Efficient Algorithms for Shortest Partial Seeds in Words

Tomasz Kociumaka ${ }^{1}$, Solon P. Pissis ${ }^{2}$, Jakub Radoszewski ${ }^{1}$, Wojciech Rytter ${ }^{1}$,

Tomasz Waleń ${ }^{1}$
${ }^{1}$ University of Warsaw
${ }^{2}$ King's College London

CPM 2014

Moscow, June 16, 2014

Periodicity and quasiperiodicity

Periodicity: occurrences are aligned

Periodicity and quasiperiodicity

Periodicity: occurrences are aligned

Periodicity and quasiperiodicity

Periodicity: occurrences are aligned

Quasiperiodicity: occurrences may overlap

Periodicity and quasiperiodicity

Periodicity: occurrences are aligned

Quasiperiodicity: occurrences may overlap

Covers and seeds

Definition (Apostolico, Farach, Iliopoulos; 1991)

A factor u is a cover of w if each position (letter) in w lies within an occurrence of u in w.

Covers and seeds

Definition (Apostolico, Farach, Iliopoulos; 1991)

A factor u is a cover of w if each position (letter) in w lies within an occurrence of u in w.

Covers and seeds

Definition (Iliopoulos, Moore, Park; 1993)

A factor u is a seed of w if u is a cover of a superstring of w.

Covers and seeds

Definition (Iliopoulos, Moore, Park; 1993)

A factor u is a seed of w if u is a cover of a superstring of w.

Covers and seeds

Definition (lliopoulos, Moore, Park; 1993)

A factor u is a seed of w if u is a cover of a superstring of w.

Observation

A factor u is a seed of w iff each position (letter) in w lies within a possibly overhanging occurrence of u in w.

Partial covers and partial seeds

Definition (KPRRW; CPM'13)

The cover index $\mathcal{C}(u)$ of u in w is the number of positions of w lying within an occurrence of u in w.

$$
\mathcal{C}(\mathrm{a})=17
$$

Partial covers and partial seeds

Definition (KPRRW; CPM'13)

The cover index $\mathcal{C}(u)$ of u in w is the number of positions of w lying within an occurrence of u in w.

$\mathcal{C}(\mathrm{a})=17$
$\mathcal{C}($ abaa $)=19$

Partial covers and partial seeds

Definition (KPRRW; CPM'13)

The cover index $\mathcal{C}(u)$ of u in w is the number of positions of w lying within an occurrence of u in w.

$$
\mathcal{C}(\mathrm{a})=17
$$

$$
\mathcal{C}(\mathrm{abaa})=19
$$

$\mathcal{C}($ abaaaba $)=14$

Partial covers and partial seeds

Definition (KPRRW; CPM'13)

The cover index $\mathcal{C}(u)$ of u in w is the number of positions of w lying within an occurrence of u in w.
$a b a a b a a b b a a a a b a a b b a b a a b$

$$
\mathcal{C}(\mathrm{a})=17
$$

$$
\mathcal{C}(\mathrm{abaa})=19
$$

$\mathcal{C}($ abaaaba $)=14$

Definition

For a positive integer α an α-partial cover of w is a factor of w with cover index at least α.

Partial covers and partial seeds

Definition

The seed index $\mathcal{S}(u)$ of u in w is the number of positions of w lying within a possibly overhanging occurrence of u in w.

$$
\mathcal{C}(a)=17
$$

$$
\mathcal{S}(\mathrm{a})=17
$$

$\mathcal{C}($ abaa $)=19$
$\mathcal{C}($ abaaaba $)=14$

Partial covers and partial seeds

Definition

The seed index $\mathcal{S}(u)$ of u in w is the number of positions of w lying within a possibly overhanging occurrence of u in w.

$$
\begin{array}{rlrl}
\mathcal{C}(\mathrm{a}) & =17 & \mathcal{S}(\mathrm{a}) & =17 \\
\mathcal{C}(\text { abaa }) & =19 & \mathcal{S}(\text { abaa }) & =21
\end{array}
$$

$\mathcal{C}($ abaaaba $)=14$

Partial covers and partial seeds

Definition

The seed index $\mathcal{S}(u)$ of u in w is the number of positions of w lying within a possibly overhanging occurrence of u in w.

$$
\begin{array}{rlrl}
\mathcal{C}(\mathrm{a}) & =17 & \mathcal{S}(\mathrm{a}) & =17 \\
\mathcal{C}(\mathrm{abaa}) & =19 & \mathcal{S}(\mathrm{abaa}) & =21 \\
\mathcal{C}(\text { abaaaba }) & =14 & \mathcal{S}(\mathrm{abaaaba}) & =22
\end{array}
$$

