
Efficient Algorithms
for Shortest Partial Seeds in Words

Tomasz Kociumaka1, Solon P. Pissis2,
Jakub Radoszewski1, Wojciech Rytter1,

Tomasz Waleń1

1University of Warsaw
2King’s College London

CPM 2014
Moscow, June 16, 2014

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 1/16

Periodicity and quasiperiodicity

Periodicity: occurrences are aligned

a a a a a a a a a a a ab b b b

a a a b

Quasiperiodicity: occurrences may overlap

a a a a a a a a a a a a ab b b b

bb

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 2/16

Periodicity and quasiperiodicity

Periodicity: occurrences are aligned

a a a a a a a a a a a ab b b ba a a b

Quasiperiodicity: occurrences may overlap

a a a a a a a a a a a a ab b b b

bb

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 2/16

Periodicity and quasiperiodicity

Periodicity: occurrences are aligned

a a a a a a a a a a a ab b b ba a a b

Quasiperiodicity: occurrences may overlap

a a a a a a a a a a a a ab b b b

bb

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 2/16

Periodicity and quasiperiodicity

Periodicity: occurrences are aligned

a a a a a a a a a a a ab b b ba a a b

Quasiperiodicity: occurrences may overlap

a a a a a a a a a a a a ab b b b bb

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 2/16

Covers and seeds

Definition (Apostolico, Farach, Iliopoulos; 1991)

A factor u is a cover of w if each position (letter) in w lies
within an occurrence of u in w .

a a a a a a a a a a a ab b b b b ba b b

Observation
A factor u is a seed of w iff each position (letter) in w lies
within a possibly overhanging occurrence of u in w .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 3/16

Covers and seeds

Definition (Apostolico, Farach, Iliopoulos; 1991)

A factor u is a cover of w if each position (letter) in w lies
within an occurrence of u in w .

a a a a a a a a a a a ab b b b b ba b b

Observation
A factor u is a seed of w iff each position (letter) in w lies
within a possibly overhanging occurrence of u in w .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 3/16

Covers and seeds

Definition (Iliopoulos, Moore, Park; 1993)

A factor u is a seed of w if u is a cover of a superstring of w .

a a a a a a a a a a a ab b b b b b

a b b

Observation
A factor u is a seed of w iff each position (letter) in w lies
within a possibly overhanging occurrence of u in w .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 3/16

Covers and seeds

Definition (Iliopoulos, Moore, Park; 1993)

A factor u is a seed of w if u is a cover of a superstring of w .

a a a a a a a a a a a ab b b b b b

a b b

Observation
A factor u is a seed of w iff each position (letter) in w lies
within a possibly overhanging occurrence of u in w .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 3/16

Covers and seeds

Definition (Iliopoulos, Moore, Park; 1993)

A factor u is a seed of w if u is a cover of a superstring of w .

a a a a a a a a a a a ab b b b b b

a b b

Observation
A factor u is a seed of w iff each position (letter) in w lies
within a possibly overhanging occurrence of u in w .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 3/16

Partial covers and partial seeds

Definition (KPRRW; CPM’13)

The cover index C(u) of u in w is the number of positions of
w lying within an occurrence of u in w .

a b a a b a a a b a a a a b a a a b a b a a a b

C(a) = 17

C(abaa) = 19

C(abaaaba) = 14

S(a) = 17

S(abaa) = 21

S(abaaaba) = 22

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 4/16

Partial covers and partial seeds

Definition (KPRRW; CPM’13)

The cover index C(u) of u in w is the number of positions of
w lying within an occurrence of u in w .

a b a a b a a a b a a a a b a a a b a b a a a b

C(a) = 17

C(abaa) = 19

C(abaaaba) = 14

S(a) = 17

S(abaa) = 21

S(abaaaba) = 22

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 4/16

Partial covers and partial seeds

Definition (KPRRW; CPM’13)

The cover index C(u) of u in w is the number of positions of
w lying within an occurrence of u in w .

a b a a b a a a b a a a a b a a a b a b a a a b

C(a) = 17

C(abaa) = 19

C(abaaaba) = 14

S(a) = 17

S(abaa) = 21

S(abaaaba) = 22

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 4/16

Partial covers and partial seeds

Definition (KPRRW; CPM’13)

The cover index C(u) of u in w is the number of positions of
w lying within an occurrence of u in w .

a b a a b a a a b a a a a b a a a b a b a a a b

C(a) = 17

C(abaa) = 19

C(abaaaba) = 14

S(a) = 17

S(abaa) = 21

S(abaaaba) = 22

Definition
For a positive integer α an α-partial cover of w is a factor of
w with cover index at least α.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 4/16

Partial covers and partial seeds

Definition
The seed index S(u) of u in w is the number of positions of w
lying within a possibly overhanging occurrence of u in w .

a b a a b a a a b a a a a b a a a b a b a a a b

C(a) = 17

C(abaa) = 19

C(abaaaba) = 14

S(a) = 17

S(abaa) = 21

S(abaaaba) = 22

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 4/16

Partial covers and partial seeds

Definition
The seed index S(u) of u in w is the number of positions of w
lying within a possibly overhanging occurrence of u in w .

