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Strings Powers

Definition (String Power)

The k-th power of a string u is the string uk = uu . . . u︸ ︷︷ ︸
k times

.

a b a a a b a a a b a a a b a a

k = 4

Naturally extended to fractional exponents k = p
|u| .

a b a a a b a a a b a a a b a a a b

k = 4.5

Most commonly studied types of repetitions:
squares (k = 2),
cubes (k = 3).
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Repetitions in Strings

Definition

For a string s and an exponent α define powersα(s) as the number
of distinct substrings of s being powers of exponent α.

s :

a b a a b a b a a b a a ba b a a b a b a a b a a ba b a a b a b a a b a a ba b a a b a b a a b a a ba b a a b a b a a b a a ba b a a b a b a a b a a ba b a a b a b a a b a a ba b a a b a b a a b a a ba b a a b a b a a b a a b

aa, abab, baba, abaaba, baabaa, aabaab, abaababaab,
baababaaba

powers2(s) = 8

Lower bounds
powersα(am) = Ω(m) for any fixed α ≥ 1:
acx for 1 ≤ c ≤ bmx c where α = x

y .

powersα(ambam) = Ω(m2) for any fixed 1 ≤ α < 2:
aibacy−1−iacx for 1 ≤ c ≤ bmy c, cx ≤ i ≤ cy where α = 1 + x

y .
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Repetitions in Strings: Upper Bounds

Theorem (Fraenkel and Simpson, 1998)

For every strings s we have powers2(s) = O(|s|).

Rightmost occurrences of up at most two squares may start at a
given position.

powers2(s) ≤ 2|s|,
powers2(s) ≤ (2− 16)|s| [Deza, Franek, Thierry; DAM 2015].

String powers in strings:
α ∈ (1, 2) Θ(n2)

α ≥ 2 Θ(n)
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Repetitions in Trees

Unrooted, unoriented trees with edges labeled by single letters.

T : c
a
b
a

a b

a
b

c
bb

a

a

a

a

a
b
a

a b

aa
b
a

a b

a
b bb b

b bb bb
c

bc

b
c

bc

Definition

A substrings of a tree T is a concatenation of edge labels on a
simple path in T .

Squares in T : aa, abaaba, bb, bcbc, cbcb.

powers2(T ) = 5
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Related Work

Origins:

avoidability problems
square-free strings (Thue, 1906)

semigroup theory (Burnside’s problem for semigroups),
number theory (Prouhet-Tarry-Escott problem).

non-repetitive colorings of trees
(Brešar et al., 2007; Grytczuk, 2008)
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Repetitions in Trees: Simple Bounds

We denote powersα(T ) as the number of distinct substrings of T
which are α-powers and powersα(n) as the maximum powersα(T )
over trees T with n edges.

powersα(n) = Θ(n2) for any fixed 1 ≤ α < 2.
Consider paths labeled with ambam.

powersα(n) = Θ(n) for any fixed α ≥ 4.

Proof.

Fix a node r .

A 4-th power can be assigned a
square oriented towards r .

At most 2 topmost occurrences
of such squares at any position.

powers4(n) ≤ 4n.

r
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Squares in Trees

String powers in trees:
α ∈ (1, 2) Θ(n2)

α = 2 Θ(n4/3)

α ∈ (2, 4) ??

α ≥ 4 Θ(n)

Theorem (KRRW, CPM 2012)

powers2(n) = Θ(n4/3).
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Extending the Lower Bound

a a a
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· · ·

m

b
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a

a

...

m2

m2

Branches start at positions {0, 1, 2, . . . ,m− 1,m, 2m, 3m, . . . ,m2},
which form a difference cover (for distances 1, . . . ,m2).

There are Θ(m3) edges and Θ(m4) squares:

{aibai+jbaj = (aibaj)2 : 1 ≤ i + j ≤ m2}.

For fixed α = 2 + x
y there are Θ(m4) α-powers:

{(aibacy−1−i )2acx : 1 ≤ c ≤ bm2y c, cx ≤ i ≤ cy}.
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Cubes in Trees

String powers in trees:
α ∈ (1, 2) Θ(n2)

α ∈ [2, 3) Θ(n4/3)

α ∈ [3, 4) O(n log n)

α ≥ 4 Θ(n)

Theorem (this work)

powers3(n) = O(n log n).

