String Powers in Trees

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter and Tomasz Waleń

University of Warsaw, Poland

CPM 2015
Ischia, Italy
July 1, 2015

Strings Powers

Definition (String Power)

The k-th power of a string u is the string $u^{k}=\underbrace{u u \ldots u}_{k \text { times }}$.

Strings Powers

Definition (String Power)

The k-th power of a string u is the string $u^{k}=\underbrace{u u \ldots u}_{k \text { times }}$.

Naturally extended to fractional exponents $k=\frac{p}{|u|}$.

Strings Powers

Definition (String Power)

The k-th power of a string u is the string $u^{k}=\underbrace{u u \ldots u}_{k \text { times }}$.

Naturally extended to fractional exponents $k=\frac{p}{|u|}$.

Most commonly studied types of repetitions:

- squares $(k=2)$,
- cubes $(k=3)$.

Repetitions in Strings

Definition

For a string s and an exponent α define powers $_{\alpha}(s)$ as the number of distinct substrings of s being powers of exponent α.

Repetitions in Strings

Definition

For a string s and an exponent α define powers $_{\alpha}(s)$ as the number of distinct substrings of s being powers of exponent α.

$$
s: \quad a \quad b a a b a b a b a b a b
$$

Repetitions in Strings

Definition

For a string s and an exponent α define powers $_{\alpha}(s)$ as the number of distinct substrings of s being powers of exponent α.

$$
s: \quad a b a a b a b a b a b a b
$$

aa,

Repetitions in Strings

Definition

For a string s and an exponent α define powers $_{\alpha}(s)$ as the number of distinct substrings of s being powers of exponent α.
s :
a b
a a b
a b
a a b
a a b
aa, abab,

Repetitions in Strings

Definition

For a string s and an exponent α define powers $_{\alpha}(s)$ as the number of distinct substrings of s being powers of exponent α.

$$
s: \quad a \quad b a \operatorname{a} a \mathrm{a} a \mathrm{a} b a \mathrm{a} b
$$

aa, abab, baba,

Repetitions in Strings

Definition

For a string s and an exponent α define powers $_{\alpha}(s)$ as the number of distinct substrings of s being powers of exponent α.

$$
s: \quad a \quad b a \operatorname{a} a b a a b a b a b
$$

aa, abab, baba, abaaba,

Repetitions in Strings

Definition

For a string s and an exponent α define powers $_{\alpha}(s)$ as the number of distinct substrings of s being powers of exponent α.

$$
s: \quad \mathrm{a} b \mathrm{a} a \mathrm{~b} a \mathrm{~b} a \mathrm{a} \mathrm{~b} a \mathrm{a} \mathrm{~b}
$$

aa, abab, baba, abaaba, baabaa,

Repetitions in Strings

Definition

For a string s and an exponent α define powers $_{\alpha}(s)$ as the number of distinct substrings of s being powers of exponent α.

$$
s: \quad a \quad b a \operatorname{a} a b a a b a b a b
$$

aa, abab, baba, abaaba, baabaa, aabaab,

Repetitions in Strings

Definition

For a string s and an exponent α define powers $_{\alpha}(s)$ as the number of distinct substrings of s being powers of exponent α.

$$
s: \quad a \quad b a \operatorname{a} a \mathrm{~b} a \mathrm{a} b a \mathrm{a} b
$$

aa, abab, baba, abaaba, baabaa, aabaab, abaababaab,

Repetitions in Strings

Definition

For a string s and an exponent α define powers $_{\alpha}(s)$ as the number of distinct substrings of s being powers of exponent α.

$$
s: \quad \mathrm{a} b \mathrm{a} a \mathrm{~b} a \mathrm{~b} a \mathrm{a} \mathrm{~b} a \mathrm{a} \mathrm{~b}
$$

aa, abab, baba, abaaba, baabaa, aabaab, abaababaab, baababaaba

Repetitions in Strings

Definition

For a string s and an exponent α define powers $_{\alpha}(s)$ as the number of distinct substrings of s being powers of exponent α.

