem
for cover lengths at least half of the word length. In the following sections we
search only for the covers of length at most {%J

3 Algorithm Parameterized by k and o

Let T be an i-string of length n with k non-solid symbols. We assume that
T[1..|%]] contains at most k/2 holes (otherwise we reverse the i-string).
We say that S is a solid prefiz of T'if S is a solid string that matches T71..|S]].

For an increasing list of integers L = [i1,i2,13,...,im], m > 2, we define
maxgap(L) = max{i;41 — iz : t=1,...,m—1}.

A set P C Oce(S,T) is a covering set for S if maxgap(P U {n +1}) <5/, i.e.,
the occurrences of S at positions in P already cover the whole text T

We introduce a ShortestCover(S, L) subroutine which, for a given solid prefix
S of T and an increasing list of positions L, checks if there is a cover of T which
is a prefix of S for which the covering set is a sublist of L and, if so, returns the
length of the shortest such cover. A pseudocode of this operation can be found
on the next page. Correctness of the algorithm follows from the fact that

ShortestCover(S,L) = min {j : maxgap (U Lyu{n+ 1}) < j}.

t>j

Algorithm ShortestCover(S, L)
Input: S: a solid prefix of T’; L: a sublist of {1,...,n}

Output: The length of the shortest cover which is a prefix of S and has a
covering set being a sublist of L

preprocessing:
foreach i € L do dist[i] := lcp(S, T'[i..n]);
D := {dist[i] : i€ L}
foreach j e Ddo L; := {ie€ L : distli]=j};
L:=LU{n+1}
processing:
foreach j € D in increasing order do
if maxgap(L) < j then return maxgap(L);
foreach i € L; do remove ¢ from L;

return no solution;

Lemma 7. The algorithm ShortestCover(S, L) works in O(nk) time assuming
that the data structure of Lemma 4 is accessible.

Proof. Assume that each time we remove an element from the list we update
maxgap(L). Then maxgap(L) may only increase. Each operation on the list L,
including update of maxgap(L), is performed in O(1) time.

By Lemma 4, all Icp values can be computed in O(nk) time. The lists L; can
be computed easily in total time O(n). |

The shortest cover of T' of length at most |n/2] is a prefix of a solid prefix
of T of length |n/2]. By the assumption made in the beginning of this section,
T has at most o*/2 solid prefixes of length |n/2]. For each of them we run
the ShortestCover(S, L) algorithm with L = {1,...,n}. Lemma 7 implies the
following result.

Theorem 8. The shortest cover of an i-string with k non-solid symbols can be
computed in O(no*/2k) time.

4 Algorithm Parameterized by k

A border-length of T is called ambiguous if there are at least two different solid
borders of T' of this length, otherwise it is called unambiguous. A border of T
is called unambiguous if it corresponds to an unambiguous border-length. By
Observation 3, there are at most k% ambiguous border-lengths. The main idea
of this section is to classify potential covers into two categories depending on
whether the length is an unambiguous or an ambiguous border length.

Each unambiguous border is uniquely determined by its length. The solution
for this case works in O(nk*) time and uses the subroutine from Section 3. As for
the second class, the number of ambiguous border-lengths is at most k2. Hence,
in this case the problem reduces to testing if there is a cover of a given length (this
is still quite nontrivial; as we show later, the whole problem is NP-complete). In
fact, the main difficulty is caused by the ambiguous borders.

Covering with Unambiguous Borders. For an i-string U of length m and
a position ¢ in T such that U ~ T'[i..i + m — 1], we define:

Uoi=ULNT[,...,Uml 0T +m—1].

Note that, for a prefix U of T, any i-string of the form U ® 4 can be represented
in O(k) space (we only store the positions corresponding to non-solid symbols
of U). Also every solid prefix of T" has such a small representation. We call this
a sparse representation.

Example 9. Let T = bb>OabbdObaa and U = bdal>. Then
Ul=Uo6=>0bbad, UO2=>0laa, U®T7=>blab, and U ® 9 = bbaa.
The sparse representations of these i-strings are (b, &), (¢, a), (¢,b) and (b, a).