a b a a b a a a b a a a a b a a a b a b a a a b

C(a) = 17

C(abaa) = 19

C(abaaaba) = 14

S(a) = 17

S(abaa) = 21

S(abaaaba) = 22

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 4/16

Partial covers and partial seeds

Definition
The seed index S(u) of u in w is the number of positions of w
lying within a possibly overhanging occurrence of u in w .

a b a a b a a a b a a a a b a a a b a b a a a b

C(a) = 17

C(abaa) = 19

C(abaaaba) = 14

S(a) = 17

S(abaa) = 21

S(abaaaba) = 22

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 4/16

Partial covers and partial seeds

Definition
The seed index S(u) of u in w is the number of positions of w
lying within a possibly overhanging occurrence of u in w .

a b a a b a a a b a a a a b a a a b a b a a a b

C(a) = 17

C(abaa) = 19

C(abaaaba) = 14

S(a) = 17

S(abaa) = 21

S(abaaaba) = 22

Definition
For a positive integer α an α-partial seed of w is a factor of w
with seed index at least α.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 4/16

Other variants of covers and seeds

b a b a a a b a b a b a a a a b

a a a

k-covers and k-seeds (Iliopoulos, Smyth; 1998) – each
position lies within a (possibly overhanging) occurrence of
at least one of the few factors of length k , together
forming a k-cover (k-seed).

approximate covers (Sim, Park, Kim, Lee; 2002) and
approximate seeds (Christodoulakis et al.; 2005) – each
position is lies within a (possibly overhanging) occurrence
of a factor similar to the approximate cover (or seed).

Main drawback: Ω(n2) algorithms.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 5/16

Other variants of covers and seeds

b a b a a a b a b a b a a a a ba a a

k-covers and k-seeds (Iliopoulos, Smyth; 1998) – each
position lies within a (possibly overhanging) occurrence of
at least one of the few factors of length k , together
forming a k-cover (k-seed).

approximate covers (Sim, Park, Kim, Lee; 2002) and
approximate seeds (Christodoulakis et al.; 2005) – each
position is lies within a (possibly overhanging) occurrence
of a factor similar to the approximate cover (or seed).

Main drawback: Ω(n2) algorithms.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 5/16

Other variants of covers and seeds

b a b a a a b a b a b a a a a b

a a a

k-covers and k-seeds (Iliopoulos, Smyth; 1998) – each
position lies within a (possibly overhanging) occurrence of
at least one of the few factors of length k , together
forming a k-cover (k-seed).

approximate covers (Sim, Park, Kim, Lee; 2002) and
approximate seeds (Christodoulakis et al.; 2005) – each
position is lies within a (possibly overhanging) occurrence
of a factor similar to the approximate cover (or seed).

Main drawback: Ω(n2) algorithms.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 5/16

Other variants of covers and seeds

b a b a a a b a b a b a a a a ba a a

k-covers and k-seeds (Iliopoulos, Smyth; 1998) – each
position lies within a (possibly overhanging) occurrence of
at least one of the few factors of length k , together
forming a k-cover (k-seed).

approximate covers (Sim, Park, Kim, Lee; 2002) and
approximate seeds (Christodoulakis et al.; 2005) – each
position is lies within a (possibly overhanging) occurrence
of a factor similar to the approximate cover (or seed).

Main drawback: Ω(n2) algorithms.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 5/16

Other variants of covers and seeds

b a b a a a b a b a b a a a a b

a a a

k-covers and k-seeds (Iliopoulos, Smyth; 1998) – each
position lies within a (possibly overhanging) occurrence of
at least one of the few factors of length k , together
forming a k-cover (k-seed).

approximate covers (Sim, Park, Kim, Lee; 2002) and
approximate seeds (Christodoulakis et al.; 2005) – each
position is lies within a (possibly overhanging) occurrence
of a factor similar to the approximate cover (or seed).

Main drawback: Ω(n2) algorithms.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 5/16

Cover Suffix Tree

a

b

a

b

b

a

b

b

a

b

a

a

b

a

b

b

a

b

b

a

b

a

b

a

b

b

a

b

a

b

a

b

b

a

b

a

a

a

a

(11,1)

(6,2)

(8,4)

(5,5)

(9,1)

(6,1)

(8,1)

(6,2)

(10,1)

(7,1)

(9,1)

(4,1)

(9,3)

(8,4)

(6,6)

(8,1)

(5,1)

(7,1)

(6,2)

CST (ababbabbaba)

The cover suffix tree of w (de-
noted CST (w)) is a suffix tree

augmented with O(n) extra
nodes,

with each node annotated
with a pair of integers
(C(v),∆(v)).

