Efficient Indexes for Jumbled Pattern Matching with Constant-Sized Alphabet

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter
University of Warsaw, Poland

Sophia Antipolis, September 2, 2013

Commutative Equivalence and Parikh Vectors

Definition

Let w be a word over Σ. A Parikh vector $\mathcal{P}(w)$ counts for each letter $a \in \Sigma$ its number of occurrences in w.

$$
\Sigma=\{a, b, c\} \quad w=\mathrm{abbac} \quad \mathcal{P}(w)=(2,2,1)
$$

Commutative Equivalence and Parikh Vectors

Definition

Let w be a word over Σ. A Parikh vector $\mathcal{P}(w)$ counts for each letter $a \in \Sigma$ its number of occurrences in w.

$$
\Sigma=\{a, b, c\} \quad w=\mathrm{abbac} \quad \mathcal{P}(w)=(2,2,1)
$$

Commutative Equivalence and Parikh Vectors

Definition

Let w be a word over Σ. A Parikh vector $\mathcal{P}(w)$ counts for each letter $a \in \Sigma$ its number of occurrences in w.

$$
\Sigma=\{a, b, c\} \quad w=\mathrm{abbac} \quad \mathcal{P}(w)=(2,2,1)
$$

Commutative Equivalence and Parikh Vectors

Definition

Let w be a word over Σ. A Parikh vector $\mathcal{P}(w)$ counts for each letter $a \in \Sigma$ its number of occurrences in w.

$$
\Sigma=\{a, b, c\} \quad w=\mathrm{abbac} \quad \mathcal{P}(w)=(2,2,1)
$$

Commutative Equivalence and Parikh Vectors

Definition

Let w be a word over Σ. A Parikh vector $\mathcal{P}(w)$ counts for each letter $a \in \Sigma$ its number of occurrences in w.

$$
\Sigma=\{a, b, c\} \quad w=\mathrm{abbac} \quad \mathcal{P}(w)=(2,2,1)
$$

Definition

Words u, w are commutatively equivalent if $\mathcal{P}(u)=\mathcal{P}(w)$.

$$
\mathrm{abbac} \approx \mathrm{acbab} \quad \mathrm{bab} \not \approx \mathrm{aba}
$$

Commutative Equivalence and Parikh Vectors

Definition

Let w be a word over Σ. A Parikh vector $\mathcal{P}(w)$ counts for each letter $a \in \Sigma$ its number of occurrences in w.

$$
\Sigma=\{a, b, c\} \quad w=\mathrm{abbac} \quad \mathcal{P}(w)=(2,2,1)
$$

Definition

Words u, w are commutatively equivalent if $\mathcal{P}(u)=\mathcal{P}(w)$.

$$
\mathrm{abbac} \approx \mathrm{acbab} \quad \mathrm{~b} a b \not \approx \mathrm{aba}
$$

Definition

The norm $|p|$ of a Parikh vector p is the sum of its entries.

Jumbled Pattern Matching, Index Definition

Definition

Let p be a Parikh vector of norm d. We say that p occurs at position i of a word w if $p=\mathcal{P}(w[i, i+d-1])$.

The occurrences of $(1,2,2,1)$ in abcabcdcbacdabbcacdc are
$a b c a b c d c b a c d a b b c a c d c$

Jumbled Pattern Matching, Index Definition

Definition

Let p be a Parikh vector of norm d. We say that p occurs at position i of a word w if $p=\mathcal{P}(w[i, i+d-1])$.

The occurrences of $(1,2,2,1)$ in abcabcdcbacdabbcacdc are 2

$$
a \mathrm{~b} \text { cabcdcbacdabbcacdc }
$$

Jumbled Pattern Matching, Index Definition

Definition

Let p be a Parikh vector of norm d. We say that p occurs at position i of a word w if $p=\mathcal{P}(w[i, i+d-1])$.

The occurrences of $(1,2,2,1)$ in abcabcdcbacdabbcacdc are 2, 4
$a b c a b c d c b a c d a b b c a c d c$

Jumbled Pattern Matching, Index Definition

Definition

Let p be a Parikh vector of norm d. We say that p occurs at position i of a word w if $p=\mathcal{P}(w[i, i+d-1])$.

The occurrences of $(1,2,2,1)$ in abcabcdcbacdabbcacdc are 2, 4, 5
$a b c a b c d c b a c d a b b c a c d c$

Jumbled Pattern Matching, Index Definition

Definition

Let p be a Parikh vector of norm d. We say that p occurs at position i of a word w if $p=\mathcal{P}(w[i, i+d-1])$.

