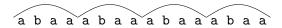
Efficient Algorithms for Shortest Partial Seeds in Words

Tomasz Kociumaka¹, Solon P. Pissis², Jakub Radoszewski¹, Wojciech Rytter¹, Tomasz Waleń¹

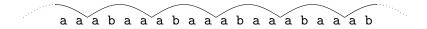
¹University of Warsaw ²King's College London

CPM 2014 Moscow, June 16, 2014

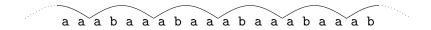
Periodicity: occurrences are aligned



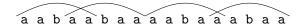
Periodicity: occurrences are aligned



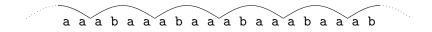
Periodicity: occurrences are aligned



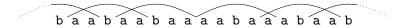
Quasiperiodicity: occurrences may overlap



Periodicity: occurrences are aligned



Quasiperiodicity: occurrences may overlap



Definition (Apostolico, Farach, Iliopoulos; 1991)

A factor u is a *cover* of w if each position (letter) in w lies within an occurrence of u in w.

Definition (Apostolico, Farach, Iliopoulos; 1991)

A factor u is a *cover* of w if each position (letter) in w lies within an occurrence of u in w.

Definition (Iliopoulos, Moore, Park; 1993)

A factor u is a seed of w if u is a cover of a superstring of w.

Definition (Iliopoulos, Moore, Park; 1993)

A factor u is a seed of w if u is a cover of a superstring of w.

Definition (Iliopoulos, Moore, Park; 1993)

A factor u is a seed of w if u is a cover of a superstring of w.

Observation

A factor u is a seed of w iff each position (letter) in w lies within a possibly overhanging occurrence of u in w.

The cover index C(u) of u in w is the number of positions of w lying within an occurrence of u in w.

 $\mathcal{C}(a) = 17$

The cover index C(u) of u in w is the number of positions of w lying within an occurrence of u in w.

$$\mathcal{C}(extbf{a}) = 17$$
 $\mathcal{C}(extbf{abaa}) = 19$

The cover index C(u) of u in w is the number of positions of w lying within an occurrence of u in w.

$$\mathcal{C}(a)=17$$

 $\mathcal{C}(abaa)=19$
 $\mathcal{C}(abaaaba)=14$

The cover index C(u) of u in w is the number of positions of w lying within an occurrence of u in w.

abaabaaabaaabaaababaaab

$$\mathcal{C}(\mathtt{a})=17$$
 $\mathcal{C}(\mathtt{abaa})=19$ $\mathcal{C}(\mathtt{abaaaba})=14$

Definition

For a positive integer α an α -partial cover of w is a factor of w with cover index at least α .

Definition

The seed index S(u) of u in w is the number of positions of w lying within a possibly overhanging occurrence of u in w.

 $\mathcal{S}(a) = 17$

$$\mathcal{C}(a)=17$$

 $\mathcal{C}(abaa)=19$
 $\mathcal{C}(abaaaba)=14$

Definition

The seed index S(u) of u in w is the number of positions of w lying within a possibly overhanging occurrence of u in w.

$$\mathcal{C}(\mathtt{a}) = 17$$
 $\mathcal{S}(\mathtt{a}) = 17$
 $\mathcal{C}(\mathtt{a}\mathtt{b}\mathtt{a}\mathtt{a}) = 19$ $\mathcal{S}(\mathtt{a}\mathtt{b}\mathtt{a}\mathtt{a}) = 22$
 $\mathcal{C}(\mathtt{a}\mathtt{b}\mathtt{a}\mathtt{a}\mathtt{b}\mathtt{a}) = 14$

Definition

The seed index S(u) of u in w is the number of positions of w lying within a possibly overhanging occurrence of u in w.

Definition

The seed index S(u) of u in w is the number of positions of w lying within a possibly overhanging occurrence of u in w.

abaabaaabaaabaaababaaab

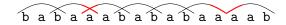
 $\mathcal{C}(a) = 17$ $\mathcal{S}(a) = 17$ $\mathcal{C}(abaa) = 19$ $\mathcal{S}(abaa) = 21$ $\mathcal{C}(abaaaba) = 14$ $\mathcal{S}(abaaaba) = 22$

Definition

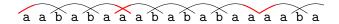
For a positive integer α an α -partial seed of w is a factor of w with seed index at least α .

 k-covers and k-seeds (Iliopoulos, Smyth; 1998) – each position lies within a (possibly overhanging) occurrence of at least one of the few factors of length k, together forming a k-cover (k-seed).

 k-covers and k-seeds (Iliopoulos, Smyth; 1998) – each position lies within a (possibly overhanging) occurrence of at least one of the few factors of length k, together forming a k-cover (k-seed).



