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Periodicity and quasiperiodicity

Periodicity: occurrences are aligned

a a a a a a a a a a a ab b b b

a a a b

Quasiperiodicity: occurrences may overlap

a a a a a a a a a a a a ab b b b

bb
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Covers and seeds

Definition (Apostolico, Farach, Iliopoulos; 1991)

A factor u is a cover of w if each position (letter) in w lies
within an occurrence of u in w .

a a a a a a a a a a a ab b b b b ba b b

Observation
A factor u is a seed of w iff each position (letter) in w lies
within a possibly overhanging occurrence of u in w .
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Covers and seeds

Definition (Iliopoulos, Moore, Park; 1993)

A factor u is a seed of w if u is a cover of a superstring of w .

a a a a a a a a a a a ab b b b b b

a b b

Observation
A factor u is a seed of w iff each position (letter) in w lies
within a possibly overhanging occurrence of u in w .
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Partial covers and partial seeds

Definition (KPRRW; CPM’13)

The cover index C(u) of u in w is the number of positions of
w lying within an occurrence of u in w .

a b a a b a a a b a a a a b a a a b a b a a a b

C(a) = 17

C(abaa) = 19

C(abaaaba) = 14

S(a) = 17

S(abaa) = 21

S(abaaaba) = 22
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Definition
For a positive integer α an α-partial cover of w is a factor of
w with cover index at least α.
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Partial covers and partial seeds

Definition
The seed index S(u) of u in w is the number of positions of w
lying within a possibly overhanging occurrence of u in w .
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Other variants of covers and seeds

b a b a a a b a b a b a a a a b

a a a

k-covers and k-seeds (Iliopoulos, Smyth; 1998) – each
position lies within a (possibly overhanging) occurrence of
at least one of the few factors of length k , together
forming a k-cover (k-seed).

approximate covers (Sim, Park, Kim, Lee; 2002) and
approximate seeds (Christodoulakis et al.; 2005) – each
position is lies within a (possibly overhanging) occurrence
of a factor similar to the approximate cover (or seed).

Main drawback: Ω(n2) algorithms.
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Cover Suffix Tree
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(11,1)

(6,2)

(8,4)

(5,5)

(9,1)

(6,1)

(8,1)

(6,2)

(10,1)

(7,1)

(9,1)

(4,1)

(9,3)

(8,4)

(6,6)

(8,1)

(5,1)

(7,1)

(6,2)

CST (ababbabbaba)

The cover suffix tree of w (de-
noted CST (w)) is a suffix tree

augmented with O(n) extra
nodes,

with each node annotated
with a pair of integers
(C(v),∆(v)).

Theorem (KPRRW; CPM’13)

The tree CST (w) can be built in
O(n log n) time for any word w
of length n.
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Our results

Problem (Partial Seeds)

Given a word w of length n and a positive integer α ≤ n find
all shortest factors u of w such that S(u) ≥ α.

Problem (Limited Length Partial Seeds)

Given a word w of length n and an interval [`, r ] find a factor
u of w maximizing S(u) among factors for which |u| ∈ [`, r ].

Theorem
Given CST (w) both Partial Seeds and Limited
Length Partial Seeds can be solved in linear time.
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Determining the cover index

v(75, 2)

v1

v2

v3

v4

v5

v6

v7

(65, 3) u

v1

v2

v3

v4

u1

u2

(75, 2)

(73, 2)

(71, 2)

(69, 2)

(67, 2)

(65, 3)

(62, 3)

(59, 3)

Lemma (CPM’13)

Let v0, v1, . . . , vk be the nodes of an
edge of CST (w) with v = v0 being the
lowest (explicit) node. Then

C(vj) = C(v)− j∆(v).

Corollary

Given a locus of v in CST (w), the cover index C(v) can be
computed in O(1) time.
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Seed index

S(v) =

LeftS(v)

+

C(v)

+

RightS(v)

Full occs
Left-overhanging

occs only
Right-overhanging

occs only

LeftS(v) = min(B[first(v) + |v | − 1], first(v)− 1)

RightS(v) = min(BR [last(v)], n − |v |+ 1− last(v))

first(v) start position of the first occurrence of v ,
B[i ] largest border of w [1..i ].
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Seed index on an edge of CST (w)

v

v1

v2

v3

v4

v5

v6

v7

u

v1

v2

v3

v4

u1

u2

S(vj) = LeftS(vj) + C(vj) + RightS(vj)

C(vj) a linear function,

RightS(vj) becomes a linear upon creation
of ≤ 1 extra node per edge,

LeftS(vj) less regular: min(B[rv − j ], cv ).

rvcv
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Seed Suffix Tree

CST (w) can be further augmented in O(n) time to SST (w)
(Seed Suffix Tree) such that

for each node v there exists a function

φv (x) = avx + bv + min(cv ,B[x ])

and a range Rv = (`v , rv ] such that S(vj) = φv (rv − j) for
any vj on the edge immediately above v ,

0 ≤ av ≤ Occ(v), where Occ(v) is the number of
occurrences of v in w .

Observation
Given a locus of v in SST (w) and the border table B , the
seed index S(v) can be computed in O(1) time.
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Abstract problems

Problem
Input: pairs (φi ,Ri), where φi(x) = aix + bi + min(ci ,B[x ]) is
a function and Ri = (`i , ri ] ⊆ [1, n] is a non-empty range
Output:

(a) argmax{φi(x) : x ∈ Ri} for each pair,

(b) min{x ∈ Ri : φi(x) ≥ α} for each pair.

Lemma
Values (a) and (b) can be computed (offline) in linear time.

Workaround for
∑

ai = O(n):

use (a) queries to restrict the set of edges queried for (b).
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Toy problem

Problem
For the border array B to answer (off-line) the following
queries: given a non-negative coefficient ai and a range
Ri = (`i , ri ] compute xi = argmax{aix + B[x ] : x ∈ Ri}.

x

B[x ]

a b a c a b a d a b a c a b a0

1

2

3

4

5

6

7

ai = 1

`i ri`i ri

Observation
For each query we have xi = ri or B[xi + 1] < B[xi ]− ai .
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Toy problem: solution

Observation
Let Fa = {x : B[x + 1] < B[x ]− a}. Then

∑
a≥0 |Fa| = O(n).

Proof.
B[x + 1] ≤ B[x ] + 1, i.e. the total increase in B is at most n.∑

a≥0 |Fa| is bounded by the total decrease of in B .

1 Apply (offline) predecessor queries to translate the range
Ri into the range of positions in Fai .

2 Use range maximum queries (RMQ) for aix + B[x ] and
x ∈ Fai to compute argmax{aix + B[x ] : x ∈ Ri ∩ Fai}.

3 For each query check the possibility of xi = ri .
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Conclusions and open problems

Two problems regarding partial seeds can be solved in O(n)
time provided that CST (w) is already computed:

find the shortest factor u with S(u) exceeding a given
threshold α,
find the factor u maximizing S(u) and satisfying length
restrictions,
other kinds of restrictions also possible.

Open problems:

improve the construction algorithm for CST (w)
(currently O(w log n)),
for each length find the factor u maximizing S(u)

for partial covers O(n log n) time.
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Thank you for your attention!
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