Partial covers and partial seeds

Definition

The seed index $\mathcal{S}(u)$ of u in w is the number of positions of w lying within a possibly overhanging occurrence of u in w.

$$
a b a a b a a a b a a a a b a a b a b a b
$$

$$
\mathcal{C}(\mathrm{a})=17 \quad \mathcal{S}(\mathrm{a})=17
$$

$$
\mathcal{C}(\mathrm{abaa})=19
$$

$$
\mathcal{S}(\mathrm{abaa})=21
$$

$$
\mathcal{C}(\mathrm{abaaaba})=14
$$

$$
\mathcal{S}(\text { abaaaba })=22
$$

Definition

For a positive integer α an α-partial seed of w is a factor of w with seed index at least α.

Other variants of covers and seeds

- k-covers and k-seeds (Iliopoulos, Smyth; 1998) - each position lies within a (possibly overhanging) occurrence of at least one of the few factors of length k, together forming a k-cover (k-seed).

Other variants of covers and seeds

$$
a a b a b a a a b a b a b a a a a b a
$$

- k-covers and k-seeds (Iliopoulos, Smyth; 1998) - each position lies within a (possibly overhanging) occurrence of at least one of the few factors of length k, together forming a k-cover (k-seed).

Other variants of covers and seeds

- k-covers and k-seeds (Iliopoulos, Smyth; 1998) - each position lies within a (possibly overhanging) occurrence of at least one of the few factors of length k, together forming a k-cover (k-seed).
- approximate covers (Sim, Park, Kim, Lee; 2002) and approximate seeds (Christodoulakis et al.; 2005) - each position is lies within a (possibly overhanging) occurrence of a factor similar to the approximate cover (or seed).

Other variants of covers and seeds

- k-covers and k-seeds (Iliopoulos, Smyth; 1998) - each position lies within a (possibly overhanging) occurrence of at least one of the few factors of length k, together forming a k-cover (k-seed).
- approximate covers (Sim, Park, Kim, Lee; 2002) and approximate seeds (Christodoulakis et al.; 2005) - each position is lies within a (possibly overhanging) occurrence of a factor similar to the approximate cover (or seed).

Other variants of covers and seeds

$$
\mathrm{b} a \mathrm{~b} a \mathrm{a} a \mathrm{~b} a \mathrm{~b} a \mathrm{~b} a \mathrm{a} a \mathrm{a} b
$$

- k-covers and k-seeds (Iliopoulos, Smyth; 1998) - each position lies within a (possibly overhanging) occurrence of at least one of the few factors of length k, together forming a k-cover (k-seed).
- approximate covers (Sim, Park, Kim, Lee; 2002) and approximate seeds (Christodoulakis et al.; 2005) - each position is lies within a (possibly overhanging) occurrence of a factor similar to the approximate cover (or seed).
Main drawback: $\Omega\left(n^{2}\right)$ algorithms.

Cover Suffix Tree

The cover suffix tree of w (denoted $\operatorname{CST}(w))$ is a suffix tree

CST (ababbabbaba)

Cover Suffix Tree

The cover suffix tree of w (denoted $\operatorname{CST}(w))$ is a suffix tree

- augmented with $\mathcal{O}(n)$ extra nodes,

CST (ababbabbaba)

Cover Suffix Tree

The cover suffix tree of w (denoted $\operatorname{CST}(w))$ is a suffix tree

- augmented with $\mathcal{O}(n)$ extra nodes,
- with each node annotated with a pair of integers ($\mathcal{C}(v), \Delta(v))$.

CST (ababbabbaba)

Cover Suffix Tree

CST (ababbabbaba)

The cover suffix tree of w (denoted $\operatorname{CST}(w))$ is a suffix tree

- augmented with $\mathcal{O}(n)$ extra nodes,
- with each node annotated with a pair of integers ($\mathcal{C}(v), \Delta(v))$.

Theorem (KPRRW; CPM'13)

The tree CST (w) can be built in $\mathcal{O}(n \log n)$ time for any word w of length n.

Our results

Problem (Partial Seeds)

Given a word w of length n and a positive integer $\alpha \leq n$ find all shortest factors u of w such that $\mathcal{S}(u) \geq \alpha$.

Problem (Limited Length Partial Seeds)

Given a word w of length n and an interval $[\ell, r]$ find a factor u of w maximizing $\mathcal{S}(u)$ among factors for which $|u| \in[\ell, r]$.

Our results

Problem (Partial Seeds)

Given a word w of length n and a positive integer $\alpha \leq n$ find all shortest factors u of w such that $\mathcal{S}(u) \geq \alpha$.