Theorem (KPRRW; CPM’13)

The tree CST (w) can be built in
O(n log n) time for any word w
of length n.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 6/16

Cover Suffix Tree

a

b

a

b

b

a

b

b

a

b

a

a

b

a

b

b

a

b

b

a

b

a

b

a

b

b

a

b

a

b

a

b

b

a

b

a

a

a

a

(11,1)

(6,2)

(8,4)

(5,5)

(9,1)

(6,1)

(8,1)

(6,2)

(10,1)

(7,1)

(9,1)

(4,1)

(9,3)

(8,4)

(6,6)

(8,1)

(5,1)

(7,1)

(6,2)

CST (ababbabbaba)

The cover suffix tree of w (de-
noted CST (w)) is a suffix tree

augmented with O(n) extra
nodes,

with each node annotated
with a pair of integers
(C(v),∆(v)).

Theorem (KPRRW; CPM’13)

The tree CST (w) can be built in
O(n log n) time for any word w
of length n.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 6/16

Cover Suffix Tree

a

b

a

b

b

a

b

b

a

b

a

a

b

a

b

b

a

b

b

a

b

a

b

a

b

b

a

b

a

b

a

b

b

a

b

a

a

a

a

(11,1)

(6,2)

(8,4)

(5,5)

(9,1)

(6,1)

(8,1)

(6,2)

(10,1)

(7,1)

(9,1)

(4,1)

(9,3)

(8,4)

(6,6)

(8,1)

(5,1)

(7,1)

(6,2)

CST (ababbabbaba)

The cover suffix tree of w (de-
noted CST (w)) is a suffix tree

augmented with O(n) extra
nodes,

with each node annotated
with a pair of integers
(C(v),∆(v)).

Theorem (KPRRW; CPM’13)

The tree CST (w) can be built in
O(n log n) time for any word w
of length n.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 6/16

Cover Suffix Tree

a

b

a

b

b

a

b

b

a

b

a

a

b

a

b

b

a

b

b

a

b

a

b

a

b

b

a

b

a

b

a

b

b

a

b

a

a

a

a

(11,1)

(6,2)

(8,4)

(5,5)

(9,1)

(6,1)

(8,1)

(6,2)

(10,1)

(7,1)

(9,1)

(4,1)

(9,3)

(8,4)

(6,6)

(8,1)

(5,1)

(7,1)

(6,2)

CST (ababbabbaba)

The cover suffix tree of w (de-
noted CST (w)) is a suffix tree

augmented with O(n) extra
nodes,

with each node annotated
with a pair of integers
(C(v),∆(v)).

Theorem (KPRRW; CPM’13)

The tree CST (w) can be built in
O(n log n) time for any word w
of length n.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 6/16

Our results

Problem (Partial Seeds)

Given a word w of length n and a positive integer α ≤ n find
all shortest factors u of w such that S(u) ≥ α.

Problem (Limited Length Partial Seeds)

Given a word w of length n and an interval [`, r] find a factor
u of w maximizing S(u) among factors for which |u| ∈ [`, r].

Theorem
Given CST (w) both Partial Seeds and Limited
Length Partial Seeds can be solved in linear time.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 7/16

Our results

Problem (Partial Seeds)

Given a word w of length n and a positive integer α ≤ n find
all shortest factors u of w such that S(u) ≥ α.

Problem (Limited Length Partial Seeds)

Given a word w of length n and an interval [`, r] find a factor
u of w maximizing S(u) among factors for which |u| ∈ [`, r].

Theorem
Given CST (w) both Partial Seeds and Limited
Length Partial Seeds can be solved in linear time.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 7/16

Determining the cover index

v(75, 2)

v1

v2

v3

v4

v5

v6

v7

(65, 3) u

v1

v2

v3

v4

u1

u2

(75, 2)

(73, 2)

(71, 2)

(69, 2)

(67, 2)

(65, 3)

(62, 3)

(59, 3)

Lemma (CPM’13)

Let v0, v1, . . . , vk be the nodes of an
edge of CST (w) with v = v0 being the
lowest (explicit) node. Then

C(vj) = C(v)− j∆(v).

Corollary

Given a locus of v in CST (w), the cover index C(v) can be
computed in O(1) time.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 8/16

Determining the cover index

v(75, 2)

v1

v2

v3

v4

v5

v6

v7

(65, 3) u

v1

v2

v3

v4

u1

u2

(75, 2)

(73, 2)

(71, 2)

(69, 2)

(67, 2)

(65, 3)

(62, 3)

(59, 3)

Lemma (CPM’13)

Let v0, v1, . . . , vk be the nodes of an
edge of CST (w) with v = v0 being the
lowest (explicit) node. Then

C(vj) = C(v)− j∆(v).

Corollary

Given a locus of v in CST (w), the cover index C(v) can be
computed in O(1) time.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 8/16

Determining the cover index

v(75, 2)

v1

v2

v3

v4

v5

v6

v7

(65, 3) u

v1

v2

v3

v4

u1

u2

(75, 2)

(73, 2)

(71, 2)

(69, 2)

(67, 2)

(65, 3)

(62, 3)

(59, 3)

Lemma (CPM’13)

Let v0, v1, . . . , vk be the nodes of an
edge of CST (w) with v = v0 being the
lowest (explicit) node. Then

C(vj) = C(v)− j∆(v).

