Fast Algorithm for Partial Covers in Words

Tomasz Kociumaka¹, Solon P. Pissis^{2,3}, Jakub Radoszewski¹, Wojciech Rytter¹, Tomasz Waleń^{4,1}

¹University of Warsaw ²Heidelberg Institute for Theoretical Studies ³University of Florida ⁴International Institute of Molecular and Cell Biology in Warsaw

CPM 2013 Bad Herrenalb, June 17, 2013

Periodicity: occurrences are aligned.

Periodicity: occurrences are aligned.

Quasiperiodicity: occurrences may overlap.

Let u be a factor of w. We say that u is a *cover* of w, if each position (letter) in w lies within some occurrence of u in w.

The covers of *w* are aabaa

Let u be a factor of w. We say that u is a *cover* of w, if each position (letter) in w lies within some occurrence of u in w.

The covers of w are aabaa, aabaaabaa

Let u be a factor of w. We say that u is a *cover* of w, if each position (letter) in w lies within some occurrence of u in w.

The covers of *w* are aabaa, aabaaabaa and aabaaabaabaabaabaa.

Let u be a factor of w. We say that u is a *cover* of w, if each position (letter) in w lies within some occurrence of u in w.

The covers of *w* are aabaa, aabaaabaa and aabaaabaabaaabaa. The whole word is always a cover of itself, most words do not have any other cover.

Definition

The *cover index* of u in w is the number of positions in w which lie within some occurrence of u in w.

w: a a b a a a b a a b a a b a a b

Definition

The *cover index* of u in w is the number of positions in w which lie within some occurrence of u in w.

The cover index of a is 12

Definition

The *cover index* of u in w is the number of positions in w which lie within some occurrence of u in w.

The cover index of a is 12, of abaa is 15

Definition

The *cover index* of u in w is the number of positions in w which lie within some occurrence of u in w.

The cover index of a is 12, of abaa is 15, of aab is 15

Definition

The *cover index* of u in w is the number of positions in w which lie within some occurrence of u in w.

The cover index of a is 12, of abaa is 15, of aab is 15, only of aabaabaabaabaabaabaabaab is 17.

Definition

The *cover index* of u in w is the number of positions in w which lie within some occurrence of u in w.

w: a a b a a a b a a b a a b a a b

The cover index of a is 12, of abaa is 15, of aab is 15, only of aabaabaabaabaabaabaabaab is 17.

Definition

For a positive integer α an α -partial cover of w is a factor of w with cover index at least α .

 seeds (Iliopoulos, Moore, Park; 1996) – covers of a superstring

- seeds (Iliopoulos, Moore, Park; 1996) covers of a superstring
- k-covers (Iliopoulos, Smyth; 1998) each position lies within an occurrence of at least one of k factors, together being a k-cover

- seeds (Iliopoulos, Moore, Park; 1996) covers of a superstring
- k-covers (lliopoulos, Smyth; 1998) each position lies within an occurrence of at least one of k factors, together being a k-cover
- approximate covers (Sim, Park, Kim, Lee; 2002) each position is lies within an occurrence of a factor similar to the approximate cover

- seeds (Iliopoulos, Moore, Park; 1996) covers of a superstring
- k-covers (lliopoulos, Smyth; 1998) each position lies within an occurrence of at least one of k factors, together being a k-cover
- *approximate covers* (Sim, Park, Kim, Lee; 2002) each position is lies within an occurrence of a factor *similar* to the approximate cover
- enhanced covers (Flouri, Iliopoulos, K., Pissis, Puglisi, Smyth, Tyczyński; 2012) – as partial covers with an additional requirement of being simultaneously a border

Problem (PARTIALCOVERS)

Given a word w and a positive integer α , identify all shortest α -partial covers of w.

Theorem

The PARTIALCOVERS problem can be solved in $\mathcal{O}(n \log n)$ time and $\mathcal{O}(n)$ space, where n = |w|.

Problem (PARTIALCOVERS)

Given a word w and a positive integer α , identify all shortest α -partial covers of w.

Theorem

The PARTIALCOVERS problem can be solved in $\mathcal{O}(n \log n)$ time and $\mathcal{O}(n)$ space, where n = |w|.

Theorem

For any word w of length n exists a data structure of size O(n), which given u can find the cover index of u in O(|u|) time. It can be built in $O(n \log n)$ time and O(n) space. If u = w[i..j] is given as a pair of integers i, j, then $O(\log \log |u|)$ query time can be achieved.

• The *suffix trie* of *w* for each factor *u* of *w* has a node corresponding to *u*, called the *locus* of *u*.

- The *suffix trie* of *w* for each factor *u* of *w* has a node corresponding to *u*, called the *locus* of *u*.
- In the suffix tree only O(|w|) nodes are stored explicitely (explicit nodes).