Problem (Limited Length Partial Seeds)

Given a word w of length n and an interval $[\ell, r]$ find a factor u of w maximizing $\mathcal{S}(u)$ among factors for which $|u| \in[\ell, r]$.

Theorem

Given CST(w) both Partial Seeds and Limited
Length Partial Seeds can be solved in linear time.

Determining the cover index

Lemma (CPM'13)

Let $v_{0}, v_{1}, \ldots, v_{k}$ be the nodes of an edge of $\operatorname{CST}(w)$ with $v=v_{0}$ being the lowest (explicit) node. Then

$$
\mathcal{C}\left(v_{j}\right)=\mathcal{C}(v)-j \Delta(v)
$$

Determining the cover index

Lemma (CPM'13)

Let $v_{0}, v_{1}, \ldots, v_{k}$ be the nodes of an edge of $\operatorname{CST}(w)$ with $v=v_{0}$ being the lowest (explicit) node. Then

$$
\mathcal{C}\left(v_{j}\right)=\mathcal{C}(v)-j \Delta(v)
$$

Determining the cover index

Lemma (CPM'13)

Let $v_{0}, v_{1}, \ldots, v_{k}$ be the nodes of an edge of $\operatorname{CST}(w)$ with $v=v_{0}$ being the lowest (explicit) node. Then

$$
\mathcal{C}\left(v_{j}\right)=\mathcal{C}(v)-j \Delta(v)
$$

Determining the cover index

Lemma (CPM'13)

Let $v_{0}, v_{1}, \ldots, v_{k}$ be the nodes of an edge of $\operatorname{CST}(w)$ with $v=v_{0}$ being the lowest (explicit) node. Then

$$
\mathcal{C}\left(v_{j}\right)=\mathcal{C}(v)-j \Delta(v)
$$

Determining the cover index

Lemma (CPM'13)

Let $v_{0}, v_{1}, \ldots, v_{k}$ be the nodes of an edge of $\operatorname{CST}(w)$ with $v=v_{0}$ being the lowest (explicit) node. Then

$$
\mathcal{C}\left(v_{j}\right)=\mathcal{C}(v)-j \Delta(v)
$$

Determining the cover index

Lemma (CPM'13)

Let $v_{0}, v_{1}, \ldots, v_{k}$ be the nodes of an edge of $\operatorname{CST}(w)$ with $v=v_{0}$ being the lowest (explicit) node. Then

$$
\mathcal{C}\left(v_{j}\right)=\mathcal{C}(v)-j \Delta(v)
$$

Determining the cover index

Lemma (CPM'13)

Let $v_{0}, v_{1}, \ldots, v_{k}$ be the nodes of an edge of $\operatorname{CST}(w)$ with $v=v_{0}$ being the lowest (explicit) node. Then

$$
\mathcal{C}\left(v_{j}\right)=\mathcal{C}(v)-j \Delta(v)
$$

Determining the cover index

Lemma (CPM'13)

Let $v_{0}, v_{1}, \ldots, v_{k}$ be the nodes of an edge of $\operatorname{CST}(w)$ with $v=v_{0}$ being the lowest (explicit) node. Then

$$
\mathcal{C}\left(v_{j}\right)=\mathcal{C}(v)-j \Delta(v)
$$

Determining the cover index

Lemma (CPM'13)

Let $v_{0}, v_{1}, \ldots, v_{k}$ be the nodes of an edge of $\operatorname{CST}(w)$ with $v=v_{0}$ being the lowest (explicit) node. Then

$$
\mathcal{C}\left(v_{j}\right)=\mathcal{C}(v)-j \Delta(v) .
$$

Determining the cover index

Lemma (CPM'13)

Let $v_{0}, v_{1}, \ldots, v_{k}$ be the nodes of an edge of $\operatorname{CST}(w)$ with $v=v_{0}$ being the lowest (explicit) node. Then

$$
\mathcal{C}\left(v_{j}\right)=\mathcal{C}(v)-j \Delta(v) .
$$

Determining the cover index

Lemma (CPM'13)

Let $v_{0}, v_{1}, \ldots, v_{k}$ be the nodes of an edge of $\operatorname{CST}(w)$ with $v=v_{0}$ being the lowest (explicit) node. Then

$$
\mathcal{C}\left(v_{j}\right)=\mathcal{C}(v)-j \Delta(v) .
$$

Corollary

Given a locus of v in $\operatorname{CST}(w)$, the cover index $\mathcal{C}(v)$ can be computed in $\mathcal{O}(1)$ time.