Corollary

Given a locus of v in CST (w), the cover index C(v) can be
computed in O(1) time.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 8/16

Determining the cover index

v(75, 2)

v1

v2

v3

v4

v5

v6

v7

(65, 3) u

v1

v2

v3

v4

u1

u2

(75, 2)

(73, 2)

(71, 2)

(69, 2)

(67, 2)

(65, 3)

(62, 3)

(59, 3)

Lemma (CPM’13)

Let v0, v1, . . . , vk be the nodes of an
edge of CST (w) with v = v0 being the
lowest (explicit) node. Then

C(vj) = C(v)− j∆(v).

Corollary

Given a locus of v in CST (w), the cover index C(v) can be
computed in O(1) time.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 8/16

Determining the cover index

v(75, 2)

v1

v2

v3

v4

v5

v6

v7

(65, 3) u

v1

v2

v3

v4

u1

u2

(75, 2)

(73, 2)

(71, 2)

(69, 2)

(67, 2)

(65, 3)

(62, 3)

(59, 3)

Lemma (CPM’13)

Let v0, v1, . . . , vk be the nodes of an
edge of CST (w) with v = v0 being the
lowest (explicit) node. Then

C(vj) = C(v)− j∆(v).

Corollary

Given a locus of v in CST (w), the cover index C(v) can be
computed in O(1) time.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 8/16

Determining the cover index

v(75, 2)

v1

v2

v3

v4

v5

v6

v7

(65, 3) u

v1

v2

v3

v4

u1

u2

(75, 2)

(73, 2)

(71, 2)

(69, 2)

(67, 2)

(65, 3)

(62, 3)

(59, 3)

Lemma (CPM’13)

Let v0, v1, . . . , vk be the nodes of an
edge of CST (w) with v = v0 being the
lowest (explicit) node. Then

C(vj) = C(v)− j∆(v).

Corollary

Given a locus of v in CST (w), the cover index C(v) can be
computed in O(1) time.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 8/16

Determining the cover index

v(75, 2)

v1

v2

v3

v4

v5

v6

v7

(65, 3) u

v1

v2

v3

v4

u1

u2

(75, 2)

(73, 2)

(71, 2)

(69, 2)

(67, 2)

(65, 3)

(62, 3)

(59, 3)

Lemma (CPM’13)

Let v0, v1, . . . , vk be the nodes of an
edge of CST (w) with v = v0 being the
lowest (explicit) node. Then

C(vj) = C(v)− j∆(v).

Corollary

Given a locus of v in CST (w), the cover index C(v) can be
computed in O(1) time.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 8/16

Determining the cover index

v(75, 2)

v1

v2

v3

v4

v5

v6

v7

(65, 3) u

v1

v2

v3

v4

u1

u2

(75, 2)

(73, 2)

(71, 2)

(69, 2)

(67, 2)

(65, 3)

(62, 3)

(59, 3)

Lemma (CPM’13)

Let v0, v1, . . . , vk be the nodes of an
edge of CST (w) with v = v0 being the
lowest (explicit) node. Then

C(vj) = C(v)− j∆(v).

Corollary

Given a locus of v in CST (w), the cover index C(v) can be
computed in O(1) time.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 8/16

Determining the cover index

v(75, 2)

v1

v2

v3

v4

v5

v6

v7

(65, 3) u

v1

v2

v3

v4

u1

u2

(75, 2)

(73, 2)

(71, 2)

(69, 2)

(67, 2)

(65, 3)

(62, 3)

(59, 3)

Lemma (CPM’13)

Let v0, v1, . . . , vk be the nodes of an
edge of CST (w) with v = v0 being the
lowest (explicit) node. Then

C(vj) = C(v)− j∆(v).

Corollary

Given a locus of v in CST (w), the cover index C(v) can be
computed in O(1) time.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 8/16

Determining the cover index

v(75, 2)

v1

v2

v3

v4

v5

v6

v7

(65, 3) u

v1

v2

v3

v4

u1

u2

(75, 2)

(73, 2)

(71, 2)

(69, 2)

(67, 2)

(65, 3)

(62, 3)

(59, 3)

Lemma (CPM’13)

Let v0, v1, . . . , vk be the nodes of an
edge of CST (w) with v = v0 being the
lowest (explicit) node. Then

C(vj) = C(v)− j∆(v).

Corollary

Given a locus of v in CST (w), the cover index C(v) can be
computed in O(1) time.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 8/16

Determining the cover index

v(75, 2)

v1

v2

v3

v4

v5

v6

v7

(65, 3) u

v1

v2

v3

v4

u1

u2

(75, 2)

(73, 2)

(71, 2)

(69, 2)

(67, 2)

(65, 3)

(62, 3)

(59, 3)

Lemma (CPM’13)

Let v0, v1, . . . , vk be the nodes of an
edge of CST (w) with v = v0 being the
lowest (explicit) node. Then

C(vj) = C(v)− j∆(v).

Corollary

Given a locus of v in CST (w), the cover index C(v) can be
computed in O(1) time.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 8/16

Seed index

S(v) =

LeftS(v)

+

C(v)

+

RightS(v)

Full occs
Left-overhanging

occs only
Right-overhanging

occs only

LeftS(v) = min(B[first(v) + |v | − 1], first(v)− 1)

RightS(v) = min(BR [last(v)], n − |v |+ 1− last(v))

first(v) start position of the first occurrence of v ,
B[i] largest border of w [1..i].