- k-covers and k-seeds (Iliopoulos, Smyth; 1998) each position lies within a (possibly overhanging) occurrence of at least one of the few factors of length k, together forming a k-cover (k-seed).
- approximate covers (Sim, Park, Kim, Lee; 2002) and approximate seeds (Christodoulakis et al.; 2005) – each position is lies within a (possibly overhanging) occurrence of a factor similar to the approximate cover (or seed).

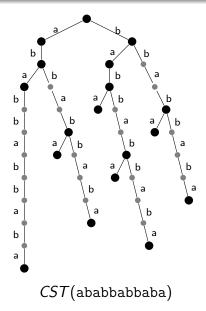


- k-covers and k-seeds (Iliopoulos, Smyth; 1998) each position lies within a (possibly overhanging) occurrence of at least one of the few factors of length k, together forming a k-cover (k-seed).
- approximate covers (Sim, Park, Kim, Lee; 2002) and approximate seeds (Christodoulakis et al.; 2005) – each position is lies within a (possibly overhanging) occurrence of a factor similar to the approximate cover (or seed).

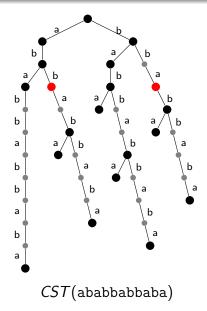
babaaabababaaaab

- k-covers and k-seeds (Iliopoulos, Smyth; 1998) each position lies within a (possibly overhanging) occurrence of at least one of the few factors of length k, together forming a k-cover (k-seed).
- approximate covers (Sim, Park, Kim, Lee; 2002) and approximate seeds (Christodoulakis et al.; 2005) – each position is lies within a (possibly overhanging) occurrence of a factor similar to the approximate cover (or seed).

Main drawback: $\Omega(n^2)$ algorithms.

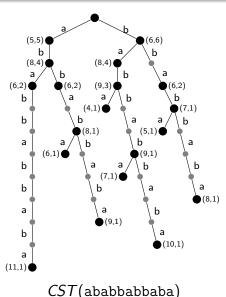


The cover suffix tree of w (denoted CST(w) is a suffix tree



The cover suffix tree of w (denoted CST(w) is a suffix tree

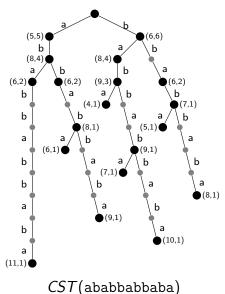
• augmented with $\mathcal{O}(n)$ extra nodes.



The cover suffix tree of w (denoted CST(w)) is a suffix tree

- augmented with $\mathcal{O}(n)$ extra nodes,
- with each node annotated with a pair of integers (C(ν), Δ(ν)).

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń



The cover suffix tree of w (denoted CST(w)) is a suffix tree

- augmented with $\mathcal{O}(n)$ extra nodes,
- with each node annotated with a pair of integers (C(ν), Δ(ν)).

Theorem (KPRRW; CPM'13)

The tree CST(w) can be built in $\mathcal{O}(n \log n)$ time for any word w of length n.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń

Problem (PARTIAL SEEDS)

Given a word w of length n and a positive integer $\alpha \leq n$ find all shortest factors u of w such that $S(u) \geq \alpha$.

Problem (LIMITED LENGTH PARTIAL SEEDS)

Given a word w of length n and an interval $[\ell, r]$ find a factor u of w maximizing S(u) among factors for which $|u| \in [\ell, r]$.

Problem (PARTIAL SEEDS)

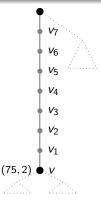
Given a word w of length n and a positive integer $\alpha \leq n$ find all shortest factors u of w such that $S(u) \geq \alpha$.

Problem (LIMITED LENGTH PARTIAL SEEDS)

Given a word w of length n and an interval $[\ell, r]$ find a factor u of w maximizing S(u) among factors for which $|u| \in [\ell, r]$.