A technical modification of the algorithm ShortestCover is required to show
the following lemma. We omit its full proof in this version of the paper.

Lemma 10. Let C be a collection of pairs (S, L), where each S is a solid prefix of
T given in the sparse representation and each L is an increasing list of positions
in T. If IC] < n and 3 (g yec L] = O(nk?) then ShortestCover(S, L) for all

instances (S, L) € C can be computed in O(nk?) time.

By SolidOcc(U,T) (NonSolidOcc(U,T')) we denote the lists of all occurrences
1 € Occ(U,T) for which U ®1 is a solid string (is not a solid string, respectively).
All occurrences of U in T can be found using Corollary 5, and divided into
these two sets in O(nk?) time. By Observation 3, if U is a prefix of T then
|NonSolidOcc(U, T)| < k2.

Example 11. Let U = a>, T = bb{)<HabbdH<Oba>. Then
SolidOcc(U,T) = {4,5,9}, NonSolidOcc(U,T) = {3,8,11}.

Theorem 12. The shortest cover being an unambiguous border can be computed
in O(nk*) time.

Proof. Let T be an i-string of length n and p; < ps < ... < p, be all non-
solid symbols in its first half. Let pp = 1 and p,41 = [n/2] + 1. We divide all
border-lengths into disjoint intervals [p;,pj41 — 1], for j =0,...,r.

Consider the interval I = [p;,p;4+1 — 1] and let U = T[1..p;]. We compute
the lists E = SolidOcc(U,T) and H = NonSolidOcc(U,T). Note that for each
unambiguous border-length d € I we haven —d+1 € F.

We construct a set C of different pairs (S, L), where each S is of the form:

S:(UQZ)T[p]‘i’lpJ_Fl*l] for i€ FE

and L is the list of occurrences of U ® ¢ in E merged with the list H. If the
shortest cover of T' corresponds to an unambiguous border-length from I, it will
be found in one of ShortestCover(S, L) calls for (S, L) € C. Note that the lists
L are disjoint on positions from E and |H| < k?. We apply Lemma 10 for C to
obtain O(nk?) time for one instance I, U, and O(nk?) time in total. O

Covering using Ambiguous Border-Lengths. In this section we are search-
ing for a solid cover of T which matches its given prefix U = T'[1..m]. We intro-
duce the following auxiliary problem.

Problem 13. Given an i-string T, an integer m and a set P C Occ(T[1..m],T),
find a solid cover S ~ T[1..m] with a corresponding covering set P’ C P or state
that no such S, P’ exist.

In Lemma 14 we use the ShortestCover algorithm in a very similar way to the
proof of Theorem 12. We omit the details.

Lemma 14. Problem 13 can be solved in O(nk3) time if the set
P' N SolidOcc(T[1..m), T) is non-empty.

For an integer m € {1,..., |[n/2]} and a set of positions P’, we introduce an
auxiliary operation TestCover(m,P’) which returns true iff there is a cover of T
of length m for which P’ is a covering set. This operation is particularly simple
to implement for partial words; see the following lemma.

Lemma 15. After O(22%k + nk?)-time preprocessing, TestCover(m,P’) can be
implemented in O(|P'|k) time. If T is a partial word then O(nk?)-time prepro-
cessing suffices.

Proof. First consider the simpler case when T is a partial word. By definition,
P’ can be a covering set for a cover of length m if and only if 1 € P’ and
maxgap(P’ U {n + 1}) < m. These conditions can be easily checked in O(|P’])
time without any preprocessing.

Now it suffices to check if there is a solid string S of length m such that
Tli.i+m —1] ~ S for all i € P’. After O(nk?)-time preprocessing, we can
compute lep(1,4) for all ¢ € P’ and check if each of those values is at least m.
If not, then certainly such a string S does not exist. Otherwise, let the set Y
contain positions of all don’t care symbols in T[1..m]. We need to check, for each
7 €Y, if the set

X;={Tli—-1+4j] :ieP'}

contains at most one solid symbol. This last step is performed in O(|P’| k) time.

