
Efficient Indexes
for Jumbled Pattern Matching
with Constant-Sized Alphabet

Tomasz Kociumaka, Jakub Radoszewski,
Wojciech Rytter

University of Warsaw, Poland

Sophia Antipolis, September 2, 2013

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 1/15

Commutative Equivalence and Parikh Vectors

Definition
Let w be a word over Σ. A Parikh vector P(w) counts for
each letter a ∈ Σ its number of occurrences in w .

Σ = {a, b, c} w = a b b a c P(w) = (2, 2, 1)

Definition
Words u,w are commutatively equivalent if P(u) = P(w).

a b b a c ≈ a c b a b b a b 6≈ a b a

Definition
The norm |p| of a Parikh vector p is the sum of its entries.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 2/15

Commutative Equivalence and Parikh Vectors

Definition
Let w be a word over Σ. A Parikh vector P(w) counts for
each letter a ∈ Σ its number of occurrences in w .

Σ = {a, b, c} w = a b b a c P(w) = (2, 2, 1)

Definition
Words u,w are commutatively equivalent if P(u) = P(w).

a b b a c ≈ a c b a b b a b 6≈ a b a

Definition
The norm |p| of a Parikh vector p is the sum of its entries.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 2/15

Commutative Equivalence and Parikh Vectors

Definition
Let w be a word over Σ. A Parikh vector P(w) counts for
each letter a ∈ Σ its number of occurrences in w .

Σ = {a, b, c} w = a b b a c P(w) = (2, 2, 1)

Definition
Words u,w are commutatively equivalent if P(u) = P(w).

a b b a c ≈ a c b a b b a b 6≈ a b a

Definition
The norm |p| of a Parikh vector p is the sum of its entries.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 2/15

Commutative Equivalence and Parikh Vectors

Definition
Let w be a word over Σ. A Parikh vector P(w) counts for
each letter a ∈ Σ its number of occurrences in w .

Σ = {a, b, c} w = a b b a c P(w) = (2, 2, 1)

Definition
Words u,w are commutatively equivalent if P(u) = P(w).

a b b a c ≈ a c b a b b a b 6≈ a b a

Definition
The norm |p| of a Parikh vector p is the sum of its entries.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 2/15

Commutative Equivalence and Parikh Vectors

Definition
Let w be a word over Σ. A Parikh vector P(w) counts for
each letter a ∈ Σ its number of occurrences in w .

Σ = {a, b, c} w = a b b a c P(w) = (2, 2, 1)

Definition
Words u,w are commutatively equivalent if P(u) = P(w).

a b b a c ≈ a c b a b b a b 6≈ a b a

Definition
The norm |p| of a Parikh vector p is the sum of its entries.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 2/15

Commutative Equivalence and Parikh Vectors

Definition
Let w be a word over Σ. A Parikh vector P(w) counts for
each letter a ∈ Σ its number of occurrences in w .

Σ = {a, b, c} w = a b b a c P(w) = (2, 2, 1)

Definition
Words u,w are commutatively equivalent if P(u) = P(w).

a b b a c ≈ a c b a b b a b 6≈ a b a

Definition
The norm |p| of a Parikh vector p is the sum of its entries.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 2/15

Jumbled Pattern Matching, Index Definition

Definition
Let p be a Parikh vector of norm d . We say that p occurs at
position i of a word w if p = P(w [i , i + d − 1]).

The occurrences of (1, 2, 2, 1) in abcabcdcbacdabbcacdc are

2, 4, 5, 11, 14.

a a a a ab b b b bc c c c c c cd d d

Problem (Abelian index)

For a word w build a data structure which given a Parikh
vector p efficiently decides whether p occurs in w.

E.g. (1, 2, 2, 1) occurs in abcabcdcbacdabbcacdc, while
(1, 2, 1, 2) does not.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 3/15

Jumbled Pattern Matching, Index Definition

Definition
Let p be a Parikh vector of norm d . We say that p occurs at
position i of a word w if p = P(w [i , i + d − 1]).

The occurrences of (1, 2, 2, 1) in abcabcdcbacdabbcacdc are
2

, 4, 5, 11, 14.

a a a a ab b b b bc c c c c c cd d d

Problem (Abelian index)

For a word w build a data structure which given a Parikh
vector p efficiently decides whether p occurs in w.

E.g. (1, 2, 2, 1) occurs in abcabcdcbacdabbcacdc, while
(1, 2, 1, 2) does not.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 3/15

Jumbled Pattern Matching, Index Definition

Definition
Let p be a Parikh vector of norm d . We say that p occurs at
position i of a word w if p = P(w [i , i + d − 1]).

