String Powers in Trees

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter and Tomasz Waleń

University of Warsaw, Poland

CPM 2015

Ischia, Italy July 1, 2015

Strings Powers

Definition (String Power)

The k-th power of a string u is the string $u^k = \underbrace{uu \dots u}_{k-1}$.

k times

Strings Powers

Definition (String Power)

The k-th power of a string u is the string $u^k = \underline{uu} \dots \underline{u}$.

k times

Naturally extended to fractional exponents $k = \frac{p}{|u|}$.

Strings Powers

Definition (String Power)

The k-th power of a string u is the string $u^k = \underline{uu} \dots \underline{u}$.

k times

Naturally extended to fractional exponents $k = \frac{p}{|u|}$.

Most commonly studied types of repetitions:

Repetitions in Strings

Definition

For a string s and an exponent α define powers_{α}(s) as the number of distinct substrings of s being powers of exponent α .

s: abaababaabaab

Repetitions in Strings

Definition

For a string s and an exponent α define powers_{α}(s) as the number of distinct substrings of s being powers of exponent α .

aa,

For a string s and an exponent α define powers_{α}(s) as the number of distinct substrings of s being powers of exponent α .

s: a b a a b a b a a a b a a b a a b a a b a a b a a b a a b a a a b a a

```
s: a b a a b a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a a b a a b a a b a a b a a b
```

```
s: a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a b a a b a b a a b a b a a b a b a a b a b a b a a b a b a a b a b a a b a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a
```

```
s: a b a a b a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a
```

For a string s and an exponent α define powers_{α}(s) as the number of distinct substrings of s being powers of exponent α .

```
s: abaabab<mark>aabaab</mark>
```

aa, abab, baba, abaaba, baabaa, aabaab,

For a string s and an exponent α define powers_{α}(s) as the number of distinct substrings of s being powers of exponent α .

s: abaababaabaab

aa, abab, baba, abaaba, baabaa, aabaab, abaababaab,

For a string s and an exponent α define powers_{α}(s) as the number of distinct substrings of s being powers of exponent α .

```
s: a b a a b a b a a b a a b
```

aa, abab, baba, abaaba, baabaa, aabaab, abaababaab, baababaaba

For a string s and an exponent α define powers_{α}(s) as the number of distinct substrings of s being powers of exponent α .

 $powers_2(s) = 8$

For a string s and an exponent α define powers_{α}(s) as the number of distinct substrings of s being powers of exponent α .

 $powers_2(s) = 8$

Lower bounds

• powers_{$$\alpha$$}(a^{*m*}) = $\Omega(m)$ for any fixed $\alpha \ge 1$:
• a^{*cx*} for $1 \le c \le \lfloor \frac{m}{x} \rfloor$ where $\alpha = \frac{x}{y}$.

For a string s and an exponent α define powers_{α}(s) as the number of distinct substrings of s being powers of exponent α .

 $powers_2(s) = 8$

Lower bounds

Repetitions in Strings: Upper Bounds

Theorem (Fraenkel and Simpson, 1998)

For every strings s we have powers₂(s) = O(|s|).

For every strings s we have powers₂(s) = O(|s|).

Rightmost occurrences of up at most two squares may start at a given position.

• powers₂(s) \leq 2|s|,

For every strings s we have powers₂(s) = O(|s|).

Rightmost occurrences of up at most two squares may start at a given position.

- powers₂(s) $\leq 2|s|$,
- powers₂(s) $\leq (2 \frac{1}{6})|s|$ [Deza, Franek, Thierry; DAM 2015].

For every strings s we have powers₂(s) = O(|s|).

Rightmost occurrences of up at most two squares may start at a given position.

- powers₂(s) $\leq 2|s|$,
- powers₂(s) $\leq (2 \frac{1}{6})|s|$ [Deza, Franek, Thierry; DAM 2015].

For every strings s we have powers₂(s) = O(|s|).

Rightmost occurrences of up at most two squares may start at a given position.