If T is a general i-string, the only required change is related to processing the
X sets. If a set X; contains a solid symbol, then it suffices to check if this symbol
matches all the other symbols in this set. Otherwise we need some additional
preprocessing.

Let Z be the set of all non-solid positions in 7. We wish to compute, for
each subset of Z, if there is a single solid symbol matching all the positions
in this subset. For this, we first reduce the size of the alphabet. For each solid
symbol ¢ € X, we find the subset of Z which contains this symbol. Note that
if for two different solid symbols these subsets are equal, we can remove one of
those symbols from the alphabet (just for the preprocessing phase). This way
we reduce the alphabet size to at most 2. Afterwards we simply consider each
subset of Z and look for a common solid symbol, which takes O(22%k) time. O

We use Lemma 15 to obtain a solution to Problem 13.

Lemma 16. If |P| < k2, Problem 13 can be solved in O(2037/™) 18 \Plnk /m +
22k + nk?) time or O(22%/™) 108|Plnk /m + nk?) time if T is a partial word.

Proof. Assume there is a solid string S & T[1..m] for which there exists a cov-
ering set P’ = {i1,...,4,} € P in T and further assume that [P’| is minimal.
Notice that for each j € {1,...,7—2},4;42 > i;+m. Indeed, otherwise P'\ {341}
would also be a covering set for S in T. Hence, r < 2n/m.

In the algorithm we choose every subset P’ C P of size at most |2n/m| and
run TestCover(m,P’). By Lemma 15, the whole algorithm works in

O(2*k+nk?+ > (T)ik) = 0 (22k +nk? + [P/ 2)

i<2n/m
=0 (2(2"/m) 081Plpf /m + 22Fk + nk2)

time. If T is a partial word, the 22*k term can be dropped. a

Theorem 17. The shortest cover of an i-string with k non-solid symbols can be
computed in O(20F108k) L nk5) time.

Proof. As candidates for the length of the shortest cover of a given i-string
T of length n, we consider all border-lengths. By Theorem 12, we can con-
sider all unambiguous border-lengths in O(nk*) time. There are at most k2
ambiguous border-lengths. If the cover of such a length m has an occurrence
in SolidOcc(T[1..m], T), due to Lemma 14 it can be computed in O(nk?) time.
Across all lengths this gives O(nk®) time.

Note that, by the pigeonhole principle, T' must contain a solid factor of length
at least Z—jr’f Thus, if m < %Z—jr’f, any cover of length m must have an occur-
rence within this factor, and consequently an occurrence in SolidOcc(T'[1..m], T).
Therefore, if the cover has no occurrence in SolidOcc(T'[1..m],T), we have m >
;T_fz' If k < % this concludes that m > %= and consequently Lemma 16 for
P = NonSolidOcc(T[1..m], T) yields an O(20*1°8%) L nk2)-time algorithm. Oth-
erwise k = O(n). Hence, Lemma 16 applied for |P| < k? yields an 20(logk) —
20(klogk)_time solution. O

More Efficient Covering of Partial Words. The Exponential Time Hypoth-
esis (ETH) [13,19] asserts that for some & > 0 the 3-CNF-SAT problem cannot
be solved in O(2°P) time, where p is the number of variables. By the Sparsifica-
tion Lemma [14, 19], ETH implies that for some ¢ > 0 the 3-CNF-SAT problem
cannot be solved in (9(25(”“”)), and consequently in 2°PT™) time, where m is
the number of clauses.

We show an algorithm for covering partial word which is more efficient than
the generic algorithm for covering i-string. We also show that, unless ETH is
false, our algorithm is not far from optimal.

Theorem 18.

(a) The shortest cover of a partial word with k don’t care symbols can be com-
puted in O(20VElogk) L nk5) time.

