Efficient Indexes for Jumbled Pattern Matching with Constant-Sized Alphabet

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter

University of Warsaw, Poland

Sophia Antipolis, September 2, 2013

Definition

$$\Sigma = \{a, b, c\}$$
 $w = abbac$ $\mathcal{P}(w) = (2, 2, 1)$

Definition

$$\Sigma = \{a, b, c\}$$
 $w = \frac{a}{b} b \frac{a}{b} c$ $\mathcal{P}(w) = (2, 2, 1)$

Definition

$$\Sigma = \{a, b, c\}$$
 $w = abbac$ $\mathcal{P}(w) = (2, 2, 1)$

Definition

$$\Sigma = \{a, b, c\}$$
 $w = abbac$ $\mathcal{P}(w) = (2, 2, 1)$

Definition

Let w be a word over Σ . A Parikh vector $\mathcal{P}(w)$ counts for each letter $a \in \Sigma$ its number of occurrences in w.

$$\Sigma = \{a, b, c\}$$
 $w = abbac$ $\mathcal{P}(w) = (2, 2, 1)$

Definition

Words u, w are commutatively equivalent if $\mathcal{P}(u) = \mathcal{P}(w)$.

abbac \approx acbab bab $\not\approx$ aba

Definition

Let w be a word over Σ . A Parikh vector $\mathcal{P}(w)$ counts for each letter $a \in \Sigma$ its number of occurrences in w.

$$\Sigma = \{a, b, c\}$$
 $w = abbac$ $\mathcal{P}(w) = (2, 2, 1)$

Definition

Words u, w are commutatively equivalent if $\mathcal{P}(u) = \mathcal{P}(w)$.

abbac
$$\approx$$
acbab bab $arrow$ aba

Definition

The norm |p| of a Parikh vector p is the sum of its entries.

2/15

Definition

Let p be a Parikh vector of norm d. We say that p occurs at position i of a word w if $p = \mathcal{P}(w[i, i + d - 1])$.

The occurrences of (1, 2, 2, 1) in abcabcdcbacdabbcacdc are

Definition

Let p be a Parikh vector of norm d. We say that p occurs at position i of a word w if $p = \mathcal{P}(w[i, i + d - 1])$.

The occurrences of (1, 2, 2, 1) in abcabcdcbacdabbcacdc are 2

Definition

Let p be a Parikh vector of norm d. We say that p occurs at position i of a word w if $p = \mathcal{P}(w[i, i + d - 1])$.

The occurrences of (1, 2, 2, 1) in abcabcdcbacdabbcacdc are 2, 4

Definition

Let p be a Parikh vector of norm d. We say that p occurs at position i of a word w if $p = \mathcal{P}(w[i, i + d - 1])$.

The occurrences of (1, 2, 2, 1) in abcabcdcbacdabbcacdc are 2, 4, 5

Definition

Let p be a Parikh vector of norm d. We say that p occurs at position i of a word w if $p = \mathcal{P}(w[i, i + d - 1])$.

The occurrences of (1, 2, 2, 1) in abcabcdcbacdabbcacdc are 2, 4, 5, 11

a b c a b c d c b a c d a b b c a c d c

Definition

Let p be a Parikh vector of norm d. We say that p occurs at position i of a word w if $p = \mathcal{P}(w[i, i + d - 1])$.

The occurrences of (1, 2, 2, 1) in abcabcdcbacdabbcacdc are 2, 4, 5, 11, 14.

abcabcdcbacdabbcacdc

Definition

Let p be a Parikh vector of norm d. We say that p occurs at position i of a word w if $p = \mathcal{P}(w[i, i + d - 1])$.

The occurrences of (1, 2, 2, 1) in abcabcdcbacdabbcacdc are 2, 4, 5, 11, 14.

abcabcdcbacdabbcacdc

Problem (Abelian index)

For a word w build a data structure which given a Parikh vector p efficiently decides whether p occurs in w.

E.g. (1, 2, 2, 1) occurs in abcabcdcbacdabbcacdc, while (1, 2, 1, 2) does not.