- powers₂(s) $\leq 2|s|$,
- powers₂(s) $\leq (2 \frac{1}{6})|s|$ [Deza, Franek, Thierry; DAM 2015].

String powers	in strings
$\alpha \in (1,2)$	$\Theta(n^2)$
$\alpha \ge 2$	$\Theta(n)$

Unrooted, unoriented trees with edges labeled by single letters.

Unrooted, unoriented trees with edges labeled by single letters.

Definition

A substrings of a tree T is a concatenation of edge labels on a simple path in T.

Unrooted, unoriented trees with edges labeled by single letters.

Definition

A substrings of a tree T is a concatenation of edge labels on a simple path in T.

Squares in T: aa

Unrooted, unoriented trees with edges labeled by single letters.

Definition

A substrings of a tree T is a concatenation of edge labels on a simple path in T.

Squares in T: aa

Unrooted, unoriented trees with edges labeled by single letters.

Definition

A substrings of a tree T is a concatenation of edge labels on a simple path in T.

Unrooted, unoriented trees with edges labeled by single letters.

Definition

A substrings of a tree T is a concatenation of edge labels on a simple path in T.

Unrooted, unoriented trees with edges labeled by single letters.

Definition

A substrings of a tree T is a concatenation of edge labels on a simple path in T.

Unrooted, unoriented trees with edges labeled by single letters.

Definition

A substrings of a tree T is a concatenation of edge labels on a simple path in T.

Unrooted, unoriented trees with edges labeled by single letters.

Definition

A substrings of a tree T is a concatenation of edge labels on a simple path in T.

Unrooted, unoriented trees with edges labeled by single letters.

Definition

A substrings of a tree T is a concatenation of edge labels on a simple path in T.

Unrooted, unoriented trees with edges labeled by single letters.

Definition

A substrings of a tree T is a concatenation of edge labels on a simple path in T.

Unrooted, unoriented trees with edges labeled by single letters.

Definition

A substrings of a tree T is a concatenation of edge labels on a simple path in T.

Squares in T: aa, abaaba, bb, bcbc, cbcb

Unrooted, unoriented trees with edges labeled by single letters.

Definition

A substrings of a tree T is a concatenation of edge labels on a simple path in T.

Squares in T: aa, abaaba, bb, bcbc, cbcb.

$$powers_2(T) = 5$$

Origins:

- avoidability problems
- square-free strings (Thue, 1906)
 - semigroup theory (Burnside's problem for semigroups),
 - number theory (Prouhet-Tarry-Escott problem).
Origins:

- avoidability problems
- square-free strings (Thue, 1906)
 - semigroup theory (Burnside's problem for semigroups),
 - number theory (Prouhet-Tarry-Escott problem).
- non-repetitive colorings of trees (Brešar et al., 2007; Grytczuk, 2008)

• powers
$$_{\alpha}(n) = \Theta(n^2)$$
 for any fixed $1 \leq \alpha < 2$.

- powers_{α} $(n) = \Theta(n^2)$ for any fixed $1 \le \alpha < 2$.
 - Consider paths labeled with a^mba^m.

- powers_α(n) = Θ(n²) for any fixed 1 ≤ α < 2.
 Consider paths labeled with a^mba^m.
- powers_{α}(n) = $\Theta(n)$ for any fixed $\alpha \ge 4$.

- powers_α(n) = Θ(n²) for any fixed 1 ≤ α < 2.
 Consider paths labeled with a^mba^m.
- powers_{α}(n) = $\Theta(n)$ for any fixed $\alpha \ge 4$.

We denote powers_{α}(*T*) as the number of distinct substrings of *T* which are α -powers and powers_{α}(*n*) as the maximum powers_{α}(*T*) over trees *T* with *n* edges.

- powers_α(n) = Θ(n²) for any fixed 1 ≤ α < 2.
 Consider paths labeled with a^mba^m.
- powers_{α}(n) = $\Theta(n)$ for any fixed $\alpha \ge 4$.