The occurrences of $(1,2,2,1)$ in abcabcdcbacdabbcacdc are 2, 4, 5, 11

Jumbled Pattern Matching, Index Definition

Definition

Let p be a Parikh vector of norm d. We say that p occurs at position i of a word w if $p=\mathcal{P}(w[i, i+d-1])$.

The occurrences of $(1,2,2,1)$ in abcabcdcbacdabbcacdc are 2, 4, 5, 11, 14.
$a b c a b c d a b a c d a b b c a c c$

Jumbled Pattern Matching, Index Definition

Definition

Let p be a Parikh vector of norm d. We say that p occurs at position i of a word w if $p=\mathcal{P}(w[i, i+d-1])$.

The occurrences of $(1,2,2,1)$ in abcabcdcbacdabbcacdc are 2, 4, 5, 11, 14.
a b c a b c d c b a c d a b b c a c d c

Problem (Abelian index)

For a word w build a data structure which given a Parikh vector p efficiently decides whether p occurs in w.
E.g. (1, 2, 2, 1) occurs in abcabcdcbacdabbcacdc, while $(1,2,1,2)$ does not.

Previous Results for Abelian Index

Binary alphabet:

- $\mathcal{O}(n)$ size, $\mathcal{O}(1)$ query time, $\mathcal{O}\left(n^{2}\right)$ construction time (Cicalese et al., 2009)
- $\mathcal{O}\left(\frac{n^{2}}{\log n}\right)$ construction time (Burcsi et al., 2010; Moosa \& Rahman, 2010)
- $\mathcal{O}\left(\frac{n^{2}}{\log ^{2} n}\right)$ construction time (Moosa \& Rahman, 2012)

Previous Results for Abelian Index

Binary alphabet:

- $\mathcal{O}(n)$ size, $\mathcal{O}(1)$ query time, $\mathcal{O}\left(n^{2}\right)$ construction time (Cicalese et al., 2009)
- $\mathcal{O}\left(\frac{n^{2}}{\log n}\right)$ construction time (Burcsi et al., 2010; Moosa \& Rahman, 2010)
- $\mathcal{O}\left(\frac{n^{2}}{\log ^{2} n}\right)$ construction time (Moosa \& Rahman, 2012)
For larger alphabets naive solutions only:
- $\mathcal{O}(n)$ query time (run a jumbled pattern matching algorithm),
- $\mathcal{O}\left(n^{2}\right)$ size (memorize all answers in a hash table).

Our Results

- Alphabet with $\sigma=\mathcal{O}(1)$ letters.
- Word-RAM, randomized (construction only).

Our Results

- Alphabet with $\sigma=\mathcal{O}(1)$ letters.
- Word-RAM, randomized (construction only).

Theorem (in this presentation \& in the paper)

For any $\delta \in(0,1)$ there exists an index with $\mathcal{O}\left(n^{2-\delta}\right)$ size, $\mathcal{O}\left(m^{\delta(2 \sigma-1)}\right)$ query time, where m is the norm of the pattern, and $\mathcal{O}\left(n^{2}\right)$ construction time.

Our Results

- Alphabet with $\sigma=\mathcal{O}(1)$ letters.
- Word-RAM, randomized (construction only).

Theorem (in this presentation \& in the paper)

For any $\delta \in(0,1)$ there exists an index with $\mathcal{O}\left(n^{2-\delta}\right)$ size, $\mathcal{O}\left(m^{\delta(2 \sigma-1)}\right)$ query time, where m is the norm of the pattern, and $\mathcal{O}\left(n^{2}\right)$ construction time.

Theorem (in the paper)

There exists an index with $\mathcal{O}\left(\frac{n^{2} \log \log n}{\log n}\right)$ size, $\mathcal{O}\left(\left(\frac{\log n}{\log \log n}\right)^{(2 \sigma-1)}\right)$ query time and $\mathcal{O}\left(\frac{n^{2} \log ^{2} \log n}{\log n}\right)$ construction time.

Our Results

- Alphabet with $\sigma=\mathcal{O}(1)$ letters.
- Word-RAM, randomized (construction only).

Theorem (in this presentation \& in the paper)

For any $\delta \in(0,1)$ there exists an index with $\mathcal{O}\left(n^{2-\delta}\right)$ size, $\mathcal{O}\left(m^{\delta(2 \sigma-1)}\right)$ query time, where m is the norm of the pattern, and $\mathcal{O}\left(n^{2}\right)$ construction time.

Theorem (in the paper)

There exists an index with $\mathcal{O}\left(\frac{n^{2} \log \log n}{\log n}\right)$ size, $\mathcal{O}\left(\left(\frac{\log n}{\log \log n}\right)^{(2 \sigma-1)}\right)$ query time and $\mathcal{O}\left(\frac{n^{2} \log ^{2} \log n}{\log n}\right)$ construction time.