3/15

Previous Results for Abelian Index

Binary alphabet:

- \$\mathcal{O}(n)\$ size, \$\mathcal{O}(1)\$ query time, \$\mathcal{O}(n^2)\$ construction time (Cicalese et al., 2009)
- \$\mathcal{O}(\frac{n^2}{\log n})\$ construction time
 (Burcsi et al., 2010; Moosa & Rahman, 2010)
- $\mathcal{O}(\frac{n^2}{\log^2 n})$ construction time (Moosa & Rahman, 2012)

Binary alphabet:

- \$\mathcal{O}(n)\$ size, \$\mathcal{O}(1)\$ query time, \$\mathcal{O}(n^2)\$ construction time (Cicalese et al., 2009)
- \$\mathcal{O}(\frac{n^2}{\log n})\$ construction time
 (Burcsi et al., 2010; Moosa & Rahman, 2010)
- \$\mathcal{O}(\frac{n^2}{\log^2 n})\$ construction time (Moosa & Rahman, 2012)

For larger alphabets naive solutions only:

- O(n) query time (run a jumbled pattern matching algorithm),
- $\mathcal{O}(n^2)$ size (memorize all answers in a hash table).

- Alphabet with $\sigma = \mathcal{O}(1)$ letters.
- Word-RAM, randomized (construction only).

- Alphabet with $\sigma = \mathcal{O}(1)$ letters.
- Word-RAM, randomized (construction only).

Theorem (in this presentation & in the paper)

For any $\delta \in (0,1)$ there exists an index with $\mathcal{O}(n^{2-\delta})$ size, $\mathcal{O}(m^{\delta(2\sigma-1)})$ query time, where m is the norm of the pattern, and $\mathcal{O}(n^2)$ construction time.

- Alphabet with $\sigma = \mathcal{O}(1)$ letters.
- Word-RAM, randomized (construction only).

Theorem (in this presentation & in the paper)

For any $\delta \in (0,1)$ there exists an index with $\mathcal{O}(n^{2-\delta})$ size, $\mathcal{O}(m^{\delta(2\sigma-1)})$ query time, where m is the norm of the pattern, and $\mathcal{O}(n^2)$ construction time.

Theorem (in the paper)

There exists an index with $\mathcal{O}(\frac{n^2 \log \log n}{\log n})$ size, $\mathcal{O}((\frac{\log n}{\log \log n})^{(2\sigma-1)})$ query time and $\mathcal{O}(\frac{n^2 \log^2 \log n}{\log n})$ construction time.

- Alphabet with $\sigma = \mathcal{O}(1)$ letters.
- Word-RAM, randomized (construction only).

Theorem (in this presentation & in the paper)

For any $\delta \in (0,1)$ there exists an index with $\mathcal{O}(n^{2-\delta})$ size, $\mathcal{O}(m^{\delta(2\sigma-1)})$ query time, where m is the norm of the pattern, and $\mathcal{O}(n^2)$ construction time.

Theorem (in the paper)

There exists an index with
$$\mathcal{O}(\frac{n^2 \log \log n}{\log n})$$
 size, $\mathcal{O}((\frac{\log n}{\log \log n})^{(2\sigma-1)})$
query time and $\mathcal{O}(\frac{n^2 \log^2 \log n}{\log n})$ construction time.

Theorem (unpublished)

There exists an index with
$$\mathcal{O}(n^{2-\delta})$$
 size, $\mathcal{O}((\frac{m^{\delta}\log m}{\log \log m})^{(2\sigma-1)})$ query time and $\mathcal{O}(\frac{n^{2}\log^{2}\log n}{\log n})$ construction time.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter

• Every (reasonable) query q has its norm $|q| \in \{1, \ldots, n\}$.

- Every (reasonable) query q has its norm $|q| \in \{1, \ldots, n\}$.
- We divide $\{1, \ldots, n\}$ into several ranges. For each range, queries with norm in that range are answered by a separate data structure.

- Every (reasonable) query q has its norm $|q| \in \{1, \ldots, n\}$.
- We divide $\{1, \ldots, n\}$ into several ranges. For each range, queries with norm in that range are answered by a separate data structure.
- For each possible query norm we need to remember the responsible layer.

- Every (reasonable) query q has its norm $|q| \in \{1, \ldots, n\}$.
- We divide $\{1, \ldots, n\}$ into several ranges. For each range, queries with norm in that range are answered by a separate data structure.
- For each possible query norm we need to remember the responsible layer.
- The layer responsible for $\{d, \ldots, d+L\}$ is called the (d, L)-layer.

- Every (reasonable) query q has its norm $|q| \in \{1, \ldots, n\}$.
- We divide $\{1, \ldots, n\}$ into several ranges. For each range, queries with norm in that range are answered by a separate data structure.
- For each possible query norm we need to remember the responsible layer.
- The layer responsible for $\{d, \ldots, d+L\}$ is called the (d, L)-layer.