Seed index

$$
\mathcal{S}(v)=
$$

$+$

Seed index

$$
\mathcal{S}(v)=\quad+\underset{\text { Full occs }}{\mathcal{C}(v)+}
$$

Seed index

Seed index

$$
\mathcal{S}(v)=\sum_{\substack{\text { Left-overhanging } \\ \text { occs only }}}^{\text {Left } \mathcal{S}(v)}+\underset{\text { Full occs }(v)}{\substack{\text { Right-overhanging } \\ \text { occs only }}}
$$

Seed index

$$
\mathcal{S}(v)=\int_{\substack{\text { Left-overhanging } \\ \text { occs only }}}^{\text {Left } \mathcal{S}(v)}+\underset{\substack{\text { Full occs }}}{\mathcal{C}(v)}+\underset{\substack{\text { Right-overhanging } \\ \text { occs only }}}{\operatorname{RightS}(v)}
$$

$$
\operatorname{LeftS}(v)=\min (B[\operatorname{first}(v)+|v|-1], \text { first }(v)-1)
$$

first(v) start position of the first occurrence of v, $B[i]$ largest border of $w[1 . . i]$.

Seed index

$$
\mathcal{S}(v)=\prod_{\substack{\text { Left-overhanging } \\ \text { occs only }}}^{\text {Left } \mathcal{S}(v)}+\underset{\substack{\text { Full occs }(v)}}{\substack{\text { Right-overhanging } \\ \text { occs only }}}
$$

$$
\operatorname{LeftS}(v)=\min (B[\operatorname{first}(v)+|v|-1], \text { first }(v)-1)
$$

first(v) start position of the first occurrence of v, $B[i]$ largest border of $w[1 . . i]$.

Seed index

$$
\mathcal{S}(v)=\int_{\substack{\text { Left-overhanging } \\ \text { occs only }}}^{\text {Left } \mathcal{S}(v)}+\underset{\substack{\text { Full occs }}}{\mathcal{C}(v)}+\underset{\substack{\text { Right-overhanging } \\ \text { occs only }}}{\text { Right } \mathcal{S}(v)}
$$

$$
\operatorname{LeftS}(v)=\min (B[\text { first }(v)+|v|-1], \text { first }(v)-1)
$$

first(v) start position of the first occurrence of v, $B[i]$ largest border of $w[1 . . i]$.

Seed index

$$
\mathcal{S}(v)=\int_{\substack{\text { Left-overhanging } \\
\text { occs only }}}^{\text {Left } \mathcal{S}(v)}+\underset{\substack{\text { Full occs }(v)}}{\operatorname{RightS}(v)} \begin{gathered}
\text { Right-overhanging } \\
\text { occs only }
\end{gathered}
$$

$$
\begin{aligned}
\operatorname{LeftS}(v) & =\min (B[\operatorname{first}(v)+|v|-1], \text { first }(v)-1) \\
\operatorname{RightS}(v) & =\min \left(B^{R}[\operatorname{last}(v)], n-|v|+1-\operatorname{last}(v)\right)
\end{aligned}
$$

last (v) start position of the last occurrence of v, $B^{R}[i]$ largest border of $w[i . . n]$.

Seed index

$$
\mathcal{S}(v)=\int_{\substack{\text { Left-overhanging } \\ \text { occs only }}}^{\text {Left } \mathcal{S}(v)}+\underset{\text { Full occs }}{\mathcal{C}(v)}+\underset{\substack{\text { Right-overhanging } \\ \text { occs only }}}{\operatorname{RightS}(v)}
$$

$$
\begin{aligned}
\operatorname{LeftS}(v) & =\min (B[\operatorname{first}(v)+|v|-1], \text { first }(v)-1) \\
\operatorname{RightS}(v) & =\min \left(B^{R}[\operatorname{last}(v)], n-|v|+1-\operatorname{last}(v)\right)
\end{aligned}
$$

last(v) start position of the last occurrence of v, $B^{R}[i]$ largest border of $w[i . . n]$.

Seed index

$$
\mathcal{S}(v)=\int_{\substack{\text { Left-overhanging } \\ \text { occs only }}}^{\text {Left } \mathcal{S}(v)}+\underset{\substack{\text { Full occs }(v)}}{\operatorname{RightS}(v)}
$$

$$
\begin{aligned}
\operatorname{LeftS}(v) & =\min (B[\operatorname{first}(v)+|v|-1], \text { first }(v)-1) \\
\operatorname{RightS}(v) & =\min \left(B^{R}[\operatorname{last}(v)], n-|v|+1-\operatorname{last}(v)\right)
\end{aligned}
$$

last (v) start position of the last occurrence of v, $B^{R}[i]$ largest border of $w[i . . n]$.