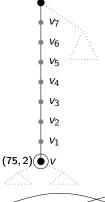
Theorem

Given CST(w) both PARTIAL SEEDS and LIMITED LENGTH PARTIAL SEEDS can be solved in linear time.



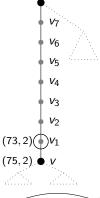
Lemma (CPM'13)

$$\mathcal{C}(v_j) = \mathcal{C}(v) - j\Delta(v).$$



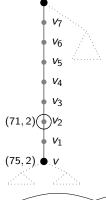
Lemma (CPM'13)

$$\mathcal{C}(v_j) = \mathcal{C}(v) - j\Delta(v).$$



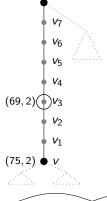
Lemma (CPM'13)

$$\mathcal{C}(v_j) = \mathcal{C}(v) - j\Delta(v).$$



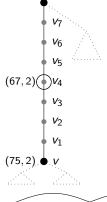
Lemma (CPM'13)

$$\mathcal{C}(\mathbf{v}_j) = \mathcal{C}(\mathbf{v}) - j\Delta(\mathbf{v}).$$



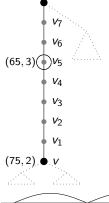
Lemma (CPM'13)

$$\mathcal{C}(v_j) = \mathcal{C}(v) - j\Delta(v).$$



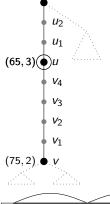
Lemma (CPM'13)

$$\mathcal{C}(v_j) = \mathcal{C}(v) - j\Delta(v).$$



Lemma (CPM'13)

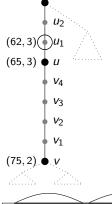
$$\mathcal{C}(v_j) = \mathcal{C}(v) - j\Delta(v).$$



Lemma (CPM'13)

Let v_0, v_1, \ldots, v_k be the nodes of an edge of CST(w) with $v = v_0$ being the lowest (explicit) node. Then

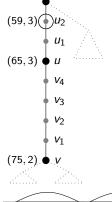
$$\mathcal{C}(v_j) = \mathcal{C}(v) - j\Delta(v).$$



Lemma (CPM'13)

Let v_0, v_1, \ldots, v_k be the nodes of an edge of CST(w) with $v = v_0$ being the lowest (explicit) node. Then

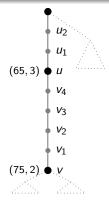
$$\mathcal{C}(v_j) = \mathcal{C}(v) - j\Delta(v).$$



Lemma (CPM'13)

Let v_0, v_1, \ldots, v_k be the nodes of an edge of CST(w) with $v = v_0$ being the lowest (explicit) node. Then

$$\mathcal{C}(v_j) = \mathcal{C}(v) - j\Delta(v).$$



Lemma (CPM'13)

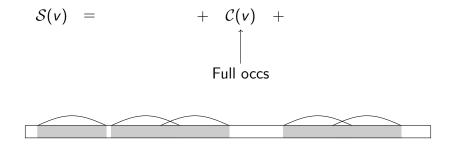
Let v_0, v_1, \ldots, v_k be the nodes of an edge of CST(w) with $v = v_0$ being the lowest (explicit) node. Then

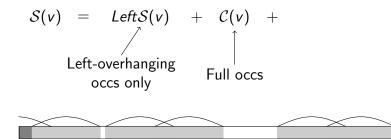
$$C(v_j) = C(v) - j\Delta(v).$$

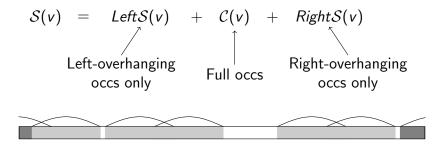
Corollary

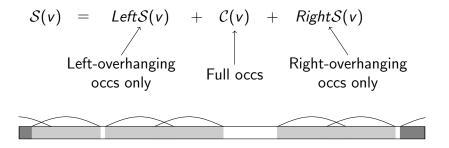
Given a locus of v in CST(w), the cover index C(v) can be computed in O(1) time.

