
Fast Algorithm
for Partial Covers in Words

Tomasz Kociumaka1, Solon P. Pissis2,3,
Jakub Radoszewski1, Wojciech Rytter1,

Tomasz Waleń4,1

1University of Warsaw
2Heidelberg Institute for Theoretical Studies

3University of Florida
4International Institute of Molecular and Cell Biology in Warsaw

CPM 2013 Bad Herrenalb, June 17, 2013

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 1/17

Periodicity and Quasiperiodicity

Periodicity: occurrences are aligned.

a a a a a a a a a a a ab b b b

Quasiperiodicity: occurrences may overlap.

a a a a a a a a a a a ab b b b

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 2/17

Periodicity and Quasiperiodicity

Periodicity: occurrences are aligned.

a a a a a a a a a a a ab b b b

Quasiperiodicity: occurrences may overlap.

a a a a a a a a a a a ab b b b

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 2/17

Covers

Definition (Apostolico, Farach, Iliopoulos, 1991)

Let u be a factor of w . We say that u is a cover of w ,
if each position (letter) in w lies within some occurrence of u
in w .

w : a a a a a a a a a a a ab b b b

The covers of w are aabaa

, aabaaabaa
and aabaaabaabaaabaa.

The whole word is always a cover of itself,
most words do not have any other cover.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 3/17

Covers

Definition (Apostolico, Farach, Iliopoulos, 1991)

Let u be a factor of w . We say that u is a cover of w ,
if each position (letter) in w lies within some occurrence of u
in w .

w : a a a a a a a a a a a ab b b b

The covers of w are aabaa, aabaaabaa

and aabaaabaabaaabaa.

The whole word is always a cover of itself,
most words do not have any other cover.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 3/17

Covers

Definition (Apostolico, Farach, Iliopoulos, 1991)

Let u be a factor of w . We say that u is a cover of w ,
if each position (letter) in w lies within some occurrence of u
in w .

w : a a a a a a a a a a a ab b b b

The covers of w are aabaa, aabaaabaa
and aabaaabaabaaabaa.

The whole word is always a cover of itself,
most words do not have any other cover.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 3/17

Covers

Definition (Apostolico, Farach, Iliopoulos, 1991)

Let u be a factor of w . We say that u is a cover of w ,
if each position (letter) in w lies within some occurrence of u
in w .

w : a a a a a a a a a a a ab b b b

The covers of w are aabaa, aabaaabaa
and aabaaabaabaaabaa.
The whole word is always a cover of itself,
most words do not have any other cover.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 3/17

Cover Index, Partial Covers

Definition
The cover index of u in w is the number of positions in w
which lie within some occurrence of u in w .

w : a a a a a a a a a a a ab b b b b

The cover index of a is 12, of abaa is 15,
of aab is 15, only of aabaaabaabaaaabaab is 17.

Definition
For a positive integer α an α-partial cover of w is a factor of
w with cover index at least α.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 4/17

Cover Index, Partial Covers

Definition
The cover index of u in w is the number of positions in w
which lie within some occurrence of u in w .

w : a a a a a a a a a a a ab b b b b

The cover index of a is 12

, of abaa is 15,
of aab is 15, only of aabaaabaabaaaabaab is 17.

Definition
For a positive integer α an α-partial cover of w is a factor of
w with cover index at least α.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 4/17

Cover Index, Partial Covers

Definition
The cover index of u in w is the number of positions in w
which lie within some occurrence of u in w .

w : a a a a a a a a a a a ab b b b b

The cover index of a is 12, of abaa is 15

,
of aab is 15, only of aabaaabaabaaaabaab is 17.

Definition
For a positive integer α an α-partial cover of w is a factor of
w with cover index at least α.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 4/17

Cover Index, Partial Covers

Definition
The cover index of u in w is the number of positions in w
which lie within some occurrence of u in w .

w : a a a a a a a a a a a ab b b b b

The cover index of a is 12, of abaa is 15,
of aab is 15

, only of aabaaabaabaaaabaab is 17.

Definition
For a positive integer α an α-partial cover of w is a factor of
w with cover index at least α.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 4/17

Cover Index, Partial Covers

Definition
The cover index of u in w is the number of positions in w
which lie within some occurrence of u in w .

w : a a a a a a a a a a a ab b b b b

The cover index of a is 12, of abaa is 15,
of aab is 15, only of aabaaabaabaaaabaab is 17.

Definition
For a positive integer α an α-partial cover of w is a factor of
w with cover index at least α.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 4/17

Cover Index, Partial Covers

Definition
The cover index of u in w is the number of positions in w
which lie within some occurrence of u in w .

w : a a a a a a a a a a a ab b b b b

The cover index of a is 12, of abaa is 15,
of aab is 15, only of aabaaabaabaaaabaab is 17.