$$
s: \quad a \quad b a \operatorname{a} a \mathrm{~b} a \mathrm{a} b a \mathrm{a} b
$$

aa, abab, baba, abaaba, baabaa, aabaab, abaababaab, baababaaba

$$
\operatorname{powers}_{2}(s)=8
$$

Repetitions in Strings

Definition

For a string s and an exponent α define powers $_{\alpha}(s)$ as the number of distinct substrings of s being powers of exponent α.

$$
s: \quad a \quad b a \operatorname{a} a \mathrm{~b} a \mathrm{a} b a \mathrm{a} b
$$

aa, abab, baba, abaaba, baabaa, aabaab, abaababaab, baababaaba

$$
\operatorname{powers}_{2}(s)=8
$$

Lower bounds

- powers $_{\alpha}\left(\mathrm{a}^{m}\right)=\Omega(m)$ for any fixed $\alpha \geq 1$:
- $a^{c x}$ for $1 \leq c \leq\left\lfloor\frac{m}{x}\right\rfloor$ where $\alpha=\frac{x}{y}$.

Repetitions in Strings

Definition

For a string s and an exponent α define powers $_{\alpha}(s)$ as the number of distinct substrings of s being powers of exponent α.

$$
s: \quad a b a a b a b a b a b a b
$$

aa, abab, baba, abaaba, baabaa, aabaab, abaababaab, baababaaba

$$
\operatorname{powers}_{2}(s)=8
$$

Lower bounds

- powers $_{\alpha}\left(\mathrm{a}^{m}\right)=\Omega(m)$ for any fixed $\alpha \geq 1$: - $a^{c x}$ for $1 \leq c \leq\left\lfloor\frac{m}{x}\right\rfloor$ where $\alpha=\frac{x}{y}$.
- powers ${ }_{\alpha}\left(\mathrm{a}^{m} \mathrm{ba}^{m}\right)=\Omega\left(m^{2}\right)$ for any fixed $1 \leq \alpha<2$:

$$
\text { - } \mathrm{a}^{i} \mathrm{ba}^{c y-1-i} \mathrm{a}^{c x} \text { for } 1 \leq c \leq\left\lfloor\frac{m}{y}\right\rfloor, c x \leq i \leq c y \text { where } \alpha=1+\frac{x}{y} \text {. }
$$

Repetitions in Strings: Upper Bounds

Theorem (Fraenkel and Simpson, 1998)
For every strings s we have powers $_{2}(s)=O(|s|)$.

Repetitions in Strings: Upper Bounds

Theorem (Fraenkel and Simpson, 1998)
 For every strings s we have powers $_{2}(s)=O(|s|)$.

Rightmost occurrences of up at most two squares may start at a given position.

- $\operatorname{powers}_{2}(s) \leq 2|s|$,

Repetitions in Strings: Upper Bounds

Theorem (Fraenkel and Simpson, 1998)

For every strings s we have powers $_{2}(s)=O(|s|)$.
Rightmost occurrences of up at most two squares may start at a given position.

- $\operatorname{powers}_{2}(s) \leq 2|s|$,
- powers $_{2}(s) \leq\left(2-\frac{1}{6}\right)|s|$ [Deza, Franek, Thierry; DAM 2015].

Repetitions in Strings: Upper Bounds

Theorem (Fraenkel and Simpson, 1998)

For every strings s we have powers $_{2}(s)=O(|s|)$.
Rightmost occurrences of up at most two squares may start at a given position.

- $\operatorname{powers}_{2}(s) \leq 2|s|$,
- powers $_{2}(s) \leq\left(2-\frac{1}{6}\right)|s|$ [Deza, Franek, Thierry; DAM 2015].

Repetitions in Strings: Upper Bounds

Theorem (Fraenkel and Simpson, 1998)

For every strings s we have powers $_{2}(s)=O(|s|)$.
Rightmost occurrences of up at most two squares may start at a given position.

- $\operatorname{powers}_{2}(s) \leq 2|s|$,
- powers $_{2}(s) \leq\left(2-\frac{1}{6}\right)|s|$ [Deza, Franek, Thierry; DAM 2015].

String powers in strings:

$\alpha \in(1,2)$	$\Theta\left(n^{2}\right)$
$\alpha \geq 2$	$\Theta(n)$

Repetitions in Trees

Unrooted, unoriented trees with edges labeled by single letters.

Repetitions in Trees

Unrooted, unoriented trees with edges labeled by single letters.