S(v) = + +



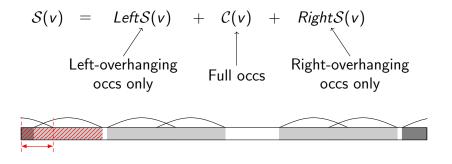






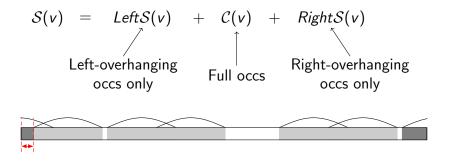
Left S(v) = min(B[first(v) + |v| - 1], first(v) - 1)

first(v) start position of the first occurrence of v, B[i] largest border of w[1..i].



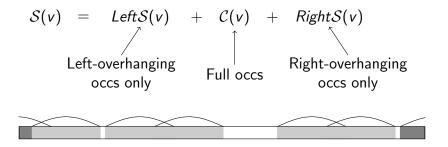
 $Left \mathcal{S}(v) = \min(B[first(v) + |v| - 1], first(v) - 1)$

first(v) start position of the first occurrence of v, B[i] largest border of w[1..i].



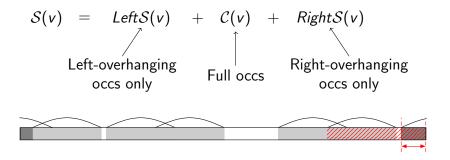
 $Left S(v) = \min(B[first(v) + |v| - 1], first(v) - 1)$

first(v) start position of the first occurrence of v, B[i] largest border of w[1..i].



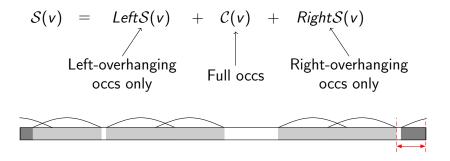
 $Left S(v) = \min(B[first(v) + |v| - 1], first(v) - 1)$ Right S(v) = min(B^R[last(v)], n - |v| + 1 - last(v))

last(v) start position of the last occurrence of v, $B^{R}[i]$ largest border of w[i..n].



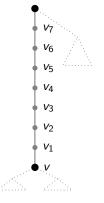
 $Left S(v) = \min(B[first(v) + |v| - 1], first(v) - 1)$ Right S(v) = min(B^R[last(v)], n - |v| + 1 - last(v))

last(v) start position of the last occurrence of v, $B^{R}[i]$ largest border of w[i..n].



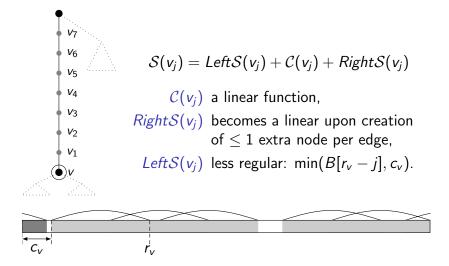
 $Left S(v) = \min(B[first(v) + |v| - 1], first(v) - 1)$ Right S(v) = min(B^R[last(v)], n - |v| + 1 - last(v))

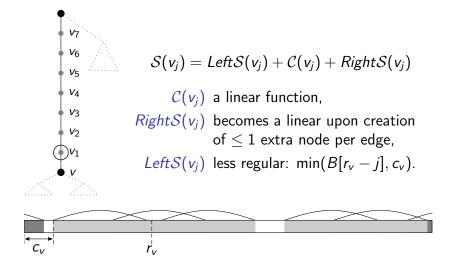
last(v) start position of the last occurrence of v, $B^{R}[i]$ largest border of w[i..n].

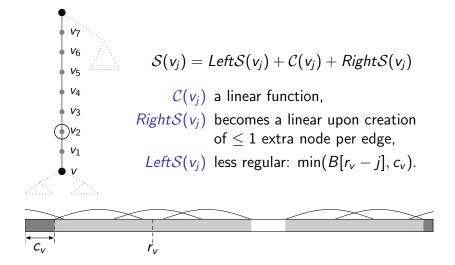


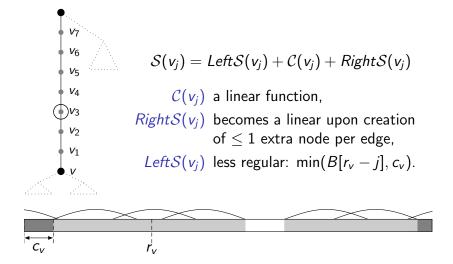
$$\begin{split} \mathcal{S}(v_j) &= Left \mathcal{S}(v_j) + \mathcal{C}(v_j) + Right \mathcal{S}(v_j) \\ \mathcal{C}(v_j) \text{ a linear function,} \\ Right \mathcal{S}(v_j) \text{ becomes a linear upon creation} \\ & \text{of } \leq 1 \text{ extra node per edge,} \end{split}$$

