Computing k-th Lyndon Word and Decoding Lexicographically Minimal de Bruijn Sequence

Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter

University of Warsaw
CPM 2014
Moscow, June 18, 2014

Lyndon words

Definition (Lyndon, 1954)

A Lyndon word is a word that is strictly smaller than all its nontrivial cyclic rotations.

Lyndon words

Definition (Lyndon, 1954)

A Lyndon word is a word that is strictly smaller than all its nontrivial cyclic rotations.

Examples:

- 0010011,
- 000001,
- 1.

Lyndon words

Definition (Lyndon, 1954)

A Lyndon word is a word that is strictly smaller than all its nontrivial cyclic rotations.

Examples:

- 0010011,
- 000001,
- 1.

Non-examples:

- 010011 (010011 > 001101)
- $001001\left(001001=(001)^{2}\right)$

Enumerating Lyndon words

Notation:
Σ a fixed finite totally-ordered alphabet,
\mathcal{L} all Lyndon words in Σ^{+},
\mathcal{L}_{n} all Lyndon words in Σ^{n}.

Enumerating Lyndon words

Notation:
Σ a fixed finite totally-ordered alphabet,
\mathcal{L} all Lyndon words in Σ^{+},
\mathcal{L}_{n} all Lyndon words in Σ^{n}.
We define

$$
\operatorname{Lynd}(w)=\left\{x \in \mathcal{L}_{|w|}: x \leq w\right\}
$$

Enumerating Lyndon words

Notation:
Σ a fixed finite totally-ordered alphabet,
\mathcal{L} all Lyndon words in Σ^{+},
\mathcal{L}_{n} all Lyndon words in Σ^{n}.
We define

$$
\operatorname{Lynd}(w)=\left\{x \in \mathcal{L}_{|w|}: x \leq w\right\}
$$

Example:

$$
\begin{aligned}
\Sigma= & \{0,1\} \\
\mathcal{L}_{6}= & \{000001,000011,000101,000111,001011 \\
& 001101,001111,010111,011111\}
\end{aligned}
$$

Enumerating Lyndon words

Notation:
Σ a fixed finite totally-ordered alphabet,
\mathcal{L} all Lyndon words in Σ^{+},
\mathcal{L}_{n} all Lyndon words in Σ^{n}.
We define

$$
\operatorname{Lynd}(w)=\left\{x \in \mathcal{L}_{|w|}: x \leq w\right\}
$$

Example:

$$
\begin{aligned}
& \Sigma=\{0,1\} \\
& \mathcal{L}_{6}=\{000001,000011,000101,000111,001011 \\
&001101,001111,010111,011111\} \\
& \mid \text { Lynd }(001110) \mid=6
\end{aligned}
$$

Enumerating Lyndon words

Notation:
Σ a fixed finite totally-ordered alphabet,
\mathcal{L} all Lyndon words in Σ^{+},
\mathcal{L}_{n} all Lyndon words in Σ^{n}.
We define

$$
\operatorname{Lynd}(w)=\left\{x \in \mathcal{L}_{|w|}: x \leq w\right\}
$$

Example:

$$
\begin{aligned}
& \Sigma=\{0,1\} \\
& \mathcal{L}_{6}=\{000001,000011,000101,000111,001011 \\
&001101,001111,010111,011111\} \\
& \mid \text { Lynd }(001110) \mid=6 \\
& \mid \text { Lynd }(011010) \mid=8
\end{aligned}
$$

Our results (Lyndon words)

Theorem

Given a word w of length n the value $|\operatorname{Lynd}(w)|$ can be computed in $\mathcal{O}\left(n^{3}\right)$ time.

Our results (Lyndon words)

Theorem

Given a word w of length n the value $|\operatorname{Lynd}(w)|$ can be computed in $\mathcal{O}\left(n^{3}\right)$ time.

Technical assumptions:

- word-RAM model,
- $\Sigma=\{0,1, \ldots, \sigma-1\}, \sigma$ fits in a machine word.