(b) Unless the Exponential Time Hypothesis is false, there is no 20(VE) O _time
algorithm computing the shortest cover of a partial word over binary alphabet.

Proof. (a) We improve the algorithm from the proof of Theorem 17. The only
part of that algorithm that does not work in O(nk®) time is searching for a cover
of length m being an ambiguous border-length of T, having all its occurrences
in H = NonSolidOcc(T[1..m],T). Recall that |[H| < k?. We solve this part more
efficiently for partial word T

Let U = T'[1..m]. Let P C H be the set of positions such that ¢ € P if and
only if U ® i has at most vk don’t care symbols. We consider two cases.

Case 1: the cover of length m has an occurrence ¢ € P. Let iy,...,4. be the
don’t care positions in U ® 4. Let My, ..., M, be the sets of all solid symbols at
positions i1,...,4,. of U ® j for j € H. If any of the sets M, is empty, we insert
an arbitrary symbol from X to it.

Let us construct all possible strings by inserting symbols from My, ..., M,
at positions i1, ...,%, in U ®¢. For each such solid string S, we simply compute
a list L of all positions j € H such that U ® j = S and check if 1 € L and if
maxgap(LU{n+1}) < m. Sincer < vk and |M,| < |H| < k*foralla =1,...,r,
this shows that Case 1 can be solved in O(kQ‘/EH) = 20(VFklogk) time,

Case 2: the cover of length m has all its occurrences in H \ P. Let us divide T
into |v/k| fragments of length at least |n/v/k| each. By the pigeonhole principle,
at least one of those fragments contains at most |vk] don’t care symbols. No
occurrence of the cover may be located totally inside this fragment. Therefore,
m > Lﬁj Lemma 16 solves this case in 20(VF1o8%) 1 O (nk?) time.

(b) In Section 5 we show that the satisfiability problem (CNF-SAT) with p
variables and m clauses can be reduced to finding the shortest cover of a binary
partial word of length n = O((p + m)?). Thus, unless ETH is false, the latter

problem has no 2°(v"_time solution, i.e., no 20(VE) 1, 0(1) solution. a

5 Hardness of covering i-strings and partial words

The negative results obtained for partial words remain valid in the more general
setting of the i-strings, so in this section we consider partial words only. We shall
prove that the following decision problem is NP-complete.

Problem 19 (d-COVER IN PARTIAL WORDS). Given a partial word T of
length n over an alphabet Y and an integer d, decide whether there exists a
solid cover S of T of length d.

We will reduce from the CNF-SAT problem. Recall that in this problem we
are given a Boolean formula with p variables and m clauses, C1 ACy A ... AC)y,,
where each clause C; is a disjunction of (positive or negative) literals, and our
goal is to check if there exists an interpretation that satisfies the formula. Below
we present a problem which is equivalent to the CNF-SAT problem, but more
suitable for our proof.

Problem 20 (UNIVERSAL MISMATCH). Given binary partial words Wy,..., W,
each of length p, check if there exists a binary partial word V' of length p such
that V % W, for any 1.

Observation 21. The UNIVERSAL MISMATCH problem is equivalent to the
CNF-SAT problem, and consequently it is NP-complete.

Ezample 22. Consider the formula
o= (x1VaaV-ox3Vas) A -z Vag) A(nxe VasV-oxs)

with m = 3 and five variables (z1,x9, 3, x4, x5). In the corresponding instance
of the UNIVERSAL MISMATCH problem, for each clause C; we construct a partial
word W; such that W;[j] =0 if z; € C;, Wi[j] = 1 if —x; € C;, and W;[j] = ¢
otherwise:

W1 = 00150, Wy =16000, Wy = $10401.

The interpretations (1,0,1,1,0), (1,1,1,1,0) satisfy ¢. They correspond to par-
tial words 10110, 11110 and 1110, none of which matches any of the partial
words Wl, WQ, Wg.