- Every (reasonable) query q has its norm $|q| \in \{1, \ldots, n\}$.
- We divide $\{1, \ldots, n\}$ into several ranges. For each range, queries with norm in that range are answered by a separate data structure.
- For each possible query norm we need to remember the responsible layer.
- The layer responsible for $\{d, \ldots, d+L\}$ is called the (d, L)-layer.

- Every (reasonable) query q has its norm $|q| \in \{1, \ldots, n\}$.
- We divide $\{1, \ldots, n\}$ into several ranges. For each range, queries with norm in that range are answered by a separate data structure.
- For each possible query norm we need to remember the responsible layer.
- The layer responsible for $\{d, \ldots, d + L\}$ is called the (d, L)-layer.

- Fix a word w and positive integers (d, L) such that d + L ≤ |w|.
- We develop the (d, L)-layer for w.

- Fix a word w and positive integers (d, L) such that d + L ≤ |w|.
- We develop the (d, L)-layer for w.

Definition

- Fix a word w and positive integers (d, L) such that d + L ≤ |w|.
- We develop the (*d*, *L*)-layer for *w*.

Definition

- Fix a word w and positive integers (d, L) such that d + L ≤ |w|.
- We develop the (d, L)-layer for w.

Definition

- Fix a word w and positive integers (d, L) such that d + L ≤ |w|.
- We develop the (d, L)-layer for w.

Definition

- Fix a word w and positive integers (d, L) such that d + L ≤ |w|.
- We develop the (d, L)-layer for w.

Definition

Parikh vetors of norm within $\{d, \ldots, d + L\}$ are called *relevant* vectors and vectors of norm d – ground vectors.

For words we use an analogous terminology.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter

Definition

Let v be a ground word. We say that a relevant word u is an extension of v if u = vv' for some word v'.

Definition

Let v be a ground word. We say that a relevant word u is an extension of v if u = vv' for some word v'.

• A relevant word is an extension of a unique ground word.

Definition

Let v be a ground word. We say that a relevant word u is an extension of v if u = vv' for some word v'.

- A relevant word is an extension of a unique ground word.
- A ground word has O(σ^{d'}) extensions of length d + d', which gives O(σ^L) relevant extensions in total.

• The number of extensions of a word is exponential in L.

8/15

Definition

Let p be a ground vector. We say that a relevant vector q is an extension of p if q = p + p' for some Parikh vector p'.

Definition

Let p be a ground vector. We say that a relevant vector q is an extension of p if q = p + p' for some Parikh vector p'.

• A relevant vector of length d + d' is an extension of at most $\binom{d'+\sigma-1}{\sigma-1} = \mathcal{O}(d'^{\sigma-1})$ ground vectors.

Definition

Let p be a ground vector. We say that a relevant vector q is an extension of p if q = p + p' for some Parikh vector p'.

- A relevant vector of length d + d' is an extension of at most $\binom{d'+\sigma-1}{\sigma-1} = \mathcal{O}(d'^{\sigma-1})$ ground vectors.
- A ground vector has O(d'^{σ-1}) extensions of length d + d', which gives O(L^σ) relevant extensions in total.

• The number of extensions of a vector is polynomial in L.

8/15

- We can store a list of occurrences for each ground vector present in *w* (in a hash map)
 - $\mathcal{O}(n)$ space.

- We can store a list of occurrences for each ground vector present in *w* (in a hash map)
 - $\mathcal{O}(n)$ space.
- We divide the ground vectors into *heavy* and *light*.
 - *Heavy* vectors have many occurrences, more than possible extensions: we have enough SPACE to store the extensions present in *w* in a hash set.
 - *Light* vectors have few occurrences: we have enough TIME to scan all of them within queries.
 - The threshold on the number of occurrences is set to L^σ.

Components:

- a hash map *M* assigning each light ground vector the list of its occurrences,
- a hash set S of relevant vectors extending the occurrences of heavy ground vectors,
- Parikh vectors of prefixes of w.

Components:

- a hash map *M* assigning each light ground vector the list of its occurrences,
- a hash set S of relevant vectors extending the occurrences of heavy ground vectors,
- Parikh vectors of prefixes of w.

Space usage: $\mathcal{O}(n)$ words

- Each vector in S is an extension of a heavy ground vector, and each heavy ground vector has more occurrences than extensions in S, so |S| = O(n).
- Clearly the remaining components also take $\mathcal{O}(n)$ space.