Our results (Lyndon words)

Theorem

Given a word w of length n the value $|L y n d(w)|$ can be computed in $\mathcal{O}\left(n^{3}\right)$ time.

Technical assumptions:

- word-RAM model,
- $\Sigma=\{0,1, \ldots, \sigma-1\}, \sigma$ fits in a machine word.

Corollary

The k-th lexicographically smallest Lyndon word in \mathcal{L}_{n} can be computed in $\mathcal{O}\left(n^{4} \log \sigma\right)$ time.

Proof.

Binary search over \sum^{n}.

Motivation

- Lyndon words have numerous applications:

Motivation

- Lyndon words have numerous applications:
- combinatorics of words,

Motivation

- Lyndon words have numerous applications:
- combinatorics of words,
- text algorithms,

Motivation

- Lyndon words have numerous applications:
- combinatorics of words,
- text algorithms,
- algebra.

Motivation

- Lyndon words have numerous applications:
- combinatorics of words,
- text algorithms,
- algebra.
- Generating k-th smallest element is a natural question for any combinatorial object;

Motivation

- Lyndon words have numerous applications:
- combinatorics of words,
- text algorithms,
- algebra.
- Generating k-th smallest element is a natural question for any combinatorial object;
- no polynomial-time algorithm known previously for \mathcal{L}_{n}.

Motivation

- Lyndon words have numerous applications:
- combinatorics of words,
- text algorithms,
- algebra.
- Generating k-th smallest element is a natural question for any combinatorial object;
- no polynomial-time algorithm known previously for \mathcal{L}_{n}.
- Generalization of the known formula:

$$
\left|\mathcal{L}_{n}\right|=\frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) \sigma^{d}
$$

Motivation

- Lyndon words have numerous applications:
- combinatorics of words,
- text algorithms,
- algebra.
- Generating k-th smallest element is a natural question for any combinatorial object;
- no polynomial-time algorithm known previously for \mathcal{L}_{n}.
- Generalization of the known formula:

$$
\left|\mathcal{L}_{n}\right|=\frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) \sigma^{d}
$$

- Applications to decoding the minimal de Bruijn sequence.

De Bruijn sequences

Definition

A de Bruijn sequence of rank n is a cyclic sequence in which every word from \sum^{n} appears as a subword exactly once.

De Bruijn sequences

Definition

A de Bruijn sequence of rank n is a cyclic sequence in which every word from \sum^{n} appears as a subword exactly once.

De Bruijn sequences

Definition

A de Bruijn sequence of rank n is a cyclic sequence in which every word from \sum^{n} appears as a subword exactly once.

De Bruijn sequences

Definition

A de Bruijn sequence of rank n is a cyclic sequence in which every word from \sum^{n} appears as a subword exactly once.

De Bruijn sequences

Definition

A de Bruijn sequence of rank n is a cyclic sequence in which every word from \sum^{n} appears as a subword exactly once.

Lexicographically minimal de Bruijn sequence

Notation:
Σ fixed alphabet,
$d B_{n}$ the lexicographically minimal de Bruijn sequence over Σ of rank n.

Lexicographically minimal de Bruijn sequence

Notation:
Σ fixed alphabet,
$d B_{n}$ the lexicographically minimal de Bruijn sequence over Σ of rank n.
For $\Sigma=\{0,1\}$ and $n=6$ the sequence $d B_{6}$ is:
0000001000011000101000111001001011 001101001111010101110110111111

Lexicographically minimal de Bruijn sequence

Notation:
Σ fixed alphabet,
$d B_{n}$ the lexicographically minimal de Bruijn sequence over \sum of rank n.
For $\Sigma=\{0,1\}$ and $n=6$ the sequence $d B_{6}$ is:
0000001000011000101000111001001011 001101001111010101110110111111

Theorem (Fredricksen, Maiorana, 1978)

The sequence $d B_{n}$ is the concatenation, in lexicographic order, of all Lyndon words over Σ whose length divides n.

Decoding de Bruijn sequences

A decoding algorithm finds the position of an arbitrary word from Σ^{n} in a given de Bruijn sequence in polynomial time.