Consider an instance W = (Wq,...,W,,), |W;| = p, of the UNIVERSAL
MisMATCH problem. We construct a binary partial word T of length O(p(p+m))
which, as an instance of the d-COVER IN PARTIAL WORDS with d = 4p + 2, is
equivalent to W. Due to space constraints, we do not give a rigorous correctness
proof of our construction.

We define a morphism

h: 0—0100, 1- 0001, < — 0000,

and construct 7" so that V' is a solution to W if and only if S = 11 h(V') covers T
The word T is of the form 117”51 ... Bpyw, - .. Yw,,, where m = 0$0< and ;,
yw are gadgets to be specified later. These gadgets are chosen so that any d-cover
of T must be a d-cover of each gadget string.

The prefix 117P of T enforces that any d-cover S of T is of the form S =
11sy...sp where s; = 7 for each j. Thus, in order to make sure that S is of the
form h(V') for some partial word V', for each j we need to rule out the possibility
that s; = 0101. To this end, we define 8; = 11 7P~ 04+ 00 (1.

Lemma 23. Let S = 11s;...5, be a solid string with s; = m for each i. Then
S covers B; if and only if s; # 0101.

Consequently, the d-covers of 11773, ... 8, are precisely the strings of the form
11A(V) for binary partial words V of length p.

We encode the constraints V' % W using gadgets vy = 11u(WF)01)¢, where
W1 denotes the reverse of a partial word W and p is the following morphism:

o 020000, 120000, & — 0000

Lemma 24. Let V and W be binary partial words of length p. Then 11h(V)
covers yw if and only if V & W.

Note that 11h(V) covers vy if and only if it occurs in p(W#)01$*P. Thus the
key idea behind the proof of Lemma 24 is the following relation between p and
h; see also Fig. 2.

10

"
[1]1]o]1]ofofofofo[1][of1]ofofofofo]1] [1]1]o]1]ofofof1]ofo[o[1]o]0]
[e[eJoJefo]e[e]o]o]o o o oo o o o 1 o 0] [oJeJefefe]e]o]e]o o o o o 1 o 0]
R e——
w(0) w(Y) w(1) w(Y)
(a) (b)

Fig. 2. Tllustration of Lemma 25: an occurrence of 11h(Xc) in p(c'Y) 01O for (a)
Xec = 0101, 'Y = 01$0; (b) Xc = 000, 'Y = 100. In general, 11h(Xc) is a prefix of
u(dY)01$G if c=1and ¢ =0, and a suffix — if c=0and ¢’ = 1.

Lemma 25. Let ¢, € {0,1,0}, and let X, Y be partial words of the same
length. Then 11h(Xe¢) occurs in u(c'Y)01 OO if and only if c % .

The reduction described above shows that the d-COVER IN PARTIAL WORDS
problem, restricted to the binary alphabet, is NP-hard. Clearly, this problem also
belongs to NP, which yields the main result of this section.

Theorem 26. The d-COVER IN PARTIAL WORDS problem is NP-complete even
for the binary alphabet.

6 Conclusions

We considered the problems of finding the length of the shortest solid cover of
an indeterminate string and of a partial word. The main results of the paper
are fixed-parameter tractable algorithms for these problems parameterized by
k, that is, the number of non-solid symbols in the input. For the partial word
covering problem we obtain an O (QO(ﬂlog) + nk®M)-time algorithm whereas
for covering a general indeterminate string we obtain an Q(20(klogk) 4 ,EO1)).
time algorithm. The latter can actually be improved to O(2°*) + nk®M) time
by extending the tools used in the proof of Theorem 18. In all our algorithms
a shortest cover itself and all the lengths of covers could be computed without
increasing the complexity.

One open problem is to determine if the shortest cover of indeterminate
strings can be found as fast as the shortest cover of partial words. Another
question is to close the complexity gap for the latter problem, considering the
lower bound resulting from the Exponential Time Hypothesis, which yields that
no 2°0VE) 0 _time solution exists for this problem.