- The *suffix trie* of *w* for each factor *u* of *w* has a node corresponding to *u*, called the *locus* of *u*.
- In the suffix tree only O(|w|) nodes are stored explicitely (explicit nodes).
- The remaining nodes (*implicit nodes*) are represented by the highest explicit descendant and the distance to it.

- The *suffix trie* of *w* for each factor *u* of *w* has a node corresponding to *u*, called the *locus* of *u*.
- In the suffix tree only O(|w|) nodes are stored explicitely (explicit nodes).
- The remaining nodes (*implicit nodes*) are represented by the highest explicit descendant and the distance to it.
- We *augment* the suffix tree: some implicit nodes are back explicit (called *extra nodes*).

- The *suffix trie* of *w* for each factor *u* of *w* has a node corresponding to *u*, called the *locus* of *u*.
- In the suffix tree only O(|w|) nodes are stored explicitely (explicit nodes).
- The remaining nodes (*implicit nodes*) are represented by the highest explicit descendant and the distance to it.
- We augment the suffix tree: some implicit nodes are back explicit (called extra nodes).
- An *edge* of a tree contains all implicit nodes and the lower explicit end.

Auxiliary definitions

Definition

A factor u is a *primitive square* if $u = v^2$ for some v, but $u \neq v^{2k}$ for any v and $k \ge 2$.

Examples: aa, abaaba. Non-examples: ababa, abababab.

Auxiliary definitions

Definition

A factor u is a *primitive square* if $u = v^2$ for some v, but $u \neq v^{2k}$ for any v and $k \ge 2$.

Examples: aa, abaaba. Non-examples: ababa, abababab.

Definition

An occurrence of u in w is *active* if no other occurrence of u in w starts within it.

The cover suffix tree of w CST(w) is the suffix tree of w:

The cover suffix tree of w CST(w) is the suffix tree of w:

 augmented with nodes corresponding to halves of primitive squares,

The cover suffix tree of w CST(w) is the suffix tree of w:

- augmented with nodes corresponding to halves of primitive squares,
- with each explicit node annotated with a pair (cv(v), Δ(v)), where cv(v) is the cover index of v and Δ(v) is the number of active occurrences of v.

The cover suffix tree of w CST(w) is the suffix tree of w:

- augmented with nodes corresponding to halves of primitive squares,
- with each explicit node annotated with a pair (cv(v), Δ(v)), where cv(v) is the cover index of v and Δ(v) is the number of active occurrences of v.

The number of square factors is linear (Fraenkel, Simpson, 1998), so the size of CST(w) is O(|w|).

Lemma

Let $v = u_0, u_1, ..., u_k$ be the nodes of an edge of CST(w)with v being the lowest node. Then $cv(u_i) = cv(v) - i\Delta(v)$.

Lemma

Let $v = u_0, u_1, ..., u_k$ be the nodes of an edge of CST(w)with v being the lowest node. Then $cv(u_i) = cv(v) - i\Delta(v)$.

Proof.

 $\begin{array}{c}
u_5 \\
u_4 \\
u_3 \\
u_2 \\
u_1
\end{array}$ Results of at act $\Delta($

Recall that if u, u' are on the same edge of the suffix tree, then occurrences of u and u' start at the same positions. In CST(w) also the active occurrences agree. Thus, u_{i+1} covers $\Delta(u_i) = \Delta(v)$ positions less than u_i .

Uд

Uз

U2

Lemma

Let $v = u_0, u_1, ..., u_k$ be the nodes of an edge of CST(w)with v being the lowest node. Then $cv(u_i) = cv(v) - i\Delta(v)$.

Proof.

Recall that if u, u' are on the same edge of the suffix tree, then occurrences of u and u' start at the same positions. In CST(w) also the active occurrences agree. Thus, u_{i+1} covers $\Delta(u_i) = \Delta(v)$ positions less than u_i .

Lemma

Let $v = u_0, u_1, ..., u_k$ be the nodes of an edge of CST(w)with v being the lowest node. Then $cv(u_i) = cv(v) - i\Delta(v)$.

Proof.

Recall that if u, u' are on the same edge of the suffix tree, then occurrences of u and u' start at the same positions. In CST(w) also the active occurrences agree. Thus, u_{i+1} covers $\Delta(u_i) = \Delta(v)$ positions less than u_i .

Uл

U2

 U_1

Lemma

Let $v = u_0, u_1, ..., u_k$ be the nodes of an edge of CST(w)with v being the lowest node. Then $cv(u_i) = cv(v) - i\Delta(v)$.

Proof.

Recall that if u, u' are on the same edge of the suffix tree, then occurrences of u and u' start at the same positions. In CST(w) also the active occurrences agree. Thus, u_{i+1} covers $\Delta(u_i) = \Delta(v)$ positions less than u_i .