Definition

A substrings of a tree T is a concatenation of edge labels on a simple path in T.

Repetitions in Trees

Unrooted, unoriented trees with edges labeled by single letters.

Definition

A substrings of a tree T is a concatenation of edge labels on a simple path in T.

Squares in T : aa

Repetitions in Trees

Unrooted, unoriented trees with edges labeled by single letters.

Definition

A substrings of a tree T is a concatenation of edge labels on a simple path in T.

Squares in T : aa

Repetitions in Trees

Unrooted, unoriented trees with edges labeled by single letters.

Definition

A substrings of a tree T is a concatenation of edge labels on a simple path in T.

Squares in T : aa, abaaba

Repetitions in Trees

Unrooted, unoriented trees with edges labeled by single letters.

Definition

A substrings of a tree T is a concatenation of edge labels on a simple path in T.

Squares in T : aa, abaaba

Repetitions in Trees

Unrooted, unoriented trees with edges labeled by single letters.

Definition

A substrings of a tree T is a concatenation of edge labels on a simple path in T.

Squares in T : aa, abaaba, bb

Repetitions in Trees

Unrooted, unoriented trees with edges labeled by single letters.

Definition

A substrings of a tree T is a concatenation of edge labels on a simple path in T.

Squares in T : aa, abaaba, bb

Repetitions in Trees

Unrooted, unoriented trees with edges labeled by single letters.

Definition

A substrings of a tree T is a concatenation of edge labels on a simple path in T.

Squares in T : aa, abaaba, bb

Repetitions in Trees

Unrooted, unoriented trees with edges labeled by single letters.

Definition

A substrings of a tree T is a concatenation of edge labels on a simple path in T.

Squares in T : aa, abaaba, bb

Repetitions in Trees

Unrooted, unoriented trees with edges labeled by single letters.

Definition

A substrings of a tree T is a concatenation of edge labels on a simple path in T.

Squares in T : aa, abaaba, bb, bcbc

Repetitions in Trees

Unrooted, unoriented trees with edges labeled by single letters.

Definition

A substrings of a tree T is a concatenation of edge labels on a simple path in T.

Squares in T : aa, abaaba, bb, bcbc, cbcb

Repetitions in Trees

Unrooted, unoriented trees with edges labeled by single letters.

Definition

A substrings of a tree T is a concatenation of edge labels on a simple path in T.

Squares in T : aa, abaaba, bb, bcbc, cbcb.

$$
\operatorname{powers}_{2}(T)=5
$$

Origins:

- avoidability problems
- square-free strings (Thue, 1906)
- semigroup theory (Burnside's problem for semigroups),
- number theory (Prouhet-Tarry-Escott problem).

Origins:

- avoidability problems
- square-free strings (Thue, 1906)
- semigroup theory (Burnside's problem for semigroups),
- number theory (Prouhet-Tarry-Escott problem).
- non-repetitive colorings of trees
(Brešar et al., 2007; Grytczuk, 2008)

Repetitions in Trees: Simple Bounds

We denote powers ${ }_{\alpha}(T)$ as the number of distinct substrings of T which are α-powers and powers $_{\alpha}(n)$ as the maximum powers $_{\alpha}(T)$ over trees T with n edges.

Repetitions in Trees: Simple Bounds

We denote powers ${ }_{\alpha}(T)$ as the number of distinct substrings of T which are α-powers and powers $_{\alpha}(n)$ as the maximum powers ${ }_{\alpha}(T)$ over trees T with n edges.

- $\operatorname{powers}_{\alpha}(n)=\Theta\left(n^{2}\right)$ for any fixed $1 \leq \alpha<2$.

Repetitions in Trees: Simple Bounds

We denote powers ${ }_{\alpha}(T)$ as the number of distinct substrings of T which are α-powers and powers $_{\alpha}(n)$ as the maximum powers ${ }_{\alpha}(T)$ over trees T with n edges.

- powers $_{\alpha}(n)=\Theta\left(n^{2}\right)$ for any fixed $1 \leq \alpha<2$.
- Consider paths labeled with $\mathrm{a}^{m} \mathrm{ba}^{m}$.