Seed index on an edge of $\operatorname{CST}(w)$

$$
\mathcal{S}\left(v_{j}\right)=\operatorname{Left} \mathcal{S}\left(v_{j}\right)+\mathcal{C}\left(v_{j}\right)+\operatorname{Right} \mathcal{S}\left(v_{j}\right)
$$

$\mathcal{C}\left(v_{j}\right)$ a linear function,
Right $\mathcal{S}\left(v_{j}\right)$ becomes a linear upon creation of ≤ 1 extra node per edge, $\operatorname{Left} \mathcal{S}\left(v_{j}\right)$ less regular: $\min \left(B\left[r_{v}-j\right], c_{v}\right)$.

Seed index on an edge of $\operatorname{CST}(w)$

$$
\begin{aligned}
& \mathcal{S}\left(v_{j}\right)=\operatorname{Left} \mathcal{S}\left(v_{j}\right)+\mathcal{C}\left(v_{j}\right)+\operatorname{Right} \mathcal{S}\left(v_{j}\right) \\
& \mathcal{C}\left(v_{j}\right) \text { a linear function, } \\
& \operatorname{Right} \mathcal{S}\left(v_{j}\right) \text { becomes a linear upon creation } \\
& \text { of } \leq 1 \text { extra node per edge, } \\
& \text { Left } \mathcal{S}\left(v_{j}\right) \text { less regular: } \min \left(B\left[r_{v}-j\right], c_{v}\right) .
\end{aligned}
$$

Seed index on an edge of CST (w)

$$
\mathcal{S}\left(v_{j}\right)=\operatorname{Left} \mathcal{S}\left(v_{j}\right)+\mathcal{C}\left(v_{j}\right)+\operatorname{Right} \mathcal{S}\left(v_{j}\right)
$$

$\mathcal{C}\left(v_{j}\right)$ a linear function,
Right $\mathcal{S}\left(v_{j}\right)$ becomes a linear upon creation of ≤ 1 extra node per edge, $\operatorname{Left} \mathcal{S}\left(v_{j}\right)$ less regular: $\min \left(B\left[r_{v}-j\right], c_{v}\right)$.

Seed index on an edge of $\operatorname{CST}(w)$

$$
\mathcal{S}\left(v_{j}\right)=\operatorname{Left} \mathcal{S}\left(v_{j}\right)+\mathcal{C}\left(v_{j}\right)+\operatorname{Right} \mathcal{S}\left(v_{j}\right)
$$

$\mathcal{C}\left(v_{j}\right)$ a linear function,
Right $\mathcal{S}\left(v_{j}\right)$ becomes a linear upon creation of ≤ 1 extra node per edge, $\operatorname{LeftS}\left(v_{j}\right)$ less regular: $\min \left(B\left[r_{v}-j\right], c_{v}\right)$.

Seed index on an edge of CST (w)

$$
\mathcal{S}\left(v_{j}\right)=\operatorname{Left} \mathcal{S}\left(v_{j}\right)+\mathcal{C}\left(v_{j}\right)+\operatorname{Right} \mathcal{S}\left(v_{j}\right)
$$

$\mathcal{C}\left(v_{j}\right)$ a linear function,
Right $\mathcal{S}\left(v_{j}\right)$ becomes a linear upon creation of ≤ 1 extra node per edge, $\operatorname{Left} \mathcal{S}\left(v_{j}\right)$ less regular: $\min \left(B\left[r_{v}-j\right], c_{v}\right)$.

Seed index on an edge of $\operatorname{CST}(w)$

Seed index on an edge of $\operatorname{CST}(w)$

$$
\mathcal{S}\left(v_{j}\right)=\operatorname{Left} \mathcal{S}\left(v_{j}\right)+\mathcal{C}\left(v_{j}\right)+\operatorname{Right} \mathcal{S}\left(v_{j}\right)
$$

$\mathcal{C}\left(v_{j}\right)$ a linear function,
Right $\mathcal{S}\left(v_{j}\right)$ becomes a linear upon creation of ≤ 1 extra node per edge, $\operatorname{Left} \mathcal{S}\left(v_{j}\right)$ less regular: $\min \left(B\left[r_{v}-j\right], c_{v}\right)$.