Decoding de Bruijn sequences

A decoding algorithm finds the position of an arbitrary word from Σ^{n} in a given de Bruijn sequence in polynomial time.

1110

Decoding de Bruijn sequences

A decoding algorithm finds the position of an arbitrary word from Σ^{n} in a given de Bruijn sequence in polynomial time.

1110

Decoding de Bruijn sequences

A decoding algorithm finds the position of an arbitrary word from Σ^{n} in a given de Bruijn sequence in polynomial time.

Decoding de Bruijn sequences

A decoding algorithm finds the position of an arbitrary word from Σ^{n} in a given de Bruijn sequence in polynomial time.

Decoding de Bruijn sequences

A decoding algorithm finds the position of an arbitrary word from Σ^{n} in a given de Bruijn sequence in polynomial time.

0100

Decoding de Bruijn sequences

A decoding algorithm finds the position of an arbitrary word from Σ^{n} in a given de Bruijn sequence in polynomial time.

0100

Decoding de Bruijn sequences

A decoding algorithm finds the position of an arbitrary word from Σ^{n} in a given de Bruijn sequence in polynomial time.

Applications:

- position sensing schemes.

Decoding de Bruijn sequences

A decoding algorithm finds the position of an arbitrary word from Σ^{n} in a given de Bruijn sequence in polynomial time.

Applications:

- position sensing schemes.

Previous work:

- polynomial-time decoding schemes for several types of de Bruijn sequences:
- Paterson \& Robshaw, 1995
- Mitchell, Etzion and Paterson, 1996
- Tuliani, 2001

Our results (minimal de Bruijn sequences)

Using the correspondence between Lyndon words and lex. min. de Bruijn sequences we show the following:

Theorem

There exists an $\mathcal{O}\left(n^{3}\right)$-time decoding algorithm for $d B_{n}$.

Theorem

For any n the k-th symbol of $d B_{n}$ can be computed in $\mathcal{O}\left(n^{4} \log \sigma\right)$ time.

Main algorithm

We sketch the proof of the following result:

Theorem

For any word w of length n, the value $|L y n d(w)|$ can be computed in poly (n) time.

Main algorithm: auxiliary reduction

We sketch the proof of the following result:

Theorem

For any word w of length n, the value $|L y n d(w)|$ can be computed in poly(n) time.

For a word $w \in \Sigma^{+}$, denote the lexicographically minimal cyclic rotation of w by $\langle w\rangle$.

Lemma

For any word $w \in \Sigma^{n}$ the lexicographically maximal $w^{\prime} \in \Sigma^{n}$ such that $\left\langle w^{\prime}\right\rangle=w^{\prime} \leq w$ can be found in $\mathcal{O}\left(n^{2}\right)$ time.

Main algorithm: auxiliary reduction

We sketch the proof of the following result:

Theorem

For any word w of length n, the value $|L y n d(w)|$ can be computed in poly(n) time.

For a word $w \in \Sigma^{+}$, denote the lexicographically minimal cyclic rotation of w by $\langle w\rangle$.

Lemma

For any word $w \in \Sigma^{n}$ the lexicographically maximal $w^{\prime} \in \Sigma^{n}$ such that $\left\langle w^{\prime}\right\rangle=w^{\prime} \leq w$ can be found in $\mathcal{O}\left(n^{2}\right)$ time.
$\operatorname{Lynd}\left(w^{\prime}\right)=\operatorname{Lynd}(w)$, so we can assume that $\langle w\rangle=w$.