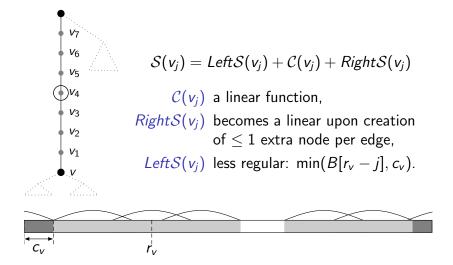
Left $S(v_j)$ less regular: min $(B[r_v - j], c_v)$.

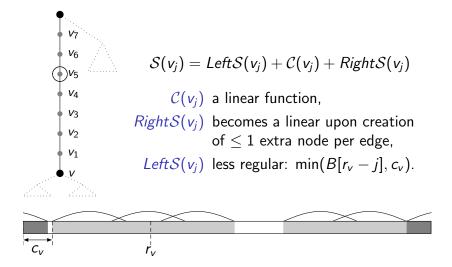


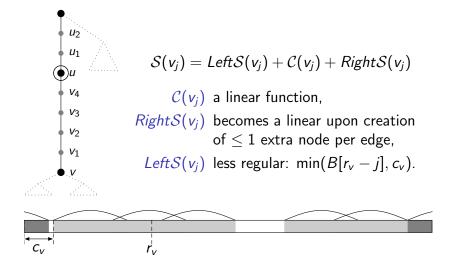


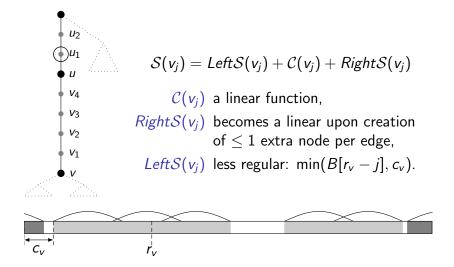


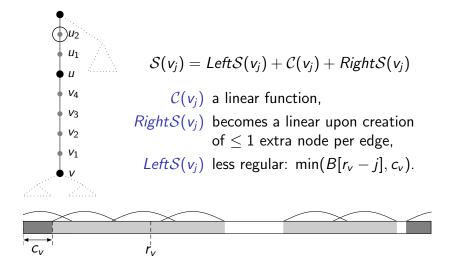












Seed Suffix Tree

CST(w) can be further augmented in $\mathcal{O}(n)$ time to SST(w)(Seed Suffix Tree) such that

• for each node v there exists a function

$$\phi_{v}(x) = a_{v}x + b_{v} + \min(c_{v}, B[x])$$

and a range $R_v = (\ell_v, r_v]$ such that $S(v_j) = \phi_v(r_v - j)$ for any v_j on the edge immediately above v,

Seed Suffix Tree

CST(w) can be further augmented in $\mathcal{O}(n)$ time to SST(w)(Seed Suffix Tree) such that

• for each node v there exists a function

$$\phi_{v}(x) = a_{v}x + b_{v} + \min(c_{v}, B[x])$$

and a range $R_v = (\ell_v, r_v]$ such that $S(v_j) = \phi_v(r_v - j)$ for any v_j on the edge immediately above v,

0 ≤ a_v ≤ Occ(v), where Occ(v) is the number of occurrences of v in w.

Seed Suffix Tree

CST(w) can be further augmented in $\mathcal{O}(n)$ time to SST(w)(Seed Suffix Tree) such that

• for each node v there exists a function

$$\phi_v(x) = a_v x + b_v + \min(c_v, B[x])$$

and a range $R_v = (\ell_v, r_v]$ such that $S(v_j) = \phi_v(r_v - j)$ for any v_j on the edge immediately above v,

0 ≤ a_v ≤ Occ(v), where Occ(v) is the number of occurrences of v in w.

Observation

Given a locus of v in SST(w) and the border table B, the seed index S(v) can be computed in O(1) time.