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 9/16

Seed index

S(v) =

LeftS(v)

+ C(v) +

RightS(v)

Full occs

Left-overhanging
occs only

Right-overhanging
occs only

LeftS(v) = min(B[first(v) + |v | − 1], first(v)− 1)

RightS(v) = min(BR [last(v)], n − |v |+ 1− last(v))

first(v) start position of the first occurrence of v ,
B[i] largest border of w [1..i].

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 9/16

Seed index

S(v) = LeftS(v) + C(v) +

RightS(v)

Full occs
Left-overhanging

occs only

Right-overhanging
occs only

LeftS(v) = min(B[first(v) + |v | − 1], first(v)− 1)

RightS(v) = min(BR [last(v)], n − |v |+ 1− last(v))

first(v) start position of the first occurrence of v ,
B[i] largest border of w [1..i].

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 9/16

Seed index

S(v) = LeftS(v) + C(v) + RightS(v)

Full occs
Left-overhanging

occs only
Right-overhanging

occs only

LeftS(v) = min(B[first(v) + |v | − 1], first(v)− 1)

RightS(v) = min(BR [last(v)], n − |v |+ 1− last(v))

first(v) start position of the first occurrence of v ,
B[i] largest border of w [1..i].

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 9/16

Seed index

S(v) = LeftS(v) + C(v) + RightS(v)

Full occs
Left-overhanging

occs only
Right-overhanging

occs only

LeftS(v) = min(B[first(v) + |v | − 1], first(v)− 1)

RightS(v) = min(BR [last(v)], n − |v |+ 1− last(v))

first(v) start position of the first occurrence of v ,
B[i] largest border of w [1..i].

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 9/16

Seed index

S(v) = LeftS(v) + C(v) + RightS(v)

Full occs
Left-overhanging

occs only
Right-overhanging

occs only

LeftS(v) = min(B[first(v) + |v | − 1], first(v)− 1)

RightS(v) = min(BR [last(v)], n − |v |+ 1− last(v))

first(v) start position of the first occurrence of v ,
B[i] largest border of w [1..i].

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 9/16

Seed index

S(v) = LeftS(v) + C(v) + RightS(v)

Full occs
Left-overhanging

occs only
Right-overhanging

occs only

LeftS(v) = min(B[first(v) + |v | − 1], first(v)− 1)

RightS(v) = min(BR [last(v)], n − |v |+ 1− last(v))

first(v) start position of the first occurrence of v ,
B[i] largest border of w [1..i].

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 9/16

Seed index

S(v) = LeftS(v) + C(v) + RightS(v)

Full occs
Left-overhanging

occs only
Right-overhanging

occs only

LeftS(v) = min(B[first(v) + |v | − 1], first(v)− 1)

RightS(v) = min(BR [last(v)], n − |v |+ 1− last(v))

last(v) start position of the last occurrence of v ,
BR [i] largest border of w [i ..n].

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 9/16

Seed index

S(v) = LeftS(v) + C(v) + RightS(v)

Full occs
Left-overhanging

occs only
Right-overhanging

occs only

LeftS(v) = min(B[first(v) + |v | − 1], first(v)− 1)

RightS(v) = min(BR [last(v)], n − |v |+ 1− last(v))

last(v) start position of the last occurrence of v ,
BR [i] largest border of w [i ..n].

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 9/16

Seed index

S(v) = LeftS(v) + C(v) + RightS(v)

Full occs
Left-overhanging

occs only
Right-overhanging

occs only

LeftS(v) = min(B[first(v) + |v | − 1], first(v)− 1)

RightS(v) = min(BR [last(v)], n − |v |+ 1− last(v))

last(v) start position of the last occurrence of v ,
BR [i] largest border of w [i ..n].

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 9/16

Seed index on an edge of CST (w)

v

v1

v2

v3

v4

v5

v6

v7

u

v1

v2

v3

v4

u1

u2

S(vj) = LeftS(vj) + C(vj) + RightS(vj)

C(vj) a linear function,

RightS(vj) becomes a linear upon creation
of ≤ 1 extra node per edge,

LeftS(vj) less regular: min(B[rv − j], cv).

rvcv

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 10/16

Seed index on an edge of CST (w)

v

v1

v2

v3

v4

v5

v6

v7

u

v1

v2

v3

v4

u1

u2

S(vj) = LeftS(vj) + C(vj) + RightS(vj)

C(vj) a linear function,

RightS(vj) becomes a linear upon creation
of ≤ 1 extra node per edge,

LeftS(vj) less regular: min(B[rv − j], cv).

rvcv

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 10/16

Seed index on an edge of CST (w)

v

v1

v2

v3

v4

v5

v6

v7

u

v1

v2

v3

v4

u1

u2

S(vj) = LeftS(vj) + C(vj) + RightS(vj)