A substring is anchored at a node r if it is a label of a simple path
containing a node r .

Theorem

A tree T with n edges and a fixed node r contains O(n) distinct
cubes anchored at r .
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Core of the Problem

Consider a fixed anchor node r .

Definition

We say that (U,V ) is a
decomposition a cube X 3 if
val(u, r) = U, val(r , v) = V and
val(u, v) = X 3.

We limit to essential cube decompo-
sitions:

leftist (with |U| > |V |),

balanced (with |U|, |V | > |X |),

with primitive base.

r

T

T

u

v

v

u

v

uu

v

u

v

u

v
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Type-1 Cube Decompositions

2|X | − |V |+ |P|1
2 |U|

1
3 |U|

B0 B0
B1 B1
B2 B2

B(U)

X2 X2 X2

V2

Type 1

X1 X1 X1

V1

Type 1

X0 X0 X0

V0

Type 2

X X X

V
B B

U

Essential cube decomposition (U,V ) induces a border B of U
such that U = XB

and 13 |U| ≤ |B| ≤
1
2 |U|.

B(U) := {B : border of U, 13 |U| ≤ |B| ≤
1
2 |U|}.

Classification of decompositions:
Type-1: B is one of the two longest borders in B(U).
Type-2: otherwise.

For every string U there are at most two strings V such that
(U,V ) is an essential decomposition of Type 1.
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Type-1 Cube Decompositions
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Type-2 Cube Decompositions: Characterization
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Type 1

X1 X1 X1
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Type 2

X X X

V
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X X X

P

U V

P

U V

2|X | − |V |+ |P| |V | − |X |

All borders in B(U) have the same shortest period P.

If (U,V ) is a type-2 decomposition, then:

(a) |P| ≤ 1
12 |U| ≤

1
6 |X |,

(b) X has a prefix of the form P∗ of length at least
|B|+ |P| = 2|X | − |V |+ |P|,

(c) X has P2 as a suffix, but does not have a suffix of the form P∗

of length |X | − |B| = |V | − |X | or more.
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Type-2 Cube Decompositions: Retrieval

1
2 |U|

1
3 |U|

B0 B0
B1 B1
B2 B2

B(U)

X2 X2 X2

V2

Type 1

X1 X1 X1

V1

Type 1

X0 X0 X0

V0

Type 2

X X X

V
B B

P

U V

P

U V

1
3 |V |

2
3 |V |

P

|X |

X X X

U V

2|X | − |V |+ |P| |V | − |X |

For every string V there is at most one string U such that (U,V )
is an essential decomposition of Type 2.

1. p := per(V [13 |V |..
2
3 |V |]),

2. P : suffix of V of length p,

3. extend to the left by full occurrences of P,

4. x : distance between mismatches,

5. X : suffix of V of length x .
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Cubes in Trees: Summary

O(n) cubes anchored at a fixed node r :

2n cubes with essential decomposition of type 1,

n cubes with essential decomposition of type 2,

O(n) cubes with non-essential decomposition.

Centroid decomposition of T :

r

T1

T2

T3T4

...

Tk

|Ti | ≤ |T |2

Let powers3(T , r) be the number of
cube substring of T anchored at r .

powers3(T ) ≤

powers3(T , r) +
∑
i

powers3(Ti )

Corollary

powers3(T ) = O(|T | log |T |).
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Conclusions and Open Problems

String powers in trees:
α ∈ (1, 2) Θ(n2)

α ∈ [2, 3) Θ(n4/3)

α ∈ [3, 4) O(n log n)

α ≥ 4 Θ(n)

Open Problem:
Determine the right asymptotics for α ∈ [3, 4)

O(n) for α ∈ (3, 4) (preliminary results, to be verified),
??? for α = 3.

Related work: number of distinct palindromes

n + 1 for strings (Droubay et al., 2001),

Ω(n3/2) for trees (Brlek, Lafrenière and Provençal, DLT 2015),

O(n3/2) for trees (GKRRW, SPIRE 2015).
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Thank you

Thank you for your attention!
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