Problem

Input: pairs (ϕ_i, R_i) , where $\phi_i(x) = a_i x + b_i + \min(c_i, B[x])$ is a function and $R_i = (\ell_i, r_i] \subseteq [1, n]$ is a non-empty range **Output**:

(a)
$$\operatorname{argmax}\{\phi_i(x) : x \in R_i\}$$
 for each pair,

(b) min
$$\{x \in R_i : \phi_i(x) \ge \alpha\}$$
 for each pair.

Problem

Input: pairs (ϕ_i, R_i) , where $\phi_i(x) = a_i x + b_i + \min(c_i, B[x])$ is a function and $R_i = (\ell_i, r_i] \subseteq [1, n]$ is a non-empty range **Output**:

(a)
$$\operatorname{argmax}\{\phi_i(x) : x \in R_i\}$$
 for each pair,

(b) min{
$$x \in R_i : \phi_i(x) \ge \alpha$$
} for each pair.

Lemma

Values (a) and (b) can be computed (offline) in linear time.

Problem

Input: pairs (ϕ_i, R_i) , where $\phi_i(x) = a_i x + b_i + \min(c_i, B[x])$ is a function and $R_i = (\ell_i, r_i] \subseteq [1, n]$ is a non-empty range **Output**:

(a)
$$\operatorname{argmax}\{\phi_i(x) : x \in R_i\}$$
 for each pair,

(b) min{
$$x \in R_i : \phi_i(x) \ge \alpha$$
} for each pair.

Lemma

Values (a) and (b) can be computed (offline) in linear time. Additional assumption required for (b): $\sum a_i = O(n)$.

Problem

Input: pairs (ϕ_i, R_i) , where $\phi_i(x) = a_i x + b_i + \min(c_i, B[x])$ is a function and $R_i = (\ell_i, r_i] \subseteq [1, n]$ is a non-empty range **Output**:

(a)
$$\operatorname{argmax}\{\phi_i(x) : x \in R_i\}$$
 for each pair,

(b) min{
$$x \in R_i : \phi_i(x) \ge \alpha$$
} for each pair.

Lemma

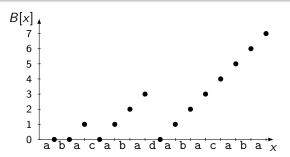
Values (a) and (b) can be computed (offline) in linear time. Additional assumption required for (b): $\sum a_i = O(n)$.

Workaround for $\sum a_i = O(n)$:

• use (a) queries to restrict the set of edges queried for (b).

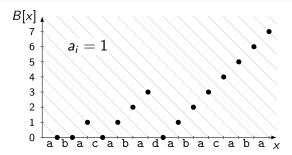
Problem

For the border array B to answer (off-line) the following queries: given a non-negative coefficient a_i and a range $R_i = (\ell_i, r_i]$ compute $x_i = \operatorname{argmax}\{a_i x + B[x] : x \in R_i\}$.



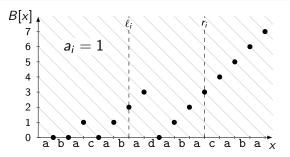
Problem

For the border array B to answer (off-line) the following queries: given a non-negative coefficient a_i and a range $R_i = (\ell_i, r_i]$ compute $x_i = \arg\max\{a_i x + B[x] : x \in R_i\}$.



Problem

For the border array B to answer (off-line) the following queries: given a non-negative coefficient a_i and a range $R_i = (\ell_i, r_i]$ compute $x_i = \operatorname{argmax}\{a_i x + B[x] : x \in R_i\}$.

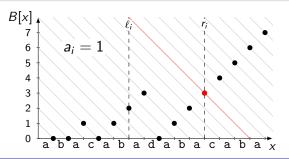


Observation

For each query we have $x_i = r_i$ or $B[x_i + 1] < B[x_i] - a_i$.

Problem

For the border array B to answer (off-line) the following queries: given a non-negative coefficient a_i and a range $R_i = (\ell_i, r_i]$ compute $x_i = \operatorname{argmax}\{a_i x + B[x] : x \in R_i\}$.

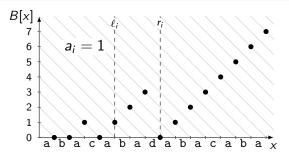


Observation

For each query we have $x_i = r_i$ or $B[x_i + 1] < B[x_i] - a_i$.