The occurrences of (1, 2, 2, 1) in abcabcdcbacdabbcacdc are
2, 4

, 5, 11, 14.

a a a a ab b b b bc c c c c c cd d d

Problem (Abelian index)

For a word w build a data structure which given a Parikh
vector p efficiently decides whether p occurs in w.

E.g. (1, 2, 2, 1) occurs in abcabcdcbacdabbcacdc, while
(1, 2, 1, 2) does not.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 3/15

Jumbled Pattern Matching, Index Definition

Definition
Let p be a Parikh vector of norm d . We say that p occurs at
position i of a word w if p = P(w [i , i + d − 1]).

The occurrences of (1, 2, 2, 1) in abcabcdcbacdabbcacdc are
2, 4, 5

, 11, 14.

a a a a ab b b b bc c c c c c cd d d

Problem (Abelian index)

For a word w build a data structure which given a Parikh
vector p efficiently decides whether p occurs in w.

E.g. (1, 2, 2, 1) occurs in abcabcdcbacdabbcacdc, while
(1, 2, 1, 2) does not.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 3/15

Jumbled Pattern Matching, Index Definition

Definition
Let p be a Parikh vector of norm d . We say that p occurs at
position i of a word w if p = P(w [i , i + d − 1]).

The occurrences of (1, 2, 2, 1) in abcabcdcbacdabbcacdc are
2, 4, 5, 11

, 14.

a a a a ab b b b bc c c c c c cd d d

Problem (Abelian index)

For a word w build a data structure which given a Parikh
vector p efficiently decides whether p occurs in w.

E.g. (1, 2, 2, 1) occurs in abcabcdcbacdabbcacdc, while
(1, 2, 1, 2) does not.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 3/15

Jumbled Pattern Matching, Index Definition

Definition
Let p be a Parikh vector of norm d . We say that p occurs at
position i of a word w if p = P(w [i , i + d − 1]).

The occurrences of (1, 2, 2, 1) in abcabcdcbacdabbcacdc are
2, 4, 5, 11, 14.

a a a a ab b b b bc c c c c c cd d d

Problem (Abelian index)

For a word w build a data structure which given a Parikh
vector p efficiently decides whether p occurs in w.

E.g. (1, 2, 2, 1) occurs in abcabcdcbacdabbcacdc, while
(1, 2, 1, 2) does not.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 3/15

Jumbled Pattern Matching, Index Definition

Definition
Let p be a Parikh vector of norm d . We say that p occurs at
position i of a word w if p = P(w [i , i + d − 1]).

The occurrences of (1, 2, 2, 1) in abcabcdcbacdabbcacdc are
2, 4, 5, 11, 14.

a a a a ab b b b bc c c c c c cd d d

Problem (Abelian index)

For a word w build a data structure which given a Parikh
vector p efficiently decides whether p occurs in w.

E.g. (1, 2, 2, 1) occurs in abcabcdcbacdabbcacdc, while
(1, 2, 1, 2) does not.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 3/15

Previous Results for Abelian Index

Binary alphabet:

O(n) size, O(1) query time, O(n2) construction time
(Cicalese et al., 2009)

O(n
2

log n) construction time
(Burcsi et al., 2010; Moosa & Rahman, 2010)

O(n
2

log2 n
) construction time

(Moosa & Rahman, 2012)

For larger alphabets naive solutions only:

O(n) query time (run a jumbled pattern matching
algorithm),

O(n2) size (memorize all answers in a hash table).

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 4/15

Previous Results for Abelian Index

Binary alphabet:

O(n) size, O(1) query time, O(n2) construction time
(Cicalese et al., 2009)

O(n
2

log n) construction time
(Burcsi et al., 2010; Moosa & Rahman, 2010)

O(n
2

log2 n
) construction time

(Moosa & Rahman, 2012)

For larger alphabets naive solutions only:

O(n) query time (run a jumbled pattern matching
algorithm),

O(n2) size (memorize all answers in a hash table).

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 4/15

Our Results
Alphabet with σ = O(1) letters.
Word-RAM, randomized (construction only).

Theorem (in this presentation & in the paper)

For any δ ∈ (0, 1) there exists an index with O(n2−δ) size,
O(mδ(2σ−1)) query time, where m is the norm of the pattern,
and O(n2) construction time.

Theorem (in the paper)

There exists an index with O(n
2 log log n

log n) size, O((log n
log log n)(2σ−1))

query time and O(n
2 log2 log n

log n) construction time.