C(vj) a linear function,

RightS(vj) becomes a linear upon creation
of ≤ 1 extra node per edge,

LeftS(vj) less regular: min(B[rv − j], cv).

rvcv

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 10/16

Seed index on an edge of CST (w)

v

v1

v2

v3

v4

v5

v6

v7

u

v1

v2

v3

v4

u1

u2

S(vj) = LeftS(vj) + C(vj) + RightS(vj)

C(vj) a linear function,

RightS(vj) becomes a linear upon creation
of ≤ 1 extra node per edge,

LeftS(vj) less regular: min(B[rv − j], cv).

rvcv

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 10/16

Seed index on an edge of CST (w)

v

v1

v2

v3

v4

v5

v6

v7

u

v1

v2

v3

v4

u1

u2

S(vj) = LeftS(vj) + C(vj) + RightS(vj)

C(vj) a linear function,

RightS(vj) becomes a linear upon creation
of ≤ 1 extra node per edge,

LeftS(vj) less regular: min(B[rv − j], cv).

rvcv

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 10/16

Seed index on an edge of CST (w)

v

v1

v2

v3

v4

v5

v6

v7

u

v1

v2

v3

v4

u1

u2

S(vj) = LeftS(vj) + C(vj) + RightS(vj)

C(vj) a linear function,

RightS(vj) becomes a linear upon creation
of ≤ 1 extra node per edge,

LeftS(vj) less regular: min(B[rv − j], cv).

rvcv

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 10/16

Seed index on an edge of CST (w)

v

v1

v2

v3

v4

v5

v6

v7

u

v1

v2

v3

v4

u1

u2

S(vj) = LeftS(vj) + C(vj) + RightS(vj)

C(vj) a linear function,

RightS(vj) becomes a linear upon creation
of ≤ 1 extra node per edge,

LeftS(vj) less regular: min(B[rv − j], cv).

rvcv

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 10/16

Seed index on an edge of CST (w)

v

v1

v2

v3

v4

v5

v6

v7

u

v1

v2

v3

v4

u1

u2

S(vj) = LeftS(vj) + C(vj) + RightS(vj)

C(vj) a linear function,

RightS(vj) becomes a linear upon creation
of ≤ 1 extra node per edge,

LeftS(vj) less regular: min(B[rv − j], cv).

rvcv

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 10/16

Seed index on an edge of CST (w)

v

v1

v2

v3

v4

v5

v6

v7

u

v1

v2

v3

v4

u1

u2

S(vj) = LeftS(vj) + C(vj) + RightS(vj)

C(vj) a linear function,

RightS(vj) becomes a linear upon creation
of ≤ 1 extra node per edge,

LeftS(vj) less regular: min(B[rv − j], cv).

rvcv

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 10/16

Seed index on an edge of CST (w)

v

v1

v2

v3

v4

v5

v6

v7

u

v1

v2

v3

v4

u1

u2

S(vj) = LeftS(vj) + C(vj) + RightS(vj)

C(vj) a linear function,

RightS(vj) becomes a linear upon creation
of ≤ 1 extra node per edge,

LeftS(vj) less regular: min(B[rv − j], cv).

rvcv

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 10/16

Seed Suffix Tree

CST (w) can be further augmented in O(n) time to SST (w)
(Seed Suffix Tree) such that

for each node v there exists a function

φv (x) = avx + bv + min(cv ,B[x])

and a range Rv = (`v , rv] such that S(vj) = φv (rv − j) for
any vj on the edge immediately above v ,

0 ≤ av ≤ Occ(v), where Occ(v) is the number of
occurrences of v in w .

Observation
Given a locus of v in SST (w) and the border table B , the
seed index S(v) can be computed in O(1) time.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 11/16

Seed Suffix Tree

CST (w) can be further augmented in O(n) time to SST (w)
(Seed Suffix Tree) such that

for each node v there exists a function

φv (x) = avx + bv + min(cv ,B[x])

and a range Rv = (`v , rv] such that S(vj) = φv (rv − j) for
any vj on the edge immediately above v ,

0 ≤ av ≤ Occ(v), where Occ(v) is the number of
occurrences of v in w .

Observation
Given a locus of v in SST (w) and the border table B , the
seed index S(v) can be computed in O(1) time.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 11/16

Seed Suffix Tree

CST (w) can be further augmented in O(n) time to SST (w)
(Seed Suffix Tree) such that

for each node v there exists a function

φv (x) = avx + bv + min(cv ,B[x])

and a range Rv = (`v , rv] such that S(vj) = φv (rv − j) for
any vj on the edge immediately above v ,

0 ≤ av ≤ Occ(v), where Occ(v) is the number of
occurrences of v in w .

Observation
Given a locus of v in SST (w) and the border table B , the
seed index S(v) can be computed in O(1) time.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 11/16

Abstract problems

Problem
Input: pairs (φi ,Ri), where φi(x) = aix + bi + min(ci ,B[x]) is
a function and Ri = (`i , ri] ⊆ [1, n] is a non-empty range
Output:

(a) argmax{φi(x) : x ∈ Ri} for each pair,

(b) min{x ∈ Ri : φi(x) ≥ α} for each pair.