Formula for $|\operatorname{Lynd}(w)|$

Define

$$
C S(w)=\left\{x \in \Sigma^{|w|}:\langle x\rangle \leq w\right\} .
$$

Lemma
If $\langle w\rangle=w$ then

$$
|\operatorname{Lynd}(w)|=\frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right)|C S(w[1 . . d])|
$$

Formula for $|\operatorname{Lynd}(w)|$

Define

$$
C S(w)=\left\{x \in \Sigma^{|w|}:\langle x\rangle \leq w\right\}
$$

Lemma

$$
\begin{aligned}
& \text { If }\langle w\rangle=w \text { then } \\
& \qquad|\operatorname{Lynd}(w)|=\frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right)|C S(w[1 . . d])|
\end{aligned}
$$

Example. Let $w=010111$.

$$
\begin{gathered}
C S(w[1.1])=\{0\}, \quad \operatorname{CS}(w[1 . .2])=\{00,01,10\}, \\
\operatorname{CS}(w[1.3])=\{000,001,010,100\}, \quad|\operatorname{CS}(w)|=54 \\
|\operatorname{Lynd}(w)|=\frac{1}{6} \cdot(\mu(1)|\operatorname{CS}(w)|+\mu(2)|\operatorname{CS}(w[1 . .3])|+\mu(3)|\operatorname{CS}(w[1 . .2])|+ \\
\mu(6)|\operatorname{CS}(w[1 . .1])|)=\frac{1}{6} \cdot(54-4-3+1)=8 .
\end{gathered}
$$

$C S(w)$ as a language

Define a language $L(w)$ as follows:
$x \in L(w)$ if there exists a subword z of x such that $z \leq w$ but
z is not a proper prefix of w.

$C S(w)$ as a language

Define a language $L(w)$ as follows:
$x \in L(w)$ if there exists a subword z of x such that $z \leq w$ but
z is not a proper prefix of w.

Fact

If $\langle w\rangle=w$ then $\operatorname{CS}(w)=\sqrt{L(w)} \cap \Sigma^{n}$, where
$\sqrt{L}=\left\{y: y^{2} \in L\right\}$.

$C S(w)$ as a language

Define a language $L(w)$ as follows:
$x \in L(w)$ if there exists a subword z of x such that $z \leq w$ but
z is not a proper prefix of w.

Fact

$$
\begin{aligned}
& \text { If }\langle w\rangle=w \text { then } C S(w)=\sqrt{L(w)} \cap \Sigma^{n}, \text { where } \\
& \sqrt{L}=\left\{y: y^{2} \in L\right\} .
\end{aligned}
$$

$$
z \leq w
$$

$$
y^{2} \in L(w),|y|=n
$$

$C S(w)$ as a language

Define a language $L(w)$ as follows:
$x \in L(w)$ if there exists a subword z of x such that $z \leq w$ but
z is not a proper prefix of w.

Fact

If $\langle w\rangle=w$ then $\operatorname{CS}(w)=\sqrt{L(w)} \cap \Sigma^{n}$, where
$\sqrt{L}=\left\{y: y^{2} \in L\right\}$.

Deterministic automaton recognizing $L(w)$

A has $n+1$ states: one for each proper prefix of w, and an auxiliary accepting state $A C$. The transitions are defined as follows: $\delta(A C, c)=A C$ for any $c \in \Sigma$ and

$$
\delta\left(w_{(i)}, c\right)=\{
$$

Deterministic automaton recognizing $L(w)$

A has $n+1$ states: one for each proper prefix of w, and an auxiliary accepting state $A C$. The transitions are defined as follows: $\delta(A C, c)=A C$ for any $c \in \Sigma$ and

$$
\delta\left(w_{(i)}, c\right)= \begin{cases}w_{(i+1)} & \text { if } c=w[i+1] \text { and } i \neq n-1, \\ \end{cases}
$$

Deterministic automaton recognizing $L(w)$

A has $n+1$ states: one for each proper prefix of w, and an auxiliary accepting state $A C$. The transitions are defined as follows: $\delta(A C, c)=A C$ for any $c \in \Sigma$ and

$$
\delta\left(w_{(i)}, c\right)= \begin{cases}w_{(i+1)} & \text { if } c=w[i+1] \text { and } i \neq n-1, \\ w_{(0)} & \text { if } c>w[i+1],\end{cases}
$$