Seed index on an edge of $\operatorname{CST}(w)$

Seed index on an edge of $\operatorname{CST}(w)$

$$
\begin{aligned}
& \mathcal{S}\left(v_{j}\right)=\operatorname{Left} \mathcal{S}\left(v_{j}\right)+\mathcal{C}\left(v_{j}\right)+\operatorname{Right} \mathcal{S}\left(v_{j}\right) \\
& \mathcal{C}\left(v_{j}\right) \text { a linear function, } \\
& \operatorname{Right} \mathcal{S}\left(v_{j}\right) \text { becomes a linear upon creation } \\
& \text { of } \leq 1 \text { extra node per edge, } \\
& \operatorname{Left} \mathcal{S}\left(v_{j}\right) \text { less regular: } \min \left(B\left[r_{v}-j\right], c_{v}\right) .
\end{aligned}
$$

Seed index on an edge of $\operatorname{CST}(w)$

$$
\begin{aligned}
& \mathcal{S}\left(v_{j}\right)=\operatorname{Left} \mathcal{S}\left(v_{j}\right)+\mathcal{C}\left(v_{j}\right)+\operatorname{Right} \mathcal{S}\left(v_{j}\right) \\
& \mathcal{C}\left(v_{j}\right) \text { a linear function, } \\
& \operatorname{Right} \mathcal{S}\left(v_{j}\right) \text { becomes a linear upon creation } \\
& \text { of } \leq 1 \text { extra node per edge, } \\
& \operatorname{Left} \mathcal{S}\left(v_{j}\right) \text { less regular: } \min \left(B\left[r_{v}-j\right], c_{v}\right) .
\end{aligned}
$$

Seed Suffix Tree

$\operatorname{CST}(w)$ can be further augmented in $\mathcal{O}(n)$ time to $\operatorname{SST}(w)$ (Seed Suffix Tree) such that

- for each node v there exists a function

$$
\phi_{v}(x)=a_{v} x+b_{v}+\min \left(c_{v}, B[x]\right)
$$

and a range $R_{v}=\left(\ell_{v}, r_{v}\right]$ such that $\mathcal{S}\left(v_{j}\right)=\phi_{v}\left(r_{v}-j\right)$ for any v_{j} on the edge immediately above v,

Seed Suffix Tree

$\operatorname{CST}(w)$ can be further augmented in $\mathcal{O}(n)$ time to $\operatorname{SST}(w)$ (Seed Suffix Tree) such that

- for each node v there exists a function

$$
\phi_{v}(x)=a_{v} x+b_{v}+\min \left(c_{v}, B[x]\right)
$$

and a range $R_{v}=\left(\ell_{v}, r_{v}\right]$ such that $\mathcal{S}\left(v_{j}\right)=\phi_{v}\left(r_{v}-j\right)$ for any v_{j} on the edge immediately above v,

- $0 \leq a_{v} \leq \operatorname{Occ}(v)$, where $\operatorname{Occ}(v)$ is the number of occurrences of v in w.

Seed Suffix Tree

$\operatorname{CST}(w)$ can be further augmented in $\mathcal{O}(n)$ time to $\operatorname{SST}(w)$ (Seed Suffix Tree) such that

- for each node v there exists a function

$$
\phi_{v}(x)=a_{v} x+b_{v}+\min \left(c_{v}, B[x]\right)
$$

and a range $R_{v}=\left(\ell_{v}, r_{v}\right]$ such that $\mathcal{S}\left(v_{j}\right)=\phi_{v}\left(r_{v}-j\right)$ for any v_{j} on the edge immediately above v,

- $0 \leq a_{v} \leq \operatorname{Occ}(v)$, where $\operatorname{Occ}(v)$ is the number of occurrences of v in w.

Observation

Given a locus of v in $\operatorname{SST}(w)$ and the border table B, the seed index $\mathcal{S}(v)$ can be computed in $\mathcal{O}(1)$ time.

Abstract problems

Problem

Input: pairs $\left(\phi_{i}, R_{i}\right)$, where $\phi_{i}(x)=a_{i} x+b_{i}+\min \left(c_{i}, B[x]\right)$ is a function and $R_{i}=\left(\ell_{i}, r_{i}\right] \subseteq[1, n]$ is a non-empty range

Output:

(a) $\operatorname{argmax}\left\{\phi_{i}(x): x \in R_{i}\right\}$ for each pair,
(b) $\min \left\{x \in R_{i}: \phi_{i}(x) \geq \alpha\right\}$ for each pair.

Abstract problems

Problem

Input: pairs $\left(\phi_{i}, R_{i}\right)$, where $\phi_{i}(x)=a_{i} x+b_{i}+\min \left(c_{i}, B[x]\right)$ is a function and $R_{i}=\left(\ell_{i}, r_{i}\right] \subseteq[1, n]$ is a non-empty range Output:
(a) $\operatorname{argmax}\left\{\phi_{i}(x): x \in R_{i}\right\}$ for each pair,
(b) $\min \left\{x \in R_{i}: \phi_{i}(x) \geq \alpha\right\}$ for each pair.