Repetitions in Trees: Simple Bounds

We denote powers ${ }_{\alpha}(T)$ as the number of distinct substrings of T which are α-powers and powers $_{\alpha}(n)$ as the maximum powers ${ }_{\alpha}(T)$ over trees T with n edges.

- powers $_{\alpha}(n)=\Theta\left(n^{2}\right)$ for any fixed $1 \leq \alpha<2$.
- Consider paths labeled with $\mathrm{a}^{m} \mathrm{ba}^{m}$.
- $\operatorname{powers}_{\alpha}(n)=\Theta(n)$ for any fixed $\alpha \geq 4$.

Repetitions in Trees: Simple Bounds

We denote powers ${ }_{\alpha}(T)$ as the number of distinct substrings of T which are α-powers and powers $_{\alpha}(n)$ as the maximum powers ${ }_{\alpha}(T)$ over trees T with n edges.

- $\operatorname{powers}_{\alpha}(n)=\Theta\left(n^{2}\right)$ for any fixed $1 \leq \alpha<2$.
- Consider paths labeled with $\mathrm{a}^{m} \mathrm{ba}^{m}$.
- $\operatorname{powers}_{\alpha}(n)=\Theta(n)$ for any fixed $\alpha \geq 4$.

Proof.

- Fix a node r.

Repetitions in Trees: Simple Bounds

We denote powers $_{\alpha}(T)$ as the number of distinct substrings of T which are α-powers and powers $_{\alpha}(n)$ as the maximum powers ${ }_{\alpha}(T)$ over trees T with n edges.

- $\operatorname{powers}_{\alpha}(n)=\Theta\left(n^{2}\right)$ for any fixed $1 \leq \alpha<2$.
- Consider paths labeled with $\mathrm{a}^{m} \mathrm{ba}^{m}$.
- $\operatorname{powers}_{\alpha}(n)=\Theta(n)$ for any fixed $\alpha \geq 4$.

Proof.

- Fix a node r.
- A 4-th power can be assigned a square oriented towards r.

Repetitions in Trees: Simple Bounds

We denote powers $_{\alpha}(T)$ as the number of distinct substrings of T which are α-powers and powers $_{\alpha}(n)$ as the maximum powers ${ }_{\alpha}(T)$ over trees T with n edges.

- $\operatorname{powers}_{\alpha}(n)=\Theta\left(n^{2}\right)$ for any fixed $1 \leq \alpha<2$.
- Consider paths labeled with $\mathrm{a}^{m} \mathrm{ba}^{m}$.
- $\operatorname{powers}_{\alpha}(n)=\Theta(n)$ for any fixed $\alpha \geq 4$.

Proof.

- Fix a node r.
- A 4-th power can be assigned a square oriented towards r.
- At most 2 topmost occurrences of such squares at any position.

Repetitions in Trees: Simple Bounds

We denote powers $_{\alpha}(T)$ as the number of distinct substrings of T which are α-powers and powers $_{\alpha}(n)$ as the maximum powers ${ }_{\alpha}(T)$ over trees T with n edges.

- $\operatorname{powers}_{\alpha}(n)=\Theta\left(n^{2}\right)$ for any fixed $1 \leq \alpha<2$.
- Consider paths labeled with $\mathrm{a}^{m} \mathrm{ba}^{m}$.
- powers $_{\alpha}(n)=\Theta(n)$ for any fixed $\alpha \geq 4$.

Proof.

- Fix a node r.
- A 4-th power can be assigned a square oriented towards r.
- At most 2 topmost occurrences of such squares at any position.

- $\operatorname{powers}_{4}(n) \leq 4 n$.

Squares in Trees

String powers in trees:

$\alpha \in(1,2)$	$\Theta\left(n^{2}\right)$
$\alpha \geq 4$	$\Theta(n)$

Squares in Trees
String powers in trees:

$\alpha \in(1,2)$	$\Theta\left(n^{2}\right)$
$\alpha=2$	$\Theta\left(n^{4 / 3}\right)$
$\alpha \geq 4$	$\Theta(n)$

Theorem (KRRW, CPM 2012)
$\operatorname{powers}_{2}(n)=\Theta\left(n^{4 / 3}\right)$.