Deterministic automaton recognizing $L(w)$

A has $n+1$ states: one for each proper prefix of w, and an auxiliary accepting state $A C$. The transitions are defined as follows: $\delta(A C, c)=A C$ for any $c \in \Sigma$ and

$$
\delta\left(w_{(i)}, c\right)= \begin{cases}w_{(i+1)} & \text { if } c=w[i+1] \text { and } i \neq n-1, \\ w_{(0)} & \text { if } c>w[i+1], \\ A C & \text { otherwise } .\end{cases}
$$

Deterministic automaton recognizing $L(w)$

A has $n+1$ states: one for each proper prefix of w, and an auxiliary accepting state $A C$. The transitions are defined as follows: $\delta(A C, c)=A C$ for any $c \in \Sigma$ and

$$
\delta\left(w_{(i)}, c\right)= \begin{cases}w_{(i+1)} & \text { if } c=w[i+1] \text { and } i \neq n-1 \\ w_{(0)} & \text { if } c>w[i+1] \\ A C & \text { otherwise }\end{cases}
$$

Fact

Let a word w be its own minimal rotation, i.e. $\langle w\rangle=w$. If $w[1 . . j]$ is a border of $w[1 . . i]$, then $w[j+1] \leq w[i+1]$.

Dynamic programming

For $A=\left(Q, q_{0}, F, \delta\right)$ and $q, q^{\prime} \in Q$ define

$$
L_{A}\left(q, q^{\prime}\right)=\left\{x \in \Sigma^{*}: \delta(q, x)=q^{\prime}\right\}
$$

Dynamic programming

For $A=\left(Q, q_{0}, F, \delta\right)$ and $q, q^{\prime} \in Q$ define

$$
L_{A}\left(q, q^{\prime}\right)=\left\{x \in \Sigma^{*}: \delta(q, x)=q^{\prime}\right\}
$$

Fact

For any automaton $A=\left(Q, q_{0}, F, \delta\right)$ we have

$$
\left|\sqrt{L(A)} \cap \Sigma^{n}\right|=\sum_{q \in Q, q^{\prime} \in F}\left|L_{A}\left(q_{0}, q\right) \cap L_{A}\left(q, q^{\prime}\right) \cap \Sigma^{n}\right|
$$

Dynamic programming

For $A=\left(Q, q_{0}, F, \delta\right)$ and $q, q^{\prime} \in Q$ define

$$
L_{A}\left(q, q^{\prime}\right)=\left\{x \in \Sigma^{*}: \delta(q, x)=q^{\prime}\right\}
$$

Fact

For any automaton $A=\left(Q, q_{0}, F, \delta\right)$ we have

$$
\left|\sqrt{L(A)} \cap \Sigma^{n}\right|=\sum_{q \in Q, q^{\prime} \in F}\left|L_{A}\left(q_{0}, q\right) \cap L_{A}\left(q, q^{\prime}\right) \cap \Sigma^{n}\right|
$$

One can compute $\left|L_{A}\left(q_{0}, q\right) \cap L_{A}\left(q^{\prime}, q^{\prime \prime}\right) \cap \Sigma^{m}\right|$ for all $q, q^{\prime}, q^{\prime \prime} \in Q$ and $m \leq n$ in $O(p o l y(n))$ time.

Dynamic programming

For $A=\left(Q, q_{0}, F, \delta\right)$ and $q, q^{\prime} \in Q$ define

$$
L_{A}\left(q, q^{\prime}\right)=\left\{x \in \Sigma^{*}: \delta(q, x)=q^{\prime}\right\}
$$

Fact

For any automaton $A=\left(Q, q_{0}, F, \delta\right)$ we have

$$
\left|\sqrt{L(A)} \cap \Sigma^{n}\right|=\sum_{q \in Q, q^{\prime} \in F}\left|L_{A}\left(q_{0}, q\right) \cap L_{A}\left(q, q^{\prime}\right) \cap \Sigma^{n}\right|
$$

One can compute $\left|L_{A}\left(q_{0}, q\right) \cap L_{A}\left(q^{\prime}, q^{\prime \prime}\right) \cap \Sigma^{m}\right|$ for all $q, q^{\prime}, q^{\prime \prime} \in Q$ and $m \leq n$ in $O(p o l y(n))$ time.