Theorem (unpublished)

There exists an index with O(n2−δ) size, O((m
δ logm

log logm)(2σ−1))

query time and O(n
2 log2 log n

log n) construction time.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 5/15

Our Results
Alphabet with σ = O(1) letters.
Word-RAM, randomized (construction only).

Theorem (in this presentation & in the paper)

For any δ ∈ (0, 1) there exists an index with O(n2−δ) size,
O(mδ(2σ−1)) query time, where m is the norm of the pattern,
and O(n2) construction time.

Theorem (in the paper)

There exists an index with O(n
2 log log n

log n) size, O((log n
log log n)(2σ−1))

query time and O(n
2 log2 log n

log n) construction time.

Theorem (unpublished)

There exists an index with O(n2−δ) size, O((m
δ logm

log logm)(2σ−1))

query time and O(n
2 log2 log n

log n) construction time.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 5/15

Our Results
Alphabet with σ = O(1) letters.
Word-RAM, randomized (construction only).

Theorem (in this presentation & in the paper)

For any δ ∈ (0, 1) there exists an index with O(n2−δ) size,
O(mδ(2σ−1)) query time, where m is the norm of the pattern,
and O(n2) construction time.

Theorem (in the paper)

There exists an index with O(n
2 log log n

log n) size, O((log n
log log n)(2σ−1))

query time and O(n
2 log2 log n

log n) construction time.

Theorem (unpublished)

There exists an index with O(n2−δ) size, O((m
δ logm

log logm)(2σ−1))

query time and O(n
2 log2 log n

log n) construction time.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 5/15

Our Results
Alphabet with σ = O(1) letters.
Word-RAM, randomized (construction only).

Theorem (in this presentation & in the paper)

For any δ ∈ (0, 1) there exists an index with O(n2−δ) size,
O(mδ(2σ−1)) query time, where m is the norm of the pattern,
and O(n2) construction time.

Theorem (in the paper)

There exists an index with O(n
2 log log n

log n) size, O((log n
log log n)(2σ−1))

query time and O(n
2 log2 log n

log n) construction time.

Theorem (unpublished)

There exists an index with O(n2−δ) size, O((m
δ logm

log logm)(2σ−1))

query time and O(n
2 log2 log n

log n) construction time.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 5/15

Layers

Every (reasonable) query q has its norm |q| ∈ {1, . . . , n}.

We divide {1, . . . , n} into several ranges. For each range,
queries with norm in that range are answered by a
separate data structure.

For each possible query norm we need to remember the
responsible layer.

The layer responsible for {d , . . . , d + L} is called the
(d , L)-layer.

1 n

1 n1
+0+1

3
+0+1+2

6
+0+1+2

9
+0+1+2+3+4

14
+0+1+2+3+4+5+6+7

22
+0+1+2+3+4+5+6+7+8

q = (7, 3, 6) |q| = 16

for (14, 7)-layer

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 6/15

Layers

Every (reasonable) query q has its norm |q| ∈ {1, . . . , n}.
We divide {1, . . . , n} into several ranges. For each range,
queries with norm in that range are answered by a
separate data structure.

For each possible query norm we need to remember the
responsible layer.

The layer responsible for {d , . . . , d + L} is called the
(d , L)-layer.

1 n

1 n1
+0+1

3
+0+1+2

6
+0+1+2

9
+0+1+2+3+4

14
+0+1+2+3+4+5+6+7

22
+0+1+2+3+4+5+6+7+8

q = (7, 3, 6) |q| = 16

for (14, 7)-layer

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 6/15

Layers

Every (reasonable) query q has its norm |q| ∈ {1, . . . , n}.
We divide {1, . . . , n} into several ranges. For each range,
queries with norm in that range are answered by a
separate data structure.

For each possible query norm we need to remember the
responsible layer.

The layer responsible for {d , . . . , d + L} is called the
(d , L)-layer.

1 n

1 n

1
+0+1

3
+0+1+2

6
+0+1+2

9
+0+1+2+3+4

14
+0+1+2+3+4+5+6+7

22
+0+1+2+3+4+5+6+7+8

q = (7, 3, 6) |q| = 16

for (14, 7)-layer

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 6/15

Layers

Every (reasonable) query q has its norm |q| ∈ {1, . . . , n}.
We divide {1, . . . , n} into several ranges. For each range,
queries with norm in that range are answered by a
separate data structure.

For each possible query norm we need to remember the
responsible layer.