Theorem (unpublished)

There exists an index with $\mathcal{O}\left(n^{2-\delta}\right)$ size, $\mathcal{O}\left(\left(\frac{m^{\delta} \log m}{\log \log m}\right)^{(2 \sigma-1)}\right)$ query time and $\mathcal{O}\left(\frac{n^{2} \log ^{2} \log n}{\log n}\right)$ construction time.

Layers

- Every (reasonable) query q has its norm $|q| \in\{1, \ldots, n\}$.

Layers

- Every (reasonable) query q has its norm $|q| \in\{1, \ldots, n\}$.
- We divide $\{1, \ldots, n\}$ into several ranges. For each range, queries with norm in that range are answered by a separate data structure.

Layers

- Every (reasonable) query q has its norm $|q| \in\{1, \ldots, n\}$.
- We divide $\{1, \ldots, n\}$ into several ranges. For each range, queries with norm in that range are answered by a separate data structure.
- For each possible query norm we need to remember the responsible layer.

Layers

- Every (reasonable) query q has its norm $|q| \in\{1, \ldots, n\}$.
- We divide $\{1, \ldots, n\}$ into several ranges. For each range, queries with norm in that range are answered by a separate data structure.
- For each possible query norm we need to remember the responsible layer.
- The layer responsible for $\{d, \ldots, d+L\}$ is called the (d, L)-layer.

Layers

- Every (reasonable) query q has its norm $|q| \in\{1, \ldots, n\}$.
- We divide $\{1, \ldots, n\}$ into several ranges. For each range, queries with norm in that range are answered by a separate data structure.
- For each possible query norm we need to remember the responsible layer.
- The layer responsible for $\{d, \ldots, d+L\}$ is called the (d, L)-layer.

$40+1$	$4++1+2$	$40+1+2$	$\underline{+0+1+2+3 \mid+4}$	$4+0+1+2+3+4+5+6+7$	$4+0+1+2+3+4+5+6+7+8$
1	3	6	9	14	22

Layers

- Every (reasonable) query q has its norm $|q| \in\{1, \ldots, n\}$.
- We divide $\{1, \ldots, n\}$ into several ranges. For each range, queries with norm in that range are answered by a separate data structure.
- For each possible query norm we need to remember the responsible layer.
- The layer responsible for $\{d, \ldots, d+L\}$ is called the (d, L)-layer.

+0+1	+0\|+1+2	$4+0+1+2$	$4+0+1\|+2\|+3 \mid+4$	$\underline{+0\|+1+2+3+4+5\|+6+7}$	$\underline{+0\|+1\|+2\|+3\|+4\|+5\|+6\|+7\|+8}$
1	3	6	9	14	22

$$
q=(7,3,6) \quad|q|=16
$$

Layers

- Every (reasonable) query q has its norm $|q| \in\{1, \ldots, n\}$.
- We divide $\{1, \ldots, n\}$ into several ranges. For each range, queries with norm in that range are answered by a separate data structure.
- For each possible query norm we need to remember the responsible layer.
- The layer responsible for $\{d, \ldots, d+L\}$ is called the (d, L)-layer.

| +00+1 | +0 $+1+2$ | $40 \mid+1+2$ | $\underline{+0+1+2\|+3\|+4}$ | +0\|+1|+2|+3|+4|+5+6|+7 | $\underline{+0\|+1\|+2\|+3\|+4+5\|+6\|+7 \mid+8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3 | 6 | 9 | 14 | 22 |
| | | | | $\begin{gathered} \text { for (14, 7)-layer } \\ (7,3,6)\|q\|=16 \end{gathered}$ | |

The (d, L)-Layer

- Fix a word w and positive integers (d, L) such that $d+L \leq|w|$.
- We develop the (d, L)-layer for w.

The (d, L)-Layer

- Fix a word w and positive integers (d, L) such that $d+L \leq|w|$.
- We develop the (d, L)-layer for w.

Definition

Parikh vetors of norm within $\{d, \ldots, d+L\}$ are called relevant vectors and vectors of norm d - ground vectors.

The (d, L)-Layer

- Fix a word w and positive integers (d, L) such that $d+L \leq|w|$.
- We develop the (d, L)-layer for w.

Definition

Parikh vetors of norm within $\{d, \ldots, d+L\}$ are called relevant vectors and vectors of norm d - ground vectors.

norm

The (d, L)-Layer

- Fix a word w and positive integers (d, L) such that $d+L \leq|w|$.
- We develop the (d, L)-layer for w.