To obtain $\mathcal{O}\left(n^{3}\right)$ time complexity, we use an alternative method that exploits the structure of A.

Decoding de Bruijn Sequence

Let $d B_{n}=\lambda_{1} \ldots \lambda_{p}$, where $\lambda_{i} \in \mathcal{L}$ and $\left|\lambda_{i}\right| \mid n$.
The proof of theorem of Fredricksen and Maiorana provides, for each $w \in \Sigma^{n}, \lambda_{k}$ such that w is a subword of $\lambda_{k-1} \lambda_{k} \lambda_{k+1}$.

Decoding de Bruijn Sequence

Let $d B_{n}=\lambda_{1} \ldots \lambda_{p}$, where $\lambda_{i} \in \mathcal{L}$ and $\left|\lambda_{i}\right| \mid n$.
The proof of theorem of Fredricksen and Maiorana provides, for each $w \in \Sigma^{n}, \lambda_{k}$ such that w is a subword of $\lambda_{k-1} \lambda_{k} \lambda_{k+1}$.
(1) Find λ_{k-1} and λ_{k+1} (using the FKM algorithm).

Decoding de Bruijn Sequence

Let $d B_{n}=\lambda_{1} \ldots \lambda_{p}$, where $\lambda_{i} \in \mathcal{L}$ and $\left|\lambda_{i}\right| \mid n$.
The proof of theorem of Fredricksen and Maiorana provides, for each $w \in \sum^{n}, \lambda_{k}$ such that w is a subword of $\lambda_{k-1} \lambda_{k} \lambda_{k+1}$.
(1) Find λ_{k-1} and λ_{k+1} (using the FKM algorithm).
(2) Perform pattern matching for w in $\lambda_{k-1} \lambda_{k} \lambda_{k+1}$.

Decoding de Bruijn Sequence

Let $d B_{n}=\lambda_{1} \ldots \lambda_{p}$, where $\lambda_{i} \in \mathcal{L}$ and $\left|\lambda_{i}\right| \mid n$.
The proof of theorem of Fredricksen and Maiorana provides, for each $w \in \sum^{n}, \lambda_{k}$ such that w is a subword of $\lambda_{k-1} \lambda_{k} \lambda_{k+1}$.
(1) Find λ_{k-1} and λ_{k+1} (using the FKM algorithm).
(2) Perform pattern matching for w in $\lambda_{k-1} \lambda_{k} \lambda_{k+1}$.
(3) The occurrence of λ_{k} in $d B_{n}$ ends at position $\left|C S\left(\lambda_{k}^{n /\left|\lambda_{k}\right|}\right)\right|$.

Decoding de Bruijn Sequence

Let $d B_{n}=\lambda_{1} \ldots \lambda_{p}$, where $\lambda_{i} \in \mathcal{L}$ and $\left|\lambda_{i}\right| \mid n$.
The proof of theorem of Fredricksen and Maiorana provides, for each $w \in \sum^{n}, \lambda_{k}$ such that w is a subword of $\lambda_{k-1} \lambda_{k} \lambda_{k+1}$.
(1) Find λ_{k-1} and λ_{k+1} (using the FKM algorithm).
(2) Perform pattern matching for w in $\lambda_{k-1} \lambda_{k} \lambda_{k+1}$.
(3) The occurrence of λ_{k} in $d B_{n}$ ends at position $\left|C S\left(\lambda_{k}^{n /\left|\lambda_{k}\right|}\right)\right|$.