Proof.

- Fix a node r.
- A 4-th power can be assigned a square oriented towards *r*.

We denote powers_{α}(*T*) as the number of distinct substrings of *T* which are α -powers and powers_{α}(*n*) as the maximum powers_{α}(*T*) over trees *T* with *n* edges.

- powers_α(n) = Θ(n²) for any fixed 1 ≤ α < 2.
 Consider paths labeled with a^mba^m.
- powers_{α}(n) = $\Theta(n)$ for any fixed $\alpha \ge 4$.

Proof.

- Fix a node r.
- A 4-th power can be assigned a square oriented towards *r*.
- At most 2 topmost occurrences of such squares at any position.

We denote powers_{α}(*T*) as the number of distinct substrings of *T* which are α -powers and powers_{α}(*n*) as the maximum powers_{α}(*T*) over trees *T* with *n* edges.

- powers_α(n) = Θ(n²) for any fixed 1 ≤ α < 2.
 Consider paths labeled with a^mba^m.
- powers_{α}(*n*) = $\Theta(n)$ for any fixed $\alpha \ge 4$.

Proof.

- Fix a node r.
- A 4-th power can be assigned a square oriented towards *r*.
- At most 2 topmost occurrences of such squares at any position.
- powers₄(n) \leq 4n.

Squares in Trees

String powers in trees:

U 1	
$\alpha \in (1,2)$	$\Theta(n^2)$
$\alpha \ge 4$	$\Theta(n)$

Squares in Trees

String powers in trees:

. .	
$lpha \in (1,2)$	$\Theta(n^2)$
$\alpha = 2$	$\Theta(n^{4/3})$
$\alpha \ge 4$	$\Theta(n)$

Theorem (KRRW, CPM 2012)

 $powers_2(n) = \Theta(n^{4/3}).$

Squares in Trees

String powers in trees:

01	
$lpha\in(1,2)$	$\Theta(n^2)$
$\alpha = 2$	$\Theta(n^{4/3})$
$\alpha \in (2,4)$??
$\alpha \ge 4$	$\Theta(n)$

Theorem (KRRW, CPM 2012)

 $powers_2(n) = \Theta(n^{4/3}).$

Extending the Lower Bound

Branches start at positions $\{0, 1, 2, ..., m-1, m, 2m, 3m, ..., m^2\}$, which form a difference cover (for distances $1, ..., m^2$).

Extending the Lower Bound

Branches start at positions $\{0, 1, 2, ..., m-1, m, 2m, 3m, ..., m^2\}$, which form a <u>difference cover</u> (for distances $1, ..., m^2$).

There are $\Theta(m^3)$ edges and $\Theta(m^4)$ squares:

$$\{\mathtt{a}^i\mathtt{b}\mathtt{a}^{i+j}\mathtt{b}\mathtt{a}^j=(\mathtt{a}^i\mathtt{b}\mathtt{a}^j)^2:1\leq i+j\leq m^2\}.$$

Extending the Lower Bound

Branches start at positions $\{0, 1, 2, ..., m-1, m, 2m, 3m, ..., m^2\}$, which form a difference cover (for distances $1, ..., m^2$).

There are $\Theta(m^3)$ edges and $\Theta(m^4)$ squares:

$$\{\mathtt{a}^i\mathtt{b}\mathtt{a}^{i+j}\mathtt{b}\mathtt{a}^j=(\mathtt{a}^i\mathtt{b}\mathtt{a}^j)^2:1\leq i+j\leq m^2\}.$$

For fixed $\alpha = 2 + \frac{x}{v}$ there are $\Theta(m^4) \alpha$ -powers:

$$\{(a^iba^{cy-1-i})^2a^{cx}:1\leq c\leq \lfloorrac{m^2}{\gamma}
floor, cx\leq i\leq cy\}.$$

Cubes in Trees

String powers in trees:

$lpha\in(1,2)$	$\Theta(n^2)$
$\alpha \in [2,3)$	$\Theta(n^{4/3})$
$\alpha \ge 4$	$\Theta(n)$

Cubes in Trees

String powers in trees:

01	
$lpha \in (1,2)$	$\Theta(n^2)$
$lpha \in [2,3)$	$\Theta(n^{4/3})$
$\alpha \in [3, 4)$	$O(n \log n)$
$\alpha \ge 4$	$\Theta(n)$

Theorem (this work)

 $powers_3(n) = O(n \log n).$

Cubes in Trees

String powers in trees:

01	
$lpha \in (1,2)$	$\Theta(n^2)$
$lpha\in$ [2, 3)	$\Theta(n^{4/3})$
$\alpha \in [3, 4)$	$O(n \log n)$
$\alpha \ge 4$	$\Theta(n)$

Theorem (this work)

 $powers_3(n) = O(n \log n).$

A substring is <u>anchored</u> at a node r if it is a label of a simple path containing a node r.

Theorem

A tree T with n edges and a fixed node r contains O(n) distinct cubes anchored at r.

Tomasz Kociumaka, J. Radoszewski, W. Rytter and T. Waleń String Powers in Trees

Consider a fixed anchor node r.

Consider a fixed anchor node r.

Definition

We say that (U, V) is a decomposition a cube X^3 if val(u, r) = U, val(r, v) = V and $val(u, v) = X^3$.

Consider a fixed anchor node r.

Definition

We say that (U, V) is a decomposition a cube X^3 if val(u, r) = U, val(r, v) = V and $val(u, v) = X^3$.

We limit to essential cube decompositions:

• leftist (with |U| > |V|),

Consider a fixed anchor node r.

Definition

We say that (U, V) is a decomposition a cube X^3 if val(u, r) = U, val(r, v) = V and $val(u, v) = X^3$.

We limit to essential cube decompositions:

• leftist (with |U| > |V|),

Consider a fixed anchor node r.

Definition

We say that (U, V) is a decomposition a cube X^3 if val(u, r) = U, val(r, v) = V and $val(u, v) = X^3$.

We limit to essential cube decompositions:

- leftist (with |U| > |V|),
- balanced (with |U|, |V| > |X|),

Consider a fixed anchor node r.

Definition

We say that (U, V) is a decomposition a cube X^3 if val(u, r) = U, val(r, v) = V and $val(u, v) = X^3$.

We limit to essential cube decompositions:

- leftist (with |U| > |V|),
- balanced (with |U|, |V| > |X|),

Consider a fixed anchor node r.

Definition

We say that (U, V) is a decomposition a cube X^3 if val(u, r) = U, val(r, v) = V and $val(u, v) = X^3$.

We limit to essential cube decompositions:

- leftist (with |U| > |V|),
- balanced (with |U|, |V| > |X|),
- with primitive base.

• Essential cube decomposition (U, V) induces a border B of U such that U = XB

• Essential cube decomposition (U, V) induces a border B of U such that U = XB and $\frac{1}{3}|U| \le |B| \le \frac{1}{2}|U|$.

- Essential cube decomposition (U, V) induces a border B of U such that U = XB and $\frac{1}{3}|U| \le |B| \le \frac{1}{2}|U|$.
- $\mathcal{B}(U) := \{B : \text{border of } U, \ \frac{1}{3}|U| \le |B| \le \frac{1}{2}|U|\}.$

- Essential cube decomposition (U, V) induces a border B of U such that U = XB and $\frac{1}{3}|U| \le |B| \le \frac{1}{2}|U|$.
- $\mathcal{B}(U) := \{B : \text{border of } U, \ \frac{1}{3}|U| \le |B| \le \frac{1}{2}|U|\}.$
- Classification of decompositions:
 - Type-1: B is one of the two longest borders in $\mathcal{B}(U)$.
 - Type-2: otherwise.