The layer responsible for {d , . . . , d + L} is called the
(d , L)-layer.

1 n

1 n

1
+0+1

3
+0+1+2

6
+0+1+2

9
+0+1+2+3+4

14
+0+1+2+3+4+5+6+7

22
+0+1+2+3+4+5+6+7+8

q = (7, 3, 6) |q| = 16

for (14, 7)-layer

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 6/15

Layers

Every (reasonable) query q has its norm |q| ∈ {1, . . . , n}.
We divide {1, . . . , n} into several ranges. For each range,
queries with norm in that range are answered by a
separate data structure.

For each possible query norm we need to remember the
responsible layer.

The layer responsible for {d , . . . , d + L} is called the
(d , L)-layer.

1 n1 n

1
+0+1

3
+0+1+2

6
+0+1+2

9
+0+1+2+3+4

14
+0+1+2+3+4+5+6+7

22
+0+1+2+3+4+5+6+7+8

q = (7, 3, 6) |q| = 16

for (14, 7)-layer

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 6/15

Layers

Every (reasonable) query q has its norm |q| ∈ {1, . . . , n}.
We divide {1, . . . , n} into several ranges. For each range,
queries with norm in that range are answered by a
separate data structure.

For each possible query norm we need to remember the
responsible layer.

The layer responsible for {d , . . . , d + L} is called the
(d , L)-layer.

1 n1 n

1
+0+1

3
+0+1+2

6
+0+1+2

9
+0+1+2+3+4

14
+0+1+2+3+4+5+6+7

22
+0+1+2+3+4+5+6+7+8

q = (7, 3, 6) |q| = 16

for (14, 7)-layer

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 6/15

Layers

Every (reasonable) query q has its norm |q| ∈ {1, . . . , n}.
We divide {1, . . . , n} into several ranges. For each range,
queries with norm in that range are answered by a
separate data structure.

For each possible query norm we need to remember the
responsible layer.

The layer responsible for {d , . . . , d + L} is called the
(d , L)-layer.

1 n1 n

1
+0+1

3
+0+1+2

6
+0+1+2

9
+0+1+2+3+4

14
+0+1+2+3+4+5+6+7

22
+0+1+2+3+4+5+6+7+8

q = (7, 3, 6) |q| = 16

for (14, 7)-layer

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 6/15

The (d , L)-Layer

Fix a word w and positive integers (d , L) such that
d + L ≤ |w |.
We develop the (d , L)-layer for w .

Definition
Parikh vetors of norm within {d , . . . , d + L} are called relevant
vectors and vectors of norm d – ground vectors.

Par
ikh
vec
tor
s

relev
ant v

ecto
rs

ground vectors

norm

d

d + L

For words we use an analogous terminology.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 7/15

The (d , L)-Layer

Fix a word w and positive integers (d , L) such that
d + L ≤ |w |.
We develop the (d , L)-layer for w .

Definition
Parikh vetors of norm within {d , . . . , d + L} are called relevant
vectors and vectors of norm d – ground vectors.

Par
ikh
vec
tor
s

relev
ant v

ecto
rs

ground vectors

norm

d

d + L

For words we use an analogous terminology.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 7/15

The (d , L)-Layer

Fix a word w and positive integers (d , L) such that
d + L ≤ |w |.
We develop the (d , L)-layer for w .

Definition
Parikh vetors of norm within {d , . . . , d + L} are called relevant
vectors and vectors of norm d – ground vectors.

Par
ikh
vec
tor
s

relev
ant v

ecto
rs

ground vectors

norm

d

d + L

For words we use an analogous terminology.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 7/15

The (d , L)-Layer

Fix a word w and positive integers (d , L) such that
d + L ≤ |w |.
We develop the (d , L)-layer for w .

Definition
Parikh vetors of norm within {d , . . . , d + L} are called relevant
vectors and vectors of norm d – ground vectors.

Par
ikh
vec
tor
s

relev
ant v

ecto
rs

ground vectors

norm

d

d + L

For words we use an analogous terminology.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 7/15

The (d , L)-Layer

Fix a word w and positive integers (d , L) such that
d + L ≤ |w |.
We develop the (d , L)-layer for w .

Definition
Parikh vetors of norm within {d , . . . , d + L} are called relevant
vectors and vectors of norm d – ground vectors.

Par
ikh
vec
tor
s

relev
ant v

ecto
rs

ground vectors

norm

d

d + L

For words we use an analogous terminology.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 7/15

The (d , L)-Layer

Fix a word w and positive integers (d , L) such that
d + L ≤ |w |.
We develop the (d , L)-layer for w .