Definition

Parikh vetors of norm within $\{d, \ldots, d+L\}$ are called relevant vectors and vectors of norm d - ground vectors.

norm

The (d, L)-Layer

- Fix a word w and positive integers (d, L) such that $d+L \leq|w|$.
- We develop the (d, L)-layer for w.

Definition

Parikh vetors of norm within $\{d, \ldots, d+L\}$ are called relevant vectors and vectors of norm d - ground vectors.

norm

The (d, L)-Layer

- Fix a word w and positive integers (d, L) such that $d+L \leq|w|$.
- We develop the (d, L)-layer for w.

Definition

Parikh vetors of norm within $\{d, \ldots, d+L\}$ are called relevant vectors and vectors of norm d - ground vectors.

norm
For words we use an analogous terminology.

Extensions

Definition

Let v be a ground word. We say that a relevant word u is an extension of v if $u=v v^{\prime}$ for some word v^{\prime}.

Extensions

Definition

Let v be a ground word. We say that a relevant word u is an extension of v if $u=v v^{\prime}$ for some word v^{\prime}.

- A relevant word is an extension of a unique ground word.

Extensions

Definition

Let v be a ground word. We say that a relevant word u is an extension of v if $u=v v^{\prime}$ for some word v^{\prime}.

- A relevant word is an extension of a unique ground word.
- A ground word has $\mathcal{O}\left(\sigma^{d^{\prime}}\right)$ extensions of length $d+d^{\prime}$, which gives $\mathcal{O}\left(\sigma^{L}\right)$ relevant extensions in total.

- The number of extensions of a word is exponential in L.

Extensions

Definition

Let p be a ground vector. We say that a relevant vector q is an extension of p if $q=p+p^{\prime}$ for some Parikh vector p^{\prime}.

Extensions

Definition

Let p be a ground vector. We say that a relevant vector q is an extension of p if $q=p+p^{\prime}$ for some Parikh vector p^{\prime}.

- A relevant vector of length $d+d^{\prime}$ is an extension of at most $\binom{d^{\prime}+\sigma-1}{\sigma-1}=\mathcal{O}\left(d^{\prime \sigma-1}\right)$ ground vectors.

Extensions

Definition

Let p be a ground vector. We say that a relevant vector q is an extension of p if $q=p+p^{\prime}$ for some Parikh vector p^{\prime}.

- A relevant vector of length $d+d^{\prime}$ is an extension of at most $\binom{d^{\prime}+\sigma-1}{\sigma-1}=\mathcal{O}\left(d^{\prime \sigma-1}\right)$ ground vectors.
- A ground vector has $\mathcal{O}\left(d^{\prime \sigma-1}\right)$ extensions of length $d+d^{\prime}$, which gives $\mathcal{O}\left(L^{\sigma}\right)$ relevant extensions in total.

- The number of extensions of a vector is polynomial in L.

The (d, L)-Layer: Overview

- We can store a list of occurrences for each ground vector present in w (in a hash map)
- $\mathcal{O}(n)$ space.

The (d, L)-Layer: Overview

- We can store a list of occurrences for each ground vector present in w (in a hash map)
- $\mathcal{O}(n)$ space.
- We divide the ground vectors into heavy and light.
- Heavy vectors have many occurrences, more than possible extensions: we have enough SPACE to store the extenstions present in w in a hash set.
- Light vectors have few occurrences: we have enough TIME to scan all of them within queries.
- The threshold on the number of occurrences is set to L^{σ}.

The (d, L)-Layer: Details

Components:

- a hash map M assigning each light ground vector the list of its occurrences,
- a hash set S of relevant vectors extending the occurrences of heavy ground vectors,
- Parikh vectors of prefixes of w.

The (d, L)-Layer: Details

Components:

- a hash map M assigning each light ground vector the list of its occurrences,
- a hash set S of relevant vectors extending the occurrences of heavy ground vectors,
- Parikh vectors of prefixes of w.

Space usage: $\mathcal{O}(n)$ words

- Each vector in S is an extension of a heavy ground vector, and each heavy ground vector has more occurrences than extensions in S, so $|S|=\mathcal{O}(n)$.
- Clearly the remaining components also take $\mathcal{O}(n)$ space.

The (d, L)-Layer: Details

Components:

- a hash map M assigning each light ground vector the list of its occurrences,
- a hash set S of relevant vectors extending the occurrences of heavy ground vectors,
- Parikh vectors of prefixes of w.

Construction: $\mathcal{O}(n L)$ time

- Compute the Parikh vector of each ground factor.
- Generate the list of occurrences for each.
- Store the list for light vectors in M.
- For each occurrence of a heavy vector, add to S the relevant vectors occurring at the same position.