Problem

For the border array B to answer (off-line) the following queries: given a non-negative coefficient a_i and a range $R_i = (\ell_i, r_i]$ compute $x_i = \operatorname{argmax}\{a_i x + B[x] : x \in R_i\}$.



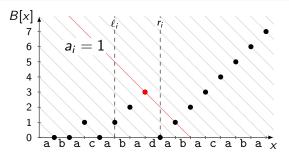
Observation

For each query we have $x_i = r_i$ or $B[x_i + 1] < B[x_i] - a_i$.

Toy problem

Problem

For the border array B to answer (off-line) the following queries: given a non-negative coefficient a_i and a range $R_i = (\ell_i, r_i]$ compute $x_i = \operatorname{argmax}\{a_i x + B[x] : x \in R_i\}$.



Observation

For each query we have $x_i = r_i$ or $B[x_i + 1] < B[x_i] - a_i$.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Efficient Algorithms for Shortest Partial Seeds in Words 13/16

Observation

Let
$$F_a = \{x : B[x+1] < B[x] - a\}$$
. Then $\sum_{a \ge 0} |F_a| = O(n)$.

Observation

Let
$$F_a = \{x : B[x+1] < B[x] - a\}$$
. Then $\sum_{a \ge 0} |F_a| = O(n)$.

Proof.

 $B[x+1] \le B[x]+1$, i.e. the total increase in B is at most n. $\sum_{a\ge 0} |F_a|$ is bounded by the total decrease of in B.

Observation

Let
$$F_a = \{x : B[x+1] < B[x] - a\}$$
. Then $\sum_{a \ge 0} |F_a| = O(n)$.

Proof.

 $B[x+1] \le B[x] + 1$, i.e. the total increase in B is at most n. $\sum_{a \ge 0} |F_a|$ is bounded by the total decrease of in B.

Apply (offline) predecessor queries to translate the range *R_i* into the range of positions in *F_{ai}*.

Observation

Let
$$F_a = \{x : B[x+1] < B[x] - a\}$$
. Then $\sum_{a \ge 0} |F_a| = O(n)$.

Proof.

 $B[x+1] \le B[x]+1$, i.e. the total increase in B is at most n. $\sum_{a\ge 0} |F_a|$ is bounded by the total decrease of in B.

- Apply (offline) predecessor queries to translate the range R_i into the range of positions in F_{ai}.
- ② Use range maximum queries (RMQ) for $a_i x + B[x]$ and $x \in F_{a_i}$ to compute $\operatorname{argmax}\{a_i x + B[x] : x \in R_i \cap F_{a_i}\}$.

Observation

Let
$$F_a = \{x : B[x+1] < B[x] - a\}$$
. Then $\sum_{a \ge 0} |F_a| = O(n)$.

Proof.

 $B[x+1] \le B[x]+1$, i.e. the total increase in B is at most n. $\sum_{a\ge 0} |F_a|$ is bounded by the total decrease of in B.

- Apply (offline) predecessor queries to translate the range R_i into the range of positions in F_{ai}.
- Use range maximum queries (RMQ) for $a_i x + B[x]$ and $x \in F_{a_i}$ to compute $\operatorname{argmax}\{a_i x + B[x] : x \in R_i \cap F_{a_i}\}$.
- So For each query check the possibility of $x_i = r_i$.

Conclusions and open problems

Two problems regarding partial seeds can be solved in O(n) time provided that CST(w) is already computed:

 find the shortest factor u with S(u) exceeding a given threshold α,

- find the shortest factor u with S(u) exceeding a given threshold α,
- find the factor u maximizing $\mathcal{S}(u)$ and satisfying length restrictions,
 - other kinds of restrictions also possible.

- find the shortest factor u with S(u) exceeding a given threshold α,
- find the factor u maximizing $\mathcal{S}(u)$ and satisfying length restrictions,
 - other kinds of restrictions also possible.

Open problems:

 improve the construction algorithm for CST(w) (currently O(w log n)),

- find the shortest factor u with S(u) exceeding a given threshold α,
- find the factor u maximizing S(u) and satisfying length restrictions,
 - other kinds of restrictions also possible.

Open problems:

- improve the construction algorithm for CST(w) (currently O(w log n)),
- for each length find the factor u maximizing $\mathcal{S}(u)$
 - for partial covers $\mathcal{O}(n \log n)$ time.

Thank you for your attention!