Squares in Trees
String powers in trees:

$\alpha \in(1,2)$	$\Theta\left(n^{2}\right)$
$\alpha=2$	$\Theta\left(n^{4 / 3}\right)$
$\alpha \in(2,4)$	$? ?$
$\alpha \geq 4$	$\Theta(n)$

Theorem (KRRW, CPM 2012)
$\operatorname{powers}_{2}(n)=\Theta\left(n^{4 / 3}\right)$.

Extending the Lower Bound

Branches start at positions $\left\{0,1,2, \ldots, m-1, m, 2 m, 3 m, \ldots, m^{2}\right\}$, which form a difference cover (for distances $1, \ldots, m^{2}$).

Extending the Lower Bound

Branches start at positions $\left\{0,1,2, \ldots, m-1, m, 2 m, 3 m, \ldots, m^{2}\right\}$, which form a difference cover (for distances $1, \ldots, m^{2}$).
There are $\Theta\left(m^{3}\right)$ edges and $\Theta\left(m^{4}\right)$ squares:

$$
\left\{\mathrm{a}^{i} \mathrm{ba}^{i+j} \mathrm{ba}^{j}=\left(\mathrm{a}^{i} \mathrm{ba}^{j}\right)^{2}: 1 \leq i+j \leq m^{2}\right\} .
$$

Extending the Lower Bound

Branches start at positions $\left\{0,1,2, \ldots, m-1, m, 2 m, 3 m, \ldots, m^{2}\right\}$, which form a difference cover (for distances $1, \ldots, m^{2}$).
There are $\Theta\left(m^{3}\right)$ edges and $\Theta\left(m^{4}\right)$ squares:

$$
\left\{\mathrm{a}^{i} \mathrm{ba}^{i+j} \mathrm{ba}^{j}=\left(\mathrm{a}^{i} \mathrm{ba}^{j}\right)^{2}: 1 \leq i+j \leq m^{2}\right\}
$$

For fixed $\alpha=2+\frac{x}{y}$ there are $\Theta\left(m^{4}\right) \alpha$-powers:

$$
\left\{\left(\mathrm{a}^{i} \mathrm{ba}^{c y-1-i}\right)^{2} a^{c x}: 1 \leq c \leq\left\lfloor\frac{m^{2}}{y}\right\rfloor, c x \leq i \leq c y\right\} .
$$

Cubes in Trees

String powers in trees:

$\alpha \in(1,2)$	$\Theta\left(n^{2}\right)$
$\alpha \in[2,3)$	$\Theta\left(n^{4 / 3}\right)$
$\alpha \geq 4$	$\Theta(n)$

Cubes in Trees

String powers in trees:

$\alpha \in(1,2)$	$\Theta\left(n^{2}\right)$
$\alpha \in[2,3)$	$\Theta\left(n^{4 / 3}\right)$
$\alpha \in[3,4)$	$O(n \log n)$
$\alpha \geq 4$	$\Theta(n)$

Theorem (this work) powers $_{3}(n)=O(n \log n)$.

Cubes in Trees

String powers in trees:

$\alpha \in(1,2)$	$\Theta\left(n^{2}\right)$
$\alpha \in[2,3)$	$\Theta\left(n^{4 / 3}\right)$
$\alpha \in[3,4)$	$O(n \log n)$
$\alpha \geq 4$	$\Theta(n)$

Theorem (this work)

powers $_{3}(n)=O(n \log n)$.

A substring is anchored at a node r if it is a label of a simple path containing a node r.

Theorem

A tree T with n edges and a fixed node r contains $O(n)$ distinct cubes anchored at r.

Core of the Problem

Core of the Problem

Consider a fixed anchor node r.

Definition

We say that (U, V) is a decomposition a cube X^{3} if

$$
\begin{aligned}
& \operatorname{val}(u, r)=U, \operatorname{val}(r, v)=V \text { and } \\
& \operatorname{val}(u, v)=X^{3}
\end{aligned}
$$

Core of the Problem

Consider a fixed anchor node r.

Definition

We say that (U, V) is a decomposition a cube X^{3} if

$$
\begin{aligned}
& \operatorname{val}(u, r)=U, \operatorname{val}(r, v)=V \text { and } \\
& \operatorname{val}(u, v)=X^{3}
\end{aligned}
$$

We limit to essential cube decompositions:

- leftist (with $|U|>|V|$),

Core of the Problem

Consider a fixed anchor node r.