The (d, L)-Layer: Queries

The algorithm for a relevant vector q :
(1) Check if q is present in S.
(2) For each light ground vector p such that q is an extension of p, and for each occurrence i of p (obtained from M) check whether $q=\mathcal{P}(w[1, i+|q|-1])-\mathcal{P}(w[1, i-1])$.

The (d, L)-Layer: Queries

The algorithm for a relevant vector q :
(1) Check if q is present in S.
(2) For each light ground vector p such that q is an extension of p, and for each occurrence i of p (obtained from M) check whether $q=\mathcal{P}(w[1, i+|q|-1])-\mathcal{P}(w[1, i-1])$.
Correctness. Each occurrence of q extends an occurrence of a ground vector p :

- if p is heavy, then q is detected in the first step,
- if p is light, then q is detected in the second step.

The (d, L)-Layer: Queries

The algorithm for a relevant vector q :
(1) Check if q is present in S.
(2) For each light ground vector p such that q is an extension of p, and for each occurrence i of p (obtained from M) check whether $q=\mathcal{P}(w[1, i+|q|-1])-\mathcal{P}(w[1, i-1])$.
Correctness. Each occurrence of q extends an occurrence of a ground vector p :

- if p is heavy, then q is detected in the first step,
- if p is light, then q is detected in the second step.

Complexity. A query is answered in $\mathcal{O}\left(L^{2 \sigma-1}\right)$ time:

- there are $\mathcal{O}\left(L^{\sigma-1}\right)$ ground vectors p whose extension is q,
- for the light ones, there are up to L^{σ} occurrences,
- a single check takes $\mathcal{O}(\sigma)=\mathcal{O}(1)$ time.

The Data Structure

Theorem

For any $\delta \in(0,1)$ there exists an index with $\mathcal{O}\left(n^{2-\delta}\right)$ size, $\mathcal{O}\left(m^{\delta(2 \sigma-1)}\right)$ query time, where m is the norm of the pattern, and $\mathcal{O}\left(n^{2}\right)$ construction time.

- We divide $\{1, \ldots, n\}$ greedily into layers with $L=\left\lfloor d^{\delta}\right\rfloor$, i.e. we build $\left(d_{i}, L_{i}\right)$-layers with $d_{1}=1, L_{i}=\left\lfloor d_{i}^{\delta}\right\rfloor$,

$$
d_{i+1}=d_{i}+L_{i}+1
$$

- In total, this gives $\mathcal{O}\left(n^{1-\delta}\right)$ layers.
- If $\left(d_{i}, L_{i}\right)$-layer is reponsible for q, then $L_{i}=\mathcal{O}\left(|q|^{\delta}\right)$, i.e. the query can be answered in $\mathcal{O}\left(|q|^{\delta(2 \sigma-1)}\right)$ time.

Quick Overview of Subquadratic Construction

- The only bottleneck is finding relevant vectors which occur as extensions of heavy ground vectors.
- Set $L=\Theta\left(\frac{\log d}{\sigma \log \log d}\right)$.
- Parikh vectors of norm $\leq L$ can be assigned integer identifiers, L identifiers fit a single machine word (we call such word a packed set).
- For each word of length $\leq L$ (only $o(d)$) we precompute a packed set containing (Abelian) identifiers of its prefixes.
- We use bit-parallelism to efficiently compute the set-theoretic union of packed sets.
- For each heavy ground vector, we apply this operation for vectors occurring right after its occurrences.
- Finally we unpack the union and store the corresponding Parikh vectors in the hash set S.

Summary

- The first Abelian index with $o\left(n^{2}\right)$ space and $o(n)$ query time for alphabets of constant but arbitrarily large size.

Summary

- The first Abelian index with $o\left(n^{2}\right)$ space and $o(n)$ query time for alphabets of constant but arbitrarily large size.
- The size of the index is actually strongly subquadratic, i.e. $o\left(n^{2-\varepsilon}\right)$, and the query time strongly sublinear in pattern size, i.e. $o\left(m^{1-\varepsilon}\right)$.

Summary

- The first Abelian index with $o\left(n^{2}\right)$ space and $o(n)$ query time for alphabets of constant but arbitrarily large size.
- The size of the index is actually strongly subquadratic, i.e. $o\left(n^{2-\varepsilon}\right)$, and the query time strongly sublinear in pattern size, i.e. $o\left(m^{1-\varepsilon}\right)$.
- An index with $o\left(n^{2}\right)$ construction time and $\mathcal{O}($ polylog $(m))$ queries.

Thank you for your attention!