Lemma
Values (a) and (b) can be computed (offline) in linear time.

Workaround for
∑

ai = O(n):

use (a) queries to restrict the set of edges queried for (b).

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 12/16

Abstract problems

Problem
Input: pairs (φi ,Ri), where φi(x) = aix + bi + min(ci ,B[x]) is
a function and Ri = (`i , ri] ⊆ [1, n] is a non-empty range
Output:

(a) argmax{φi(x) : x ∈ Ri} for each pair,

(b) min{x ∈ Ri : φi(x) ≥ α} for each pair.

Lemma
Values (a) and (b) can be computed (offline) in linear time.

Workaround for
∑

ai = O(n):

use (a) queries to restrict the set of edges queried for (b).

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 12/16

Abstract problems

Problem
Input: pairs (φi ,Ri), where φi(x) = aix + bi + min(ci ,B[x]) is
a function and Ri = (`i , ri] ⊆ [1, n] is a non-empty range
Output:

(a) argmax{φi(x) : x ∈ Ri} for each pair,

(b) min{x ∈ Ri : φi(x) ≥ α} for each pair.

Lemma
Values (a) and (b) can be computed (offline) in linear time.
Additional assumption required for (b):

∑
ai = O(n).

Workaround for
∑

ai = O(n):

use (a) queries to restrict the set of edges queried for (b).

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 12/16

Abstract problems

Problem
Input: pairs (φi ,Ri), where φi(x) = aix + bi + min(ci ,B[x]) is
a function and Ri = (`i , ri] ⊆ [1, n] is a non-empty range
Output:

(a) argmax{φi(x) : x ∈ Ri} for each pair,

(b) min{x ∈ Ri : φi(x) ≥ α} for each pair.

Lemma
Values (a) and (b) can be computed (offline) in linear time.
Additional assumption required for (b):

∑
ai = O(n).

Workaround for
∑

ai = O(n):

use (a) queries to restrict the set of edges queried for (b).

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 12/16

Toy problem

Problem
For the border array B to answer (off-line) the following
queries: given a non-negative coefficient ai and a range
Ri = (`i , ri] compute xi = argmax{aix + B[x] : x ∈ Ri}.

x

B[x]

a b a c a b a d a b a c a b a0

1

2

3

4

5

6

7

ai = 1

`i ri`i ri

Observation
For each query we have xi = ri or B[xi + 1] < B[xi]− ai .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 13/16

Toy problem

Problem
For the border array B to answer (off-line) the following
queries: given a non-negative coefficient ai and a range
Ri = (`i , ri] compute xi = argmax{aix + B[x] : x ∈ Ri}.

x

B[x]

a b a c a b a d a b a c a b a0

1

2

3

4

5

6

7

ai = 1

`i ri`i ri

Observation
For each query we have xi = ri or B[xi + 1] < B[xi]− ai .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 13/16

Toy problem

Problem
For the border array B to answer (off-line) the following
queries: given a non-negative coefficient ai and a range
Ri = (`i , ri] compute xi = argmax{aix + B[x] : x ∈ Ri}.

x

B[x]

a b a c a b a d a b a c a b a0

1

2

3

4

5

6

7

ai = 1

`i ri

`i ri

Observation
For each query we have xi = ri or B[xi + 1] < B[xi]− ai .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 13/16

Toy problem

Problem
For the border array B to answer (off-line) the following
queries: given a non-negative coefficient ai and a range
Ri = (`i , ri] compute xi = argmax{aix + B[x] : x ∈ Ri}.

x

B[x]

a b a c a b a d a b a c a b a0

1

2

3

4

5

6

7

ai = 1

`i ri

`i ri

Observation
For each query we have xi = ri or B[xi + 1] < B[xi]− ai .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 13/16

Toy problem

Problem
For the border array B to answer (off-line) the following
queries: given a non-negative coefficient ai and a range
Ri = (`i , ri] compute xi = argmax{aix + B[x] : x ∈ Ri}.

x

B[x]

a b a c a b a d a b a c a b a0

1

2

3

4

5

6

7

ai = 1

`i ri

`i ri

Observation
For each query we have xi = ri or B[xi + 1] < B[xi]− ai .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 13/16

Toy problem

Problem
For the border array B to answer (off-line) the following
queries: given a non-negative coefficient ai and a range
Ri = (`i , ri] compute xi = argmax{aix + B[x] : x ∈ Ri}.

x

B[x]

a b a c a b a d a b a c a b a0

1

2

3

4

5

6

7

ai = 1

`i ri

`i ri

Observation
For each query we have xi = ri or B[xi + 1] < B[xi]− ai .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 13/16

Toy problem: solution

Observation
Let Fa = {x : B[x + 1] < B[x]− a}. Then

∑
a≥0 |Fa| = O(n).

Proof.
B[x + 1] ≤ B[x] + 1, i.e. the total increase in B is at most n.∑

a≥0 |Fa| is bounded by the total decrease of in B .