- Essential cube decomposition (U, V) induces a border B of U such that U = XB and $\frac{1}{3}|U| \le |B| \le \frac{1}{2}|U|$.
- $\mathcal{B}(U) := \{B : \text{border of } U, \ \frac{1}{3}|U| \le |B| \le \frac{1}{2}|U|\}.$
- Classification of decompositions:
 - Type-1: B is one of the two longest borders in $\mathcal{B}(U)$.
 - Type-2: otherwise.

- Essential cube decomposition (U, V) induces a border B of U such that U = XB and $\frac{1}{3}|U| \le |B| \le \frac{1}{2}|U|$.
- $\mathcal{B}(U) := \{B : \text{border of } U, \ \frac{1}{3}|U| \le |B| \le \frac{1}{2}|U|\}.$
- Classification of decompositions:
 - Type-1: B is one of the two longest borders in $\mathcal{B}(U)$.
 - Type-2: otherwise.

- Essential cube decomposition (U, V) induces a border B of U such that U = XB and $\frac{1}{3}|U| \le |B| \le \frac{1}{2}|U|$.
- $\mathcal{B}(U) := \{B : \text{border of } U, \ \frac{1}{3}|U| \le |B| \le \frac{1}{2}|U|\}.$
- Classification of decompositions:
 - Type-1: B is one of the two longest borders in $\mathcal{B}(U)$.
 - Type-2: otherwise.

- Essential cube decomposition (U, V) induces a border B of U such that U = XB and $\frac{1}{3}|U| \le |B| \le \frac{1}{2}|U|$.
- $\mathcal{B}(U) := \{B : \text{border of } U, \ \frac{1}{3}|U| \le |B| \le \frac{1}{2}|U|\}.$
- Classification of decompositions:
 - Type-1: B is one of the two longest borders in $\mathcal{B}(U)$.
 - Type-2: otherwise.
- For every string U there are at most two strings V such that (U, V) is an essential decomposition of Type 1.

Type-2 Cube Decompositions: Characterization

• All borders in $\mathcal{B}(U)$ have the same shortest period P.

Type-2 Cube Decompositions: Characterization

- All borders in $\mathcal{B}(U)$ have the same shortest period P.
- If (U, V) is a type-2 decomposition, then:

(a) $|P| \leq \frac{1}{12}|U| \leq \frac{1}{6}|X|$,

Type-2 Cube Decompositions: Characterization

- All borders in $\mathcal{B}(U)$ have the same shortest period P.
- If (U, V) is a type-2 decomposition, then:

(a)
$$|P| \leq \frac{1}{12} |U| \leq \frac{1}{6} |X|$$
,

(b) X has a prefix of the form P^* of length at least |B| + |P| = 2|X| - |V| + |P|,
Type-2 Cube Decompositions: Characterization

- All borders in $\mathcal{B}(U)$ have the same shortest period P.
- If (U, V) is a type-2 decomposition, then:

(a)
$$|P| \le \frac{1}{12} |U| \le \frac{1}{6} |X|$$
,

- (b) X has a prefix of the form P^* of length at least |B| + |P| = 2|X| |V| + |P|,
- (c) X has P^2 as a suffix, but does not have a suffix of the form P^* of length |X| |B| = |V| |X| or more.

Type-2 Cube Decompositions: Characterization

- All borders in $\mathcal{B}(U)$ have the same shortest period P.
- If (U, V) is a type-2 decomposition, then:

(a)
$$|P| \le \frac{1}{12} |U| \le \frac{1}{6} |X|$$
,

- (b) X has a prefix of the form P^* of length at least |B| + |P| = 2|X| |V| + |P|,
- (c) X has P^2 as a suffix, but does not have a suffix of the form P^* of length |X| |B| = |V| |X| or more.

1.
$$p := per(V[\frac{1}{3}|V|..\frac{2}{3}|V|]),$$

For every string V there is at most one string U such that (U, V) is an essential decomposition of Type 2.