Definition
Parikh vetors of norm within {d , . . . , d + L} are called relevant
vectors and vectors of norm d – ground vectors.

Par
ikh
vec
tor
s

relev
ant v

ecto
rs

ground vectors

norm

d

d + L

For words we use an analogous terminology.
Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 7/15

Extensions

Definition
Let v be a ground word. We say that a relevant word u is an
extension of v if u = vv ′ for some word v ′.

A relevant word is an extension of a unique ground word.

A ground word has O(σd
′
) extensions of length d + d ′,

which gives O(σL) relevant extensions in total.

d d ′ ≤ L

u

v ′v

d d ′ ≤ L

p p′+

q

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 8/15

Extensions

Definition
Let v be a ground word. We say that a relevant word u is an
extension of v if u = vv ′ for some word v ′.

A relevant word is an extension of a unique ground word.

A ground word has O(σd
′
) extensions of length d + d ′,

which gives O(σL) relevant extensions in total.

d d ′ ≤ L

u

v ′v

d d ′ ≤ L

p p′+

q

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 8/15

Extensions

Definition
Let v be a ground word. We say that a relevant word u is an
extension of v if u = vv ′ for some word v ′.

A relevant word is an extension of a unique ground word.

A ground word has O(σd
′
) extensions of length d + d ′,

which gives O(σL) relevant extensions in total.

d d ′ ≤ L

u

v ′v

d d ′ ≤ L

p p′+

q

The number of extensions of a word is exponential in L.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 8/15

Extensions

Definition
Let p be a ground vector. We say that a relevant vector q is
an extension of p if q = p + p′ for some Parikh vector p′.

d d ′ ≤ L

u

v ′v

d d ′ ≤ L

p p′+

q

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 8/15

Extensions

Definition
Let p be a ground vector. We say that a relevant vector q is
an extension of p if q = p + p′ for some Parikh vector p′.

A relevant vector of length d + d ′ is an extension of at
most

(d ′+σ−1
σ−1

)
= O(d ′σ−1) ground vectors.

A ground vector has O(d ′σ−1) extensions of length
d + d ′, which gives O(Lσ) relevant extensions in total.

d d ′ ≤ L

u

v ′v

d d ′ ≤ L

p p′+

q

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 8/15

Extensions

Definition
Let p be a ground vector. We say that a relevant vector q is
an extension of p if q = p + p′ for some Parikh vector p′.

A relevant vector of length d + d ′ is an extension of at
most

(d ′+σ−1
σ−1

)
= O(d ′σ−1) ground vectors.

A ground vector has O(d ′σ−1) extensions of length
d + d ′, which gives O(Lσ) relevant extensions in total.

d d ′ ≤ L

u

v ′v

d d ′ ≤ L

p p′+

q

The number of extensions of a vector is polynomial in L.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 8/15

The (d , L)-Layer: Overview

We can store a list of occurrences for each ground vector
present in w (in a hash map)

O(n) space.

We divide the ground vectors into heavy and light.
Heavy vectors have many occurrences, more than
possible extensions: we have enough space to store the
extenstions present in w in a hash set.
Light vectors have few occurrences: we have enough
time to scan all of them within queries.
The threshold on the number of occurrences is set to Lσ.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 9/15

The (d , L)-Layer: Overview

We can store a list of occurrences for each ground vector
present in w (in a hash map)

O(n) space.
We divide the ground vectors into heavy and light.
Heavy vectors have many occurrences, more than
possible extensions: we have enough space to store the
extenstions present in w in a hash set.
Light vectors have few occurrences: we have enough
time to scan all of them within queries.
The threshold on the number of occurrences is set to Lσ.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 9/15

The (d , L)-Layer: Details

Components:

a hash map M assigning each light ground vector the list
of its occurrences,

a hash set S of relevant vectors extending the
occurrences of heavy ground vectors,

Parikh vectors of prefixes of w .

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 10/15

The (d , L)-Layer: Details

Components:

a hash map M assigning each light ground vector the list
of its occurrences,

a hash set S of relevant vectors extending the
occurrences of heavy ground vectors,

Parikh vectors of prefixes of w .
Space usage: O(n) words

Each vector in S is an extension of a heavy ground
vector, and each heavy ground vector has more
occurrences than extensions in S , so |S | = O(n).