Definition

We say that (U, V) is a decomposition a cube X^{3} if

$$
\begin{aligned}
& \operatorname{val}(u, r)=U, \operatorname{val}(r, v)=V \text { and } \\
& \operatorname{val}(u, v)=X^{3}
\end{aligned}
$$

We limit to essential cube decompositions:

- leftist (with $|U|>|V|$),

Core of the Problem

Consider a fixed anchor node r.

Definition

We say that (U, V) is a decomposition a cube X^{3} if

$$
\begin{aligned}
& \operatorname{val}(u, r)=U, \operatorname{val}(r, v)=V \text { and } \\
& \operatorname{val}(u, v)=X^{3}
\end{aligned}
$$

We limit to essential cube decompositions:

- leftist (with $|U|>|V|$),
- balanced (with $|U|,|V|>|X|$),

Core of the Problem

Consider a fixed anchor node r.

Definition

We say that (U, V) is a decomposition a cube X^{3} if

$$
\begin{aligned}
& \operatorname{val}(u, r)=U, \operatorname{val}(r, v)=V \text { and } \\
& \operatorname{val}(u, v)=X^{3}
\end{aligned}
$$

We limit to essential cube decompositions:

- leftist (with $|U|>|V|$),
- balanced (with $|U|,|V|>|X|$),

Core of the Problem

Consider a fixed anchor node r.

Definition

We say that (U, V) is a decomposition a cube X^{3} if

$$
\begin{aligned}
& \operatorname{val}(u, r)=U, \operatorname{val}(r, v)=V \text { and } \\
& \operatorname{val}(u, v)=X^{3}
\end{aligned}
$$

We limit to essential cube decompositions:

- leftist (with $|U|>|V|$),
- balanced (with $|U|,|V|>|X|$),
- with primitive base.

Type-1 Cube Decompositions

- Essential cube decomposition (U, V) induces a border B of U such that $U=X B$

Type-1 Cube Decompositions

- Essential cube decomposition (U, V) induces a border B of U such that $U=X B$ and $\frac{1}{3}|U| \leq|B| \leq \frac{1}{2}|U|$.

- Essential cube decomposition (U, V) induces a border B of U such that $U=X B$ and $\frac{1}{3}|U| \leq|B| \leq \frac{1}{2}|U|$.
- $\mathcal{B}(U):=\left\{B:\right.$ border of $\left.U, \frac{1}{3}|U| \leq|B| \leq \frac{1}{2}|U|\right\}$.

Type-1 Cube Decompositions

- Essential cube decomposition (U, V) induces a border B of U such that $U=X B$ and $\frac{1}{3}|U| \leq|B| \leq \frac{1}{2}|U|$.
- $\mathcal{B}(U):=\left\{B\right.$: border of $\left.U, \frac{1}{3}|U| \leq|B| \leq \frac{1}{2}|U|\right\}$.
- Classification of decompositions:
- Type-1: B is one of the two longest borders in $\mathcal{B}(U)$.
- Type-2: otherwise.

- Essential cube decomposition (U, V) induces a border B of U such that $U=X B$ and $\frac{1}{3}|U| \leq|B| \leq \frac{1}{2}|U|$.
- $\mathcal{B}(U):=\left\{B\right.$: border of $\left.U, \frac{1}{3}|U| \leq|B| \leq \frac{1}{2}|U|\right\}$.
- Classification of decompositions:
- Type-1: B is one of the two longest borders in $\mathcal{B}(U)$.
- Type-2: otherwise.

Type-1 Cube Decompositions

- Essential cube decomposition (U, V) induces a border B of U such that $U=X B$ and $\frac{1}{3}|U| \leq|B| \leq \frac{1}{2}|U|$.
- $\mathcal{B}(U):=\left\{B\right.$: border of $\left.U, \frac{1}{3}|U| \leq|B| \leq \frac{1}{2}|U|\right\}$.
- Classification of decompositions:
- Type-1: B is one of the two longest borders in $\mathcal{B}(U)$.
- Type-2: otherwise.