Components:

- a hash map *M* assigning each light ground vector the list of its occurrences,
- a hash set S of relevant vectors extending the occurrences of heavy ground vectors,
- Parikh vectors of prefixes of w.
- Construction: $\mathcal{O}(nL)$ time
 - Compute the Parikh vector of each ground factor.
 - Generate the list of occurrences for each.
 - Store the list for light vectors in *M*.
 - For each occurrence of a heavy vector, add to *S* the relevant vectors occurring at the same position.

The (d, L)-Layer: Queries

The algorithm for a relevant vector q:

- Check if q is present in S.
- So For each light ground vector p such that q is an extension of p, and for each occurrence i of p (obtained from M) check whether $q = \mathcal{P}(w[1, i + |q| 1]) \mathcal{P}(w[1, i 1])$.

The (d, L)-Layer: Queries

The algorithm for a relevant vector q:

- Check if q is present in S.
- **②** For each light ground vector *p* such that *q* is an extension of *p*, and for each occurrence *i* of *p* (obtained from *M*) check whether *q* = $\mathcal{P}(w[1, i + |q| 1]) \mathcal{P}(w[1, i 1])$.

Correctness. Each occurrence of *q* extends an occurrence of a ground vector *p*:

- if p is heavy, then q is detected in the first step,
- if *p* is light, then *q* is detected in the second step.

The (d, L)-Layer: Queries

The algorithm for a relevant vector q:

- Check if q is present in S.
- So For each light ground vector *p* such that *q* is an extension of *p*, and for each occurrence *i* of *p* (obtained from *M*) check whether *q* = $\mathcal{P}(w[1, i + |q| 1]) \mathcal{P}(w[1, i 1])$.

Correctness. Each occurrence of q extends an occurrence of a ground vector p:

- if p is heavy, then q is detected in the first step,
- if *p* is light, then *q* is detected in the second step.

Complexity. A query is answered in $\mathcal{O}(L^{2\sigma-1})$ time:

- there are $\mathcal{O}(L^{\sigma-1})$ ground vectors p whose extension is q,
- for the light ones, there are up to L^{σ} occurrences,
- a single check takes $\mathcal{O}(\sigma) = \mathcal{O}(1)$ time.

Theorem

For any $\delta \in (0,1)$ there exists an index with $\mathcal{O}(n^{2-\delta})$ size, $\mathcal{O}(m^{\delta(2\sigma-1)})$ query time, where m is the norm of the pattern, and $\mathcal{O}(n^2)$ construction time.

- We divide {1,..., n} greedily into layers with L = [d^δ], i.e. we build (d_i, L_i)-layers with d₁ = 1, L_i = [d^δ_i], d_{i+1} = d_i + L_i + 1.
- In total, this gives $\mathcal{O}(n^{1-\delta})$ layers.
- If (d_i, L_i)-layer is reponsible for q, then L_i = O(|q|^δ), i.e. the query can be answered in O(|q|^{δ(2σ−1)}) time.

Quick Overview of Subquadratic Construction

• The only bottleneck is finding relevant vectors which occur as extensions of heavy ground vectors.

• Set
$$L = \Theta(\frac{\log d}{\sigma \log \log d})$$
.

- Parikh vectors of norm ≤ L can be assigned integer identifiers, L identifiers fit a single machine word (we call such word a *packed set*).
- For each word of length ≤ L (only o(d)) we precompute a packed set containing (Abelian) identifiers of its prefixes.
- We use bit-parallelism to efficiently compute the set-theoretic union of packed sets.
- For each heavy ground vector, we apply this operation for vectors occurring right after its occurrences.
- Finally we *unpack* the union and store the corresponding Parikh vectors in the hash set *S*.

• The first Abelian index with $o(n^2)$ space and o(n) query time for alphabets of constant but arbitrarily large size.

- The first Abelian index with $o(n^2)$ space and o(n) query time for alphabets of constant but arbitrarily large size.
- The size of the index is actually strongly subquadratic, i.e. o(n^{2-ε}), and the query time strongly sublinear in pattern size, i.e. o(m^{1-ε}).

- The first Abelian index with $o(n^2)$ space and o(n) query time for alphabets of constant but arbitrarily large size.
- The size of the index is actually strongly subquadratic, i.e. o(n^{2-ε}), and the query time strongly sublinear in pattern size, i.e. o(m^{1-ε}).
- An index with o(n²) construction time and O(polylog(m)) queries.

Thank you for your attention!