References

1. Abrahamson, K.R.: Generalized string matching. SIAM Journal on Computing
16(6), 1039-1051 (1987)

11

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Antoniou, P., Crochemore, M., Iliopoulos, C.S., Jayasekera, 1., Landau, G.M.: Con-
servative string covering of indeterminate strings. In: Holub, J., Zd4rek, J. (eds.)
Prague Stringology Conference 2008. pp. 108-115. Czech Technical University,
Prague (2008)

Apostolico, A., Ehrenfeucht, A.: Efficient detection of quasiperiodicities in strings.
Theoretical Computer Science 119(2), 247-265 (1993)

. Apostolico, A., Farach, M., Iliopoulos, C.S.: Optimal superprimitivity testing for

strings. Information Processessing Letters 39(1), 17-20 (1991)

Bari, M.F., Rahman, M.S., Shahriyar, R.: Finding all covers of an indeterminate
string in O(n) time on average. In: Holub, J., Zdérek, J. (eds.) Prague Stringology
Conference 2009. pp. 263-271. Czech Technical University, Prague (2009)
Blanchet-Sadri, F.: Algorithmic Combinatorics on Partial Words. Chapman &
Hall/CRC Press, Boca Raton, FL (2008)

Breslauer, D.: An on-line string superprimitivity test. Information Processing Let-
ters 44(6), 345-347 (1992)

Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge Uni-
versity Press (2007)

Fischer, M.J., Paterson, M.S.: String matching and other products. In: Karp, R.M.
(ed.) Complexity of Computation. STAM-AMS Proceedings, vol. 7, pp. 113-125.
AMS, Providence, RI (1974)

Holub, J., Smyth, W.F., Wang, S.: Fast pattern-matching on indeterminate strings.
Journal of Discrete Algorithms 6(1), 37-50 (2008)

Iliopoulos, C.S., Mohamed, M., Mouchard, L., Perdikuri, K., Smyth, W.F., Tsaka-
lidis, A.K.: String regularities with don’t cares. Nordic Journal of Computing 10(1),
40-51 (2003)

Iliopoulos, C.S., Moore, D., Park, K.: Covering a string. Algorithmica 16(3), 288—
297 (1996)

Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. Journal of Computer
and System Sciences 62(2), 367-375 (2001)

Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? Journal of Computer and System Sciences 63(4), 512-530 (2001)
Indyk, P.: Faster algorithms for string matching problems: Matching the convolu-
tion bound. In: 39th Annual Symposium on Foundations of Computer Science. pp.
166-173. IEEE Computer Society, Los Alamitos, CA (1998)

Kalai, A.: Efficient pattern-matching with don’t cares. In: Eppstein, D. (ed.)
13th Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 655—656. STAM,
Philadelpha, PA (2002)

Kociumaka, T., Kubica, M., Radoszewski, J., Rytter, W., Waleni, T.: A linear time
algorithm for seeds computation. In: Rabani, Y. (ed.) 23rd Annual ACM-SIAM
Symposium on Discrete Algorithms. pp. 1095-1112. STAM, Philadelpha, PA (2012)
Li, Y., Smyth, W.F.: Computing the cover array in linear time. Algorithmica 32(1),
95-106 (2002)

Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the Exponential
Time Hypothesis. Bulletin of the EATCS 105, 41-72 (2011)

Moore, D., Smyth, W.F.: Computing the covers of a string in linear time. In:
Sleator, D.D. (ed.) 5th Annual ACM-SIAM Symposium on Discrete Algorithms.
pp- 511-515. SIAM, Philadelpha, PA (1994)

Muthukrishnan, S., Palem, K.V.: Non-standard stringology: algorithms and com-
plexity. In: 26th Annual ACM Symposium on Theory of Computing. pp. 770-779.
ACM, New York, NY (1994)

Smyth, W.F., Wang, S.: An adaptive hybrid pattern-matching algorithm on inde-
terminate strings. International Journal of Foundations of Computer Science 20(6),
985-1004 (2009)

12