Clearly the remaining components also take O(n) space.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 10/15

The (d , L)-Layer: Details

Components:

a hash map M assigning each light ground vector the list
of its occurrences,

a hash set S of relevant vectors extending the
occurrences of heavy ground vectors,

Parikh vectors of prefixes of w .
Construction: O(nL) time

Compute the Parikh vector of each ground factor.

Generate the list of occurrences for each.

Store the list for light vectors in M .

For each occurrence of a heavy vector, add to S the
relevant vectors occurring at the same position.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 10/15

The (d , L)-Layer: Queries

The algorithm for a relevant vector q:
1 Check if q is present in S .
2 For each light ground vector p such that q is an extension

of p, and for each occurrence i of p (obtained from M)
check whether q = P(w [1, i + |q| − 1])− P(w [1, i − 1]).

Correctness. Each occurrence of q extends an occurrence of
a ground vector p:

if p is heavy, then q is detected in the first step,
if p is light, then q is detected in the second step.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 11/15

The (d , L)-Layer: Queries

The algorithm for a relevant vector q:
1 Check if q is present in S .
2 For each light ground vector p such that q is an extension

of p, and for each occurrence i of p (obtained from M)
check whether q = P(w [1, i + |q| − 1])− P(w [1, i − 1]).

Correctness. Each occurrence of q extends an occurrence of
a ground vector p:

if p is heavy, then q is detected in the first step,
if p is light, then q is detected in the second step.

i

d |q| − d

p p′+
q

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 11/15

The (d , L)-Layer: Queries

The algorithm for a relevant vector q:
1 Check if q is present in S .
2 For each light ground vector p such that q is an extension

of p, and for each occurrence i of p (obtained from M)
check whether q = P(w [1, i + |q| − 1])− P(w [1, i − 1]).

Correctness. Each occurrence of q extends an occurrence of
a ground vector p:

if p is heavy, then q is detected in the first step,
if p is light, then q is detected in the second step.

Complexity. A query is answered in O(L2σ−1) time:

there are O(Lσ−1) ground vectors p whose extension is q,

for the light ones, there are up to Lσ occurrences,

a single check takes O(σ) = O(1) time.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 11/15

The Data Structure

Theorem

For any δ ∈ (0, 1) there exists an index with O(n2−δ) size,
O(mδ(2σ−1)) query time, where m is the norm of the pattern,
and O(n2) construction time.

We divide {1, . . . , n} greedily into layers with L =
⌊

d δ
⌋

,
i.e. we build (di , Li)-layers with d1 = 1, Li =

⌊
d δi
⌋

,
di+1 = di + Li + 1.

In total, this gives O(n1−δ) layers.

If (di , Li)-layer is reponsible for q, then Li = O(|q|δ), i.e.
the query can be answered in O(|q|δ(2σ−1)) time.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 12/15

Quick Overview of Subquadratic Construction

The only bottleneck is finding relevant vectors which
occur as extensions of heavy ground vectors.

Set L = Θ(log d
σ log log d).

Parikh vectors of norm ≤ L can be assigned integer
identifiers, L identifiers fit a single machine word (we call
such word a packed set).

For each word of length ≤ L (only o(d)) we precompute a
packed set containing (Abelian) identifiers of its prefixes.

We use bit-parallelism to efficiently compute the
set-theoretic union of packed sets.

For each heavy ground vector, we apply this operation for
vectors occurring right after its occurrences.

Finally we unpack the union and store the corresponding
Parikh vectors in the hash set S .

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 13/15

Summary

The first Abelian index with o(n2) space and o(n) query
time for alphabets of constant but arbitrarily large size.

The size of the index is actually strongly subquadratic,
i.e. o(n2−ε), and the query time strongly sublinear in
pattern size, i.e. o(m1−ε).

An index with o(n2) construction time and
O(polylog(m)) queries.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 14/15

Summary

The first Abelian index with o(n2) space and o(n) query
time for alphabets of constant but arbitrarily large size.

The size of the index is actually strongly subquadratic,
i.e. o(n2−ε), and the query time strongly sublinear in
pattern size, i.e. o(m1−ε).

An index with o(n2) construction time and
O(polylog(m)) queries.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 14/15

Summary

The first Abelian index with o(n2) space and o(n) query
time for alphabets of constant but arbitrarily large size.

The size of the index is actually strongly subquadratic,
i.e. o(n2−ε), and the query time strongly sublinear in
pattern size, i.e. o(m1−ε).

An index with o(n2) construction time and
O(polylog(m)) queries.

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 14/15

Thank you for your attention!

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter Efficient Indexes for Jumbled Pattern Matching 15/15