Decoding de Bruijn Sequence

Let $d B_{n}=\lambda_{1} \ldots \lambda_{p}$, where $\lambda_{i} \in \mathcal{L}$ and $\left|\lambda_{i}\right| \mid n$.
The proof of theorem of Fredricksen and Maiorana provides, for each $w \in \Sigma^{n}, \lambda_{k}$ such that w is a subword of $\lambda_{k-1} \lambda_{k} \lambda_{k+1}$.
(1) Find λ_{k-1} and λ_{k+1} (using the FKM algorithm).
(2) Perform pattern matching for w in $\lambda_{k-1} \lambda_{k} \lambda_{k+1}$.
(3) The occurrence of λ_{k} in $d B_{n}$ ends at position $\left|C S\left(\lambda_{k}^{n /\left|\lambda_{k}\right|}\right)\right|$.
$\left|C S\left(\lambda_{k}^{n /\left|\lambda_{k}\right|}\right)\right|$ can be computed in $\mathcal{O}\left(n^{3}\right)$ time which yields the $\mathcal{O}\left(n^{3}\right)$-time decoding algorithm.

Summary

Our results:

- The value $|\operatorname{Lynd}(w)|$ can be computed in $\mathcal{O}\left(|w|^{3}\right)$ time.

Summary

Our results:

- The value $|\operatorname{Lynd}(w)|$ can be computed in $\mathcal{O}\left(|w|^{3}\right)$ time.
- The k-th lexicographically smallest Lyndon word of length n can be computed in $\mathcal{O}\left(n^{4} \log \sigma\right)$ time.

Summary

Our results:

- The value $|\operatorname{Lynd}(w)|$ can be computed in $\mathcal{O}\left(|w|^{3}\right)$ time.
- The k-th lexicographically smallest Lyndon word of length n can be computed in $\mathcal{O}\left(n^{4} \log \sigma\right)$ time.
- An $\mathcal{O}\left(n^{3}\right)$-time decoding algorithm for $d B_{n}$.

Summary

Our results:

- The value $|\operatorname{Lynd}(w)|$ can be computed in $\mathcal{O}\left(|w|^{3}\right)$ time.
- The k-th lexicographically smallest Lyndon word of length n can be computed in $\mathcal{O}\left(n^{4} \log \sigma\right)$ time.
- An $\mathcal{O}\left(n^{3}\right)$-time decoding algorithm for $d B_{n}$.
- The k-th symbol of $d B_{n}$ can be computed in $\mathcal{O}\left(n^{4} \log \sigma\right)$ time.

Summary

Our results:

- The value $|\operatorname{Lynd}(w)|$ can be computed in $\mathcal{O}\left(|w|^{3}\right)$ time.
- The k-th lexicographically smallest Lyndon word of length n can be computed in $\mathcal{O}\left(n^{4} \log \sigma\right)$ time.
- An $\mathcal{O}\left(n^{3}\right)$-time decoding algorithm for $d B_{n}$.
- The k-th symbol of $d B_{n}$ can be computed in $\mathcal{O}\left(n^{4} \log \sigma\right)$ time.

Summary

Our results:

- The value $|\operatorname{Lynd}(w)|$ can be computed in $\mathcal{O}\left(|w|^{3}\right)$ time.
- The k-th lexicographically smallest Lyndon word of length n can be computed in $\mathcal{O}\left(n^{4} \log \sigma\right)$ time.
- An $\mathcal{O}\left(n^{3}\right)$-time decoding algorithm for $d B_{n}$.
- The k-th symbol of $d B_{n}$ can be computed in $\mathcal{O}\left(n^{4} \log \sigma\right)$ time.
Further work:
- Improve the running time of the algorithms.

Summary

Our results:

- The value $|\operatorname{Lynd}(w)|$ can be computed in $\mathcal{O}\left(|w|^{3}\right)$ time.
- The k-th lexicographically smallest Lyndon word of length n can be computed in $\mathcal{O}\left(n^{4} \log \sigma\right)$ time.
- An $\mathcal{O}\left(n^{3}\right)$-time decoding algorithm for $d B_{n}$.
- The k-th symbol of $d B_{n}$ can be computed in $\mathcal{O}\left(n^{4} \log \sigma\right)$ time.
Further work:
- Improve the running time of the algorithms.
- replace dynamic programming over A by Fast Fourier Transform in the computation of $C S(w)$.

Thank you for your attention!