Lemma
Values (a) and (b) can be computed (offline) in linear time.

Abstract problems

Problem

Input: pairs $\left(\phi_{i}, R_{i}\right)$, where $\phi_{i}(x)=a_{i} x+b_{i}+\min \left(c_{i}, B[x]\right)$ is a function and $R_{i}=\left(\ell_{i}, r_{i}\right] \subseteq[1, n]$ is a non-empty range Output:
(a) $\operatorname{argmax}\left\{\phi_{i}(x): x \in R_{i}\right\}$ for each pair,
(b) $\min \left\{x \in R_{i}: \phi_{i}(x) \geq \alpha\right\}$ for each pair.

Lemma

Values (a) and (b) can be computed (offline) in linear time. Additional assumption required for (b): $\sum a_{i}=\mathcal{O}(n)$.

Abstract problems

Problem

Input: pairs $\left(\phi_{i}, R_{i}\right)$, where $\phi_{i}(x)=a_{i} x+b_{i}+\min \left(c_{i}, B[x]\right)$ is a function and $R_{i}=\left(\ell_{i}, r_{i}\right] \subseteq[1, n]$ is a non-empty range Output:
(a) $\operatorname{argmax}\left\{\phi_{i}(x): x \in R_{i}\right\}$ for each pair,
(b) $\min \left\{x \in R_{i}: \phi_{i}(x) \geq \alpha\right\}$ for each pair.

Lemma

Values (a) and (b) can be computed (offline) in linear time. Additional assumption required for (b): $\sum a_{i}=\mathcal{O}(n)$.

Workaround for $\sum a_{i}=\mathcal{O}(n)$:

- use (a) queries to restrict the set of edges queried for (b).

Toy problem

Problem

For the border array B to answer (off-line) the following queries: given a non-negative coefficient a_{i} and a range $R_{i}=\left(\ell_{i}, r_{i}\right]$ compute $x_{i}=\operatorname{argmax}\left\{a_{i} x+B[x]: x \in R_{i}\right\}$.

Toy problem

Problem

For the border array B to answer (off-line) the following queries: given a non-negative coefficient a_{i} and a range $R_{i}=\left(\ell_{i}, r_{i}\right]$ compute $x_{i}=\operatorname{argmax}\left\{a_{i} x+B[x]: x \in R_{i}\right\}$.

Toy problem

Problem

For the border array B to answer (off-line) the following queries: given a non-negative coefficient a_{i} and a range $R_{i}=\left(\ell_{i}, r_{i}\right]$ compute $x_{i}=\operatorname{argmax}\left\{a_{i} x+B[x]: x \in R_{i}\right\}$.

Observation

For each query we have $x_{i}=r_{i}$ or $B\left[x_{i}+1\right]<B\left[x_{i}\right]-a_{i}$.

Toy problem

Problem

For the border array B to answer (off-line) the following queries: given a non-negative coefficient a_{i} and a range $R_{i}=\left(\ell_{i}, r_{i}\right]$ compute $x_{i}=\operatorname{argmax}\left\{a_{i} x+B[x]: x \in R_{i}\right\}$.

Observation

For each query we have $x_{i}=r_{i}$ or $B\left[x_{i}+1\right]<B\left[x_{i}\right]-a_{i}$.

Toy problem

Problem

For the border array B to answer (off-line) the following queries: given a non-negative coefficient a_{i} and a range $R_{i}=\left(\ell_{i}, r_{i}\right]$ compute $x_{i}=\operatorname{argmax}\left\{a_{i} x+B[x]: x \in R_{i}\right\}$.

Observation

For each query we have $x_{i}=r_{i}$ or $B\left[x_{i}+1\right]<B\left[x_{i}\right]-a_{i}$.

Toy problem

Problem

For the border array B to answer (off-line) the following queries: given a non-negative coefficient a_{i} and a range $R_{i}=\left(\ell_{i}, r_{i}\right]$ compute $x_{i}=\operatorname{argmax}\left\{a_{i} x+B[x]: x \in R_{i}\right\}$.

Observation

For each query we have $x_{i}=r_{i}$ or $B\left[x_{i}+1\right]<B\left[x_{i}\right]-a_{i}$.

Toy problem: solution

Observation
 Let $F_{a}=\{x: B[x+1]<B[x]-a\}$. Then $\sum_{a \geq 0}\left|F_{a}\right|=\mathcal{O}(n)$.

Toy problem: solution

Observation

$$
\text { Let } F_{a}=\{x: B[x+1]<B[x]-a\} \text {. Then } \sum_{a \geq 0}\left|F_{a}\right|=\mathcal{O}(n) \text {. }
$$

Proof.