นว

U2

 U_1

Lemma

Let $v = u_0, u_1, ..., u_k$ be the nodes of an edge of CST(w)with v being the lowest node. Then $cv(u_i) = cv(v) - i\Delta(v)$.

Proof.

Recall that if u, u' are on the same edge of the suffix tree, then occurrences of u and u' start at the same positions. In CST(w) also the active occurrences agree. Thus, u_{i+1} covers $\Delta(u_i) = \Delta(v)$ positions less than u_i .

U۵

Uз

U2

 U_1

Lemma

Let $v = u_0, u_1, ..., u_k$ be the nodes of an edge of CST(w)with v being the lowest node. Then $cv(u_i) = cv(v) - i\Delta(v)$.

Proof.

Recall that if u, u' are on the same edge of the suffix tree, then occurrences of u and u' start at the same positions. In CST(w) also the active occurrences agree. Thus, u_{i+1} covers $\Delta(u_i) = \Delta(v)$ positions less than u_i .

Uд

Uз

U2

 U_1

Lemma

Let $v = u_0, u_1, ..., u_k$ be the nodes of an edge of CST(w)with v being the lowest node. Then $cv(u_i) = cv(v) - i\Delta(v)$.

Proof.

Recall that if u, u' are on the same edge of the suffix tree, then occurrences of u and u' start at the same positions. In CST(w) also the active occurrences agree. Thus, u_{i+1} covers $\Delta(u_i) = \Delta(v)$ positions less than u_i .

Answering Queries

- Recall that we have defined the locus of u as a pair (v, d), where v is the highest explicit descendant of u.
- The Lemma proves that cv(u) = cv(v) dΔ(v), so computing the cover index of u given its locus in CST(w) is trivial.

Answering Queries

- Recall that we have defined the locus of u as a pair (v, d), where v is the highest explicit descendant of u.
- The Lemma proves that cv(u) = cv(v) dΔ(v), so computing the cover index of u given its locus in CST(w) is trivial.
- If u is given explicitly, simply traverse CST(w) to find the locus (O(|u|) time)
- If u = w[i..j] is given as a pair of indices, use the weighted ancestors data structure (O(log log |u|) time).

Answering Queries

- Recall that we have defined the locus of u as a pair (v, d), where v is the highest explicit descendant of u.
- The Lemma proves that cv(u) = cv(v) dΔ(v), so computing the cover index of u given its locus in CST(w) is trivial.
- If u is given explicitly, simply traverse CST(w) to find the locus (O(|u|) time)
- If u = w[i..j] is given as a pair of indices, use the weighted ancestors data structure (O(log log |u|) time).
- Finding the shortest α-partial covers reduces to solving one linear inequality per edge (cv(v) − dΔ(v) ≥ α), this takes linear time once CST(w) is given.

The structure resembles an $O(n \log n)$ -time construction of a similar data structure, MAST (Brodal et al.; 2002).

• We start with the suffix tree.

The structure resembles an $O(n \log n)$ -time construction of a similar data structure, MAST (Brodal et al.; 2002).

- We start with the suffix tree.
- We process the nodes in the decreasing order of the corresponding factors' lengths.
- While at level d, for each factor of length d we implicitly keep a sorted linked list of its occurrences.

The structure resembles an $O(n \log n)$ -time construction of a similar data structure, MAST (Brodal et al.; 2002).

- We start with the suffix tree.
- We process the nodes in the decreasing order of the corresponding factors' lengths.
- While at level *d*, for each factor of length *d* we implicitly keep a *sorted* linked list of its occurrences.

The structure resembles an $O(n \log n)$ -time construction of a similar data structure, MAST (Brodal et al.; 2002).

- We start with the suffix tree.
- We process the nodes in the decreasing order of the corresponding factors' lengths.
- While at level d, for each factor of length d we implicitly keep a sorted linked list of its occurrences.
- At implicit nodes, these lists do not need to be update.

The structure resembles an $O(n \log n)$ -time construction of a similar data structure, MAST (Brodal et al.; 2002).

- We start with the suffix tree.
- We process the nodes in the decreasing order of the corresponding factors' lengths.
- While at level d, for each factor of length d we implicitly keep a sorted linked list of its occurrences.
- At implicit nodes, these lists do not need to be update.
- We need manually to take care of explicit nodes.

The structure resembles an $O(n \log n)$ -time construction of a similar data structure, MAST (Brodal et al.; 2002).

- We start with the suffix tree.
- We process the nodes in the decreasing order of the corresponding factors' lengths.
- While at level d, for each factor of length d we implicitly keep a sorted linked list of its occurrences.
- At implicit nodes, these lists do not need to be update.
- We need manually to take care of explicit nodes.