Type-1 Cube Decompositions

- Essential cube decomposition (U, V) induces a border B of U such that $U=X B$ and $\frac{1}{3}|U| \leq|B| \leq \frac{1}{2}|U|$.
- $\mathcal{B}(U):=\left\{B\right.$: border of $\left.U, \frac{1}{3}|U| \leq|B| \leq \frac{1}{2}|U|\right\}$.
- Classification of decompositions:
- Type-1: B is one of the two longest borders in $\mathcal{B}(U)$.
- Type-2: otherwise.

Type-1 Cube Decompositions

- Essential cube decomposition (U, V) induces a border B of U such that $U=X B$ and $\frac{1}{3}|U| \leq|B| \leq \frac{1}{2}|U|$.
- $\mathcal{B}(U):=\left\{B\right.$: border of $\left.U, \frac{1}{3}|U| \leq|B| \leq \frac{1}{2}|U|\right\}$.
- Classification of decompositions:
- Type-1: B is one of the two longest borders in $\mathcal{B}(U)$.
- Type-2: otherwise.
- For every string U there are at most two strings V such that (U, V) is an essential decomposition of Type 1.

Type-2 Cube Decompositions: Characterization

- All borders in $\mathcal{B}(U)$ have the same shortest period P.

Type-2 Cube Decompositions: Characterization

- All borders in $\mathcal{B}(U)$ have the same shortest period P.
- If (U, V) is a type-2 decomposition, then:
(a) $|P| \leq \frac{1}{12}|U| \leq \frac{1}{6}|X|$,

Type-2 Cube Decompositions: Characterization

$2|X|-|V|+|\vec{P}|$

- All borders in $\mathcal{B}(U)$ have the same shortest period P.
- If (U, V) is a type-2 decomposition, then:
(a) $|P| \leq \frac{1}{12}|U| \leq \frac{1}{6}|X|$,
(b) X has a prefix of the form P^{*} of length at least $|B|+|P|=2|X|-|V|+|P|$,

Type-2 Cube Decompositions: Characterization

- All borders in $\mathcal{B}(U)$ have the same shortest period P.
- If (U, V) is a type-2 decomposition, then:
(a) $|P| \leq \frac{1}{12}|U| \leq \frac{1}{6}|X|$,
(b) X has a prefix of the form P^{*} of length at least $|B|+|P|=2|X|-|V|+|P|$,
(c) X has P^{2} as a suffix, but does not have a suffix of the form P^{*} of length $|X|-|B|=|V|-|X|$ or more.

Type-2 Cube Decompositions: Characterization

- All borders in $\mathcal{B}(U)$ have the same shortest period P.
- If (U, V) is a type-2 decomposition, then:
(a) $|P| \leq \frac{1}{12}|U| \leq \frac{1}{6}|X|$,
(b) X has a prefix of the form P^{*} of length at least $|B|+|P|=2|X|-|V|+|P|$,
(c) X has P^{2} as a suffix, but does not have a suffix of the form P^{*} of length $|X|-|B|=|V|-|X|$ or more.

For every string V there is at most one string U such that (U, V) is an essential decomposition of Type 2.

For every string V there is at most one string U such that (U, V) is an essential decomposition of Type 2.

1. $p:=\operatorname{per}\left(V\left[\frac{1}{3}|V| . \frac{2}{3}|V|\right]\right)$,

For every string V there is at most one string U such that (U, V) is an essential decomposition of Type 2.

1. $p:=\operatorname{per}\left(V\left[\frac{1}{3}|V| . \frac{2}{3}|V|\right]\right)$,
2. P : suffix of V of length p,

For every string V there is at most one string U such that (U, V) is an essential decomposition of Type 2.

1. $p:=\operatorname{per}\left(V\left[\frac{1}{3}|V| . \frac{2}{3}|V|\right]\right)$,
2. P : suffix of V of length p,
3. extend to the left by full occurrences of P,

For every string V there is at most one string U such that (U, V) is an essential decomposition of Type 2.

1. $p:=\operatorname{per}\left(V\left[\frac{1}{3}|V| . \frac{2}{3}|V|\right]\right)$,
2. P : suffix of V of length p,
3. extend to the left by full occurrences of P,
4. x : distance between mismatches,

For every string V there is at most one string U such that (U, V) is an essential decomposition of Type 2.