Definition
For a positive integer α an α-partial cover of w is a factor of
w with cover index at least α.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 4/17

Other variants of covers

a a a a a a a a a a a a a a ab b b b b ba a a a a a a a a a a a a a ab b b b b ba a a a a a a a a a a a a a ab b b b b b

a a a a a a a a a a a a a a ab b b b b b

seeds (Iliopoulos, Moore, Park; 1996) – covers of a
superstring

k-covers (Iliopoulos, Smyth; 1998) – each position lies
within an occurrence of at least one of k factors, together
being a k-cover
approximate covers (Sim, Park, Kim, Lee; 2002) – each
position is lies within an occurrence of a factor similar to
the approximate cover
enhanced covers (Flouri, Iliopoulos, K., Pissis, Puglisi,
Smyth, Tyczyński; 2012) – as partial covers with an
additional requirement of being simultaneously a border

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 5/17

Other variants of covers

a a a a a a a a a a a a a a ab b b b b ba a a a a a a a a a a a a a ab b b b b b

a a a a a a a a a a a a a a ab b b b b b

a a a a a a a a a a a a a a ab b b b b b

seeds (Iliopoulos, Moore, Park; 1996) – covers of a
superstring
k-covers (Iliopoulos, Smyth; 1998) – each position lies
within an occurrence of at least one of k factors, together
being a k-cover

approximate covers (Sim, Park, Kim, Lee; 2002) – each
position is lies within an occurrence of a factor similar to
the approximate cover
enhanced covers (Flouri, Iliopoulos, K., Pissis, Puglisi,
Smyth, Tyczyński; 2012) – as partial covers with an
additional requirement of being simultaneously a border

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 5/17

Other variants of covers

a a a a a a a a a a a a a a ab b b b b b

a a a a a a a a a a a a a a ab b b b b b

a a a a a a a a a a a a a a ab b b b b ba a a a a a a a a a a a a a ab b b b b b

seeds (Iliopoulos, Moore, Park; 1996) – covers of a
superstring
k-covers (Iliopoulos, Smyth; 1998) – each position lies
within an occurrence of at least one of k factors, together
being a k-cover
approximate covers (Sim, Park, Kim, Lee; 2002) – each
position is lies within an occurrence of a factor similar to
the approximate cover

enhanced covers (Flouri, Iliopoulos, K., Pissis, Puglisi,
Smyth, Tyczyński; 2012) – as partial covers with an
additional requirement of being simultaneously a border

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 5/17

Other variants of covers

a a a a a a a a a a a a a a ab b b b b b

a a a a a a a a a a a a a a ab b b b b ba a a a a a a a a a a a a a ab b b b b ba a a a a a a a a a a a a a ab b b b b b

seeds (Iliopoulos, Moore, Park; 1996) – covers of a
superstring
k-covers (Iliopoulos, Smyth; 1998) – each position lies
within an occurrence of at least one of k factors, together
being a k-cover
approximate covers (Sim, Park, Kim, Lee; 2002) – each
position is lies within an occurrence of a factor similar to
the approximate cover
enhanced covers (Flouri, Iliopoulos, K., Pissis, Puglisi,
Smyth, Tyczyński; 2012) – as partial covers with an
additional requirement of being simultaneously a border

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 5/17

Our Results

Problem (PartialCovers)

Given a word w and a positive integer α, identify all shortest
α-partial covers of w.

Theorem
The PartialCovers problem can be solved in O(n log n)
time and O(n) space, where n = |w |.

Theorem
For any word w of length n exists a data structure of size
O(n), which given u can find the cover index of u in O(|u|)
time. It can be built in O(n log n) time and O(n) space.
If u = w [i ..j] is given as a pair of integers i , j , then
O(log log |u|) query time can be achieved.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 6/17

Our Results

Problem (PartialCovers)

Given a word w and a positive integer α, identify all shortest
α-partial covers of w.

Theorem
The PartialCovers problem can be solved in O(n log n)
time and O(n) space, where n = |w |.

Theorem
For any word w of length n exists a data structure of size
O(n), which given u can find the cover index of u in O(|u|)
time. It can be built in O(n log n) time and O(n) space.
If u = w [i ..j] is given as a pair of integers i , j , then
O(log log |u|) query time can be achieved.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 6/17

Suffix Trees: Notation

The suffix trie of w for each factor u of
w has a node corresponding to u, called
the locus of u.

In the suffix tree only O(|w |) nodes are
stored explicitely (explicit nodes).

The remaining nodes (implicit nodes) are
represented by the highest explicit
descendant and the distance to it.

We augment the suffix tree: some
implicit nodes are back explicit (called
extra nodes).

An edge of a tree contains all implicit
nodes and the lower explicit end.

d

v

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 7/17

Suffix Trees: Notation

The suffix trie of w for each factor u of
w has a node corresponding to u, called
the locus of u.

In the suffix tree only O(|w |) nodes are
stored explicitely (explicit nodes).

The remaining nodes (implicit nodes) are
represented by the highest explicit
descendant and the distance to it.

We augment the suffix tree: some
implicit nodes are back explicit (called
extra nodes).

An edge of a tree contains all implicit
nodes and the lower explicit end.

d