1.
$$p := per(V[\frac{1}{3}|V|..\frac{2}{3}|V|]),$$

2. P : suffix of V of length p,

1.
$$p := per(V[\frac{1}{3}|V|..\frac{2}{3}|V|])$$

- 2. P : suffix of V of length p,
- 3. extend to the left by full occurrences of P,

1.
$$p := per(V[\frac{1}{3}|V|..\frac{2}{3}|V|]),$$

- 2. P : suffix of V of length p,
- 3. extend to the left by full occurrences of P,
- 4. x : distance between mismatches,

1.
$$p := per(V[\frac{1}{3}|V|..\frac{2}{3}|V|]),$$

- 2. P : suffix of V of length p,
- 3. extend to the left by full occurrences of P,
- 4. x : distance between mismatches,
- 5. X : suffix of V of length x.

O(n) cubes anchored at a fixed node r:

- 2n cubes with essential decomposition of type 1,
- *n* cubes with essential decomposition of type 2,
- O(n) cubes with non-essential decomposition.

O(n) cubes anchored at a fixed node r:

- 2n cubes with essential decomposition of type 1,
- *n* cubes with essential decomposition of type 2,
- O(n) cubes with non-essential decomposition.

Centroid decomposition of T:

O(n) cubes anchored at a fixed node r:

- 2n cubes with essential decomposition of type 1,
- *n* cubes with essential decomposition of type 2,
- O(n) cubes with non-essential decomposition.

Centroid decomposition of T:

Let powers₃(T, r) be the number of cube substring of T anchored at r.

 $powers_3(T) \le powers_3(T, r) + \sum_i powers_3(T_i)$

O(n) cubes anchored at a fixed node r:

- 2n cubes with essential decomposition of type 1,
- *n* cubes with essential decomposition of type 2,
- O(n) cubes with non-essential decomposition.

Centroid decomposition of T:

Let powers₃(T, r) be the number of cube substring of T anchored at r.

 $powers_3(T) \le powers_3(T, r) + \sum_i powers_3(T_i)$

Corollary

 $powers_3(T) = O(|T| \log |T|).$

String powers in trees:	
$\alpha \in (1,2)$	$\Theta(n^2)$
$\alpha \in [2,3)$	$\Theta(n^{4/3})$
$\alpha \in [3,4)$	$O(n \log n)$
$\alpha \ge 4$	$\Theta(n)$

String powers in trees:	
$\alpha \in (1,2)$	$\Theta(n^2)$
$\alpha \in [2,3)$	$\Theta(n^{4/3})$
$\alpha \in [3, 4)$	$O(n \log n)$
$\alpha \ge 4$	$\Theta(n)$

Open Problem:

• Determine the right asymptotics for $\alpha \in [3,4)$

String powers in trees:		
$\alpha \in (1,2)$	$\Theta(n^2)$	
$\alpha \in [2,3)$	$\Theta(n^{4/3})$	
$\alpha \in [3, 4)$	$O(n \log n)$	
$\alpha \ge 4$	$\Theta(n)$	

Open Problem:

- Determine the right asymptotics for $\alpha \in [3,4)$
 - O(n) for α ∈ (3,4) (preliminary results, to be verified),
 - ??? for $\alpha = 3$.

String powers in trees:		
$\alpha \in (1,2)$	$\Theta(n^2)$	
$\alpha \in [2,3)$	$\Theta(n^{4/3})$	
$\alpha \in [3, 4)$	$O(n \log n)$	
$\alpha \ge 4$	$\Theta(n)$	

Open Problem:

- Determine the right asymptotics for $\alpha \in [3,4)$
 - O(n) for α ∈ (3,4) (preliminary results, to be verified),
 - ??? for $\alpha = 3$.

Related work: number of distinct palindromes

- n + 1 for strings (Droubay et al., 2001),
- $\Omega(n^{3/2})$ for trees (Brlek, Lafrenière and Provençal, DLT 2015),
- $O(n^{3/2})$ for trees (GKRRW, SPIRE 2015).

Thank you for your attention!