The structure resembles an $O(n \log n)$ -time construction of a similar data structure, MAST (Brodal et al.; 2002).

- We start with the suffix tree.
- We process the nodes in the decreasing order of the corresponding factors' lengths.
- While at level d, for each factor of length d we implicitly keep a sorted linked list of its occurrences.
- At implicit nodes, these lists do not need to be update.
- We need manually to take care of explicit nodes.
- We also need to add extra nodes.

Change Sets

Definition

Let \mathcal{P} be a partition of $[n] = \{1, \ldots, n\}$. For any $a \in [n]$ we define the *successor* of a in \mathcal{P} as min $\{b \in P : b > a\}$ where $P \in \mathcal{P}$ is the partition class containing a. We assume min $\emptyset = \infty$.

Change Sets

Definition

Let \mathcal{P} be a partition of $[n] = \{1, \ldots, n\}$. For any $a \in [n]$ we define the *successor* of a in \mathcal{P} as min $\{b \in P : b > a\}$ where $P \in \mathcal{P}$ is the partition class containing a. We assume min $\emptyset = \infty$.

Definition

Consider two partitions \mathcal{P} , \mathcal{P}' of [n]. The *change set* of \mathcal{P} and \mathcal{P}' is the family of pairs (i, j) such that j is the successor of i in \mathcal{P}' , but not in \mathcal{P} .

Let $\mathcal{P} = \{\{1, 3, 4\}, \{2, 5, 6, 7\}, \{8, 9\}\}$ and $\mathcal{P}' = \{\{1, \dots, 9\}\}$. The change set is $\{(1, 2), (2, 3), (4, 5), (7, 8)\}$.

Ordered Disjoint Sets

Problem (Ordered Disjoint Sets)

Maintain a partition of [n], support the following operations:

- given i find the partition class of i,
- given I ⊆ [n] merge all the partition classes of elements contained in I, return the change set of the underlying modification of the partition.

Ordered Disjoint Sets

Problem (Ordered Disjoint Sets)

Maintain a partition of [n], support the following operations:

- given i find the partition class of i,
- given I ⊆ [n] merge all the partition classes of elements contained in I, return the change set of the underlying modification of the partition.

Lemma

There is a data structure of size O(n), which handles a sequence of q operations in $O(q + n \log n)$ total time. Moreover, the total size of change sets is $O(n \log n)$.

Problem (Ordered Disjoint Sets)

Maintain a partition of [n], support the following operations:

- given i find the partition class of i,
- given I ⊆ [n] merge all the partition classes of elements contained in I, return the change set of the underlying modification of the partition.

Lemma

There is a data structure of size O(n), which handles a sequence of q operations in $O(q + n \log n)$ total time. Moreover, the total size of change sets is $O(n \log n)$.

We use this data structure to store a partition into equivalence classes of the w[i..i + d - 1] = w[j..j + d - 1] relation.

We handle two types of events:

• A branching node, the lists need to be merged.

We handle two types of events:

• A branching node, the lists need to be merged.

We handle two types of events:

- A branching node, the lists need to be merged.
- An occurrence becomes active. The corresponding node must be made explicit.

We handle two types of events:

- A branching node, the lists need to be merged.
- An occurrence becomes active. The corresponding node must be made explicit.

We handle two types of events:

- A branching node, the lists need to be merged.
- An occurrence becomes active. The corresponding node must be made explicit.

• With each list we keep a few aggregation values, which let us determine cv(v) and $\Delta(v)$.

We handle two types of events:

- A branching node, the lists need to be merged.
- An occurrence becomes active. The corresponding node must be made explicit.

• With each list we keep a few aggregation values, which let us determine cv(v) and $\Delta(v)$.

The complexity of the construction algorithm is amortized by the total size of change sets, which gives

Theorem

Given a word w of length n, its Cover Suffix Tree CST(w) can be constructed in $\mathcal{O}(n \log n)$ time and $\mathcal{O}(n)$ space.

• We have shown that with *CST* it is very easy compute the cover index of any factor *u*.

- We have shown that with *CST* it is very easy compute the cover index of any factor *u*.
- We can also find the shortest factor covering at least α positions of w.

- We have shown that with *CST* it is very easy compute the cover index of any factor *u*.
- We can also find the shortest factor covering at least α positions of w.
- These are just sample queries on partial covers that *CST* can handle, e.g. a different criterion instead of length.

- We have shown that with *CST* it is very easy compute the cover index of any factor *u*.
- We can also find the shortest factor covering at least α positions of w.
- These are just sample queries on partial covers that *CST* can handle, e.g. a different criterion instead of length.

Can CST be constructed faster?

A linear time algorithm might be difficult, all seeds can be easily found in linear time using CST.

Thank you for your attention!