$B[x+1] \leq B[x]+1$, i.e. the total increase in B is at most n.
$\sum_{a \geq 0}\left|F_{a}\right|$ is bounded by the total decrease of in B.

Toy problem: solution

Observation

$$
\text { Let } F_{a}=\{x: B[x+1]<B[x]-a\} . \text { Then } \sum_{a \geq 0}\left|F_{a}\right|=\mathcal{O}(n) \text {. }
$$

Proof.

$B[x+1] \leq B[x]+1$, i.e. the total increase in B is at most n.
$\sum_{a \geq 0}\left|F_{a}\right|$ is bounded by the total decrease of in B.
(1) Apply (offline) predecessor queries to translate the range R_{i} into the range of positions in $F_{a_{i}}$.

Toy problem: solution

Observation

$$
\text { Let } F_{a}=\{x: B[x+1]<B[x]-a\} \text {. Then } \sum_{a \geq 0}\left|F_{a}\right|=\mathcal{O}(n) \text {. }
$$

Proof.

$B[x+1] \leq B[x]+1$, i.e. the total increase in B is at most n.
$\sum_{a \geq 0}\left|F_{a}\right|$ is bounded by the total decrease of in B.
(1) Apply (offline) predecessor queries to translate the range R_{i} into the range of positions in $F_{\mathrm{a}_{i}}$.
(2) Use range maximum queries (RMQ) for $a_{i} x+B[x]$ and $x \in F_{a_{i}}$ to compute $\operatorname{argmax}\left\{a_{i} x+B[x]: x \in R_{i} \cap F_{a_{i}}\right\}$.

Toy problem: solution

Observation

$$
\text { Let } F_{a}=\{x: B[x+1]<B[x]-a\} \text {. Then } \sum_{a \geq 0}\left|F_{a}\right|=\mathcal{O}(n) \text {. }
$$

Proof.

$B[x+1] \leq B[x]+1$, i.e. the total increase in B is at most n.
$\sum_{a \geq 0}\left|F_{a}\right|$ is bounded by the total decrease of in B.
(1) Apply (offline) predecessor queries to translate the range R_{i} into the range of positions in $F_{a_{i}}$.
(2) Use range maximum queries (RMQ) for $a_{i} x+B[x]$ and $x \in F_{a_{i}}$ to compute $\operatorname{argmax}\left\{a_{i} x+B[x]: x \in R_{i} \cap F_{a_{i}}\right\}$.
(3) For each query check the possibility of $x_{i}=r_{i}$.

Conclusions and open problems

Two problems regarding partial seeds can be solved in $\mathcal{O}(n)$ time provided that $\operatorname{CST}(w)$ is already computed:

Conclusions and open problems

Two problems regarding partial seeds can be solved in $\mathcal{O}(n)$ time provided that $\operatorname{CST}(w)$ is already computed:

- find the shortest factor u with $\mathcal{S}(u)$ exceeding a given threshold α,

Conclusions and open problems

Two problems regarding partial seeds can be solved in $\mathcal{O}(n)$ time provided that $\operatorname{CST}(w)$ is already computed:

- find the shortest factor u with $\mathcal{S}(u)$ exceeding a given threshold α,
- find the factor u maximizing $\mathcal{S}(u)$ and satisfying length restrictions,
- other kinds of restrictions also possible.

Conclusions and open problems

Two problems regarding partial seeds can be solved in $\mathcal{O}(n)$ time provided that $\operatorname{CST}(w)$ is already computed:

- find the shortest factor u with $\mathcal{S}(u)$ exceeding a given threshold α,
- find the factor u maximizing $\mathcal{S}(u)$ and satisfying length restrictions,
- other kinds of restrictions also possible.

Open problems:

- improve the construction algorithm for $\operatorname{CST}(w)$ (currently $\mathcal{O}(w \log n)$),

Conclusions and open problems

Two problems regarding partial seeds can be solved in $\mathcal{O}(n)$ time provided that $\operatorname{CST}(w)$ is already computed:

- find the shortest factor u with $\mathcal{S}(u)$ exceeding a given threshold α,
- find the factor u maximizing $\mathcal{S}(u)$ and satisfying length restrictions,
- other kinds of restrictions also possible.

Open problems:

- improve the construction algorithm for $\operatorname{CST}(w)$ (currently $\mathcal{O}(w \log n)$),
- for each length find the factor u maximizing $\mathcal{S}(u)$
- for partial covers $\mathcal{O}(n \log n)$ time.

Thank you for your attention!