1 Apply (offline) predecessor queries to translate the range
Ri into the range of positions in Fai .

2 Use range maximum queries (RMQ) for aix + B[x] and
x ∈ Fai to compute argmax{aix + B[x] : x ∈ Ri ∩ Fai}.

3 For each query check the possibility of xi = ri .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 14/16

Toy problem: solution

Observation
Let Fa = {x : B[x + 1] < B[x]− a}. Then

∑
a≥0 |Fa| = O(n).

Proof.
B[x + 1] ≤ B[x] + 1, i.e. the total increase in B is at most n.∑

a≥0 |Fa| is bounded by the total decrease of in B .

1 Apply (offline) predecessor queries to translate the range
Ri into the range of positions in Fai .

2 Use range maximum queries (RMQ) for aix + B[x] and
x ∈ Fai to compute argmax{aix + B[x] : x ∈ Ri ∩ Fai}.

3 For each query check the possibility of xi = ri .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 14/16

Toy problem: solution

Observation
Let Fa = {x : B[x + 1] < B[x]− a}. Then

∑
a≥0 |Fa| = O(n).

Proof.
B[x + 1] ≤ B[x] + 1, i.e. the total increase in B is at most n.∑

a≥0 |Fa| is bounded by the total decrease of in B .

1 Apply (offline) predecessor queries to translate the range
Ri into the range of positions in Fai .

2 Use range maximum queries (RMQ) for aix + B[x] and
x ∈ Fai to compute argmax{aix + B[x] : x ∈ Ri ∩ Fai}.

3 For each query check the possibility of xi = ri .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 14/16

Toy problem: solution

Observation
Let Fa = {x : B[x + 1] < B[x]− a}. Then

∑
a≥0 |Fa| = O(n).

Proof.
B[x + 1] ≤ B[x] + 1, i.e. the total increase in B is at most n.∑

a≥0 |Fa| is bounded by the total decrease of in B .

1 Apply (offline) predecessor queries to translate the range
Ri into the range of positions in Fai .

2 Use range maximum queries (RMQ) for aix + B[x] and
x ∈ Fai to compute argmax{aix + B[x] : x ∈ Ri ∩ Fai}.

3 For each query check the possibility of xi = ri .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 14/16

Toy problem: solution

Observation
Let Fa = {x : B[x + 1] < B[x]− a}. Then

∑
a≥0 |Fa| = O(n).

Proof.
B[x + 1] ≤ B[x] + 1, i.e. the total increase in B is at most n.∑

a≥0 |Fa| is bounded by the total decrease of in B .

1 Apply (offline) predecessor queries to translate the range
Ri into the range of positions in Fai .

2 Use range maximum queries (RMQ) for aix + B[x] and
x ∈ Fai to compute argmax{aix + B[x] : x ∈ Ri ∩ Fai}.

3 For each query check the possibility of xi = ri .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 14/16

Conclusions and open problems

Two problems regarding partial seeds can be solved in O(n)
time provided that CST (w) is already computed:

find the shortest factor u with S(u) exceeding a given
threshold α,
find the factor u maximizing S(u) and satisfying length
restrictions,
other kinds of restrictions also possible.

Open problems:

improve the construction algorithm for CST (w)
(currently O(w log n)),
for each length find the factor u maximizing S(u)

for partial covers O(n log n) time.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 15/16

Conclusions and open problems

Two problems regarding partial seeds can be solved in O(n)
time provided that CST (w) is already computed:

find the shortest factor u with S(u) exceeding a given
threshold α,

find the factor u maximizing S(u) and satisfying length
restrictions,
other kinds of restrictions also possible.

Open problems:

improve the construction algorithm for CST (w)
(currently O(w log n)),
for each length find the factor u maximizing S(u)

for partial covers O(n log n) time.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 15/16

Conclusions and open problems

Two problems regarding partial seeds can be solved in O(n)
time provided that CST (w) is already computed:

find the shortest factor u with S(u) exceeding a given
threshold α,
find the factor u maximizing S(u) and satisfying length
restrictions,
other kinds of restrictions also possible.

Open problems:

improve the construction algorithm for CST (w)
(currently O(w log n)),
for each length find the factor u maximizing S(u)

for partial covers O(n log n) time.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 15/16

Conclusions and open problems

Two problems regarding partial seeds can be solved in O(n)
time provided that CST (w) is already computed:

find the shortest factor u with S(u) exceeding a given
threshold α,
find the factor u maximizing S(u) and satisfying length
restrictions,
other kinds of restrictions also possible.

Open problems:

improve the construction algorithm for CST (w)
(currently O(w log n)),

for each length find the factor u maximizing S(u)

for partial covers O(n log n) time.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 15/16

Conclusions and open problems

Two problems regarding partial seeds can be solved in O(n)
time provided that CST (w) is already computed:

find the shortest factor u with S(u) exceeding a given
threshold α,
find the factor u maximizing S(u) and satisfying length
restrictions,
other kinds of restrictions also possible.

Open problems:

improve the construction algorithm for CST (w)
(currently O(w log n)),
for each length find the factor u maximizing S(u)

for partial covers O(n log n) time.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 15/16

Thank you for your attention!

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 16/16