1. $p:=\operatorname{per}\left(V\left[\frac{1}{3}|V| . \frac{2}{3}|V|\right]\right)$,
2. P : suffix of V of length p,
3. extend to the left by full occurrences of P,
4. x : distance between mismatches,
5. X : suffix of V of length x.

Cubes in Trees: Summary

$O(n)$ cubes anchored at a fixed node r :

- $2 n$ cubes with essential decomposition of type 1 ,
- n cubes with essential decomposition of type 2 ,
- $O(n)$ cubes with non-essential decomposition.

Cubes in Trees: Summary

$O(n)$ cubes anchored at a fixed node r :

- $2 n$ cubes with essential decomposition of type 1 ,
- n cubes with essential decomposition of type 2 ,
- $O(n)$ cubes with non-essential decomposition.

Centroid decomposition of T :

Cubes in Trees: Summary

$O(n)$ cubes anchored at a fixed node r :

- $2 n$ cubes with essential decomposition of type 1 ,
- n cubes with essential decomposition of type 2 ,
- $O(n)$ cubes with non-essential decomposition.

Centroid decomposition of T :

Let powers $_{3}(T, r)$ be the number of cube substring of T anchored at r.

$$
\begin{aligned}
& \operatorname{powers}_{3}(T) \leq \\
& \operatorname{powers}_{3}(T, r)+\sum_{i} \operatorname{powers}_{3}\left(T_{i}\right)
\end{aligned}
$$

Cubes in Trees: Summary

$O(n)$ cubes anchored at a fixed node r :

- $2 n$ cubes with essential decomposition of type 1 ,
- n cubes with essential decomposition of type 2 ,
- $O(n)$ cubes with non-essential decomposition.

Centroid decomposition of T :

Let powers $_{3}(T, r)$ be the number of cube substring of T anchored at r.

$$
\begin{aligned}
& \operatorname{powers}_{3}(T) \leq \\
& \operatorname{powers}_{3}(T, r)+\sum_{i} \operatorname{powers}_{3}\left(T_{i}\right)
\end{aligned}
$$

Corollary

powers $_{3}(T)=O(|T| \log |T|)$.

Conclusions and Open Problems

String powers in trees:

$\alpha \in(1,2)$	$\Theta\left(n^{2}\right)$
$\alpha \in[2,3)$	$\Theta\left(n^{4 / 3}\right)$
$\alpha \in[3,4)$	$O(n \log n)$
$\alpha \geq 4$	$\Theta(n)$

Conclusions and Open Problems

String powers in trees:

$\alpha \in(1,2)$	$\Theta\left(n^{2}\right)$
$\alpha \in[2,3)$	$\Theta\left(n^{4 / 3}\right)$
$\alpha \in[3,4)$	$O(n \log n)$
$\alpha \geq 4$	$\Theta(n)$

Open Problem:

- Determine the right asymptotics for $\alpha \in[3,4)$

Conclusions and Open Problems

String powers in trees:

$\alpha \in(1,2)$	$\Theta\left(n^{2}\right)$
$\alpha \in[2,3)$	$\Theta\left(n^{4 / 3}\right)$
$\alpha \in[3,4)$	$O(n \log n)$
$\alpha \geq 4$	$\Theta(n)$

Open Problem:

- Determine the right asymptotics for $\alpha \in[3,4)$
- $O(n)$ for $\alpha \in(3,4)$ (preliminary results, to be verified),
- ??? for $\alpha=3$.

Conclusions and Open Problems

String powers in trees:

$\alpha \in(1,2)$	$\Theta\left(n^{2}\right)$
$\alpha \in[2,3)$	$\Theta\left(n^{4 / 3}\right)$
$\alpha \in[3,4)$	$O(n \log n)$
$\alpha \geq 4$	$\Theta(n)$

Open Problem:

- Determine the right asymptotics for $\alpha \in[3,4)$
- $O(n)$ for $\alpha \in(3,4)$ (preliminary results, to be verified),
- ??? for $\alpha=3$.

Related work: number of distinct palindromes

- $n+1$ for strings (Droubay et al., 2001),
- $\Omega\left(n^{3 / 2}\right)$ for trees (Brlek, Lafrenière and Provençal, DLT 2015),
- $O\left(n^{3 / 2}\right)$ for trees (GKRRW, SPIRE 2015).

Thank you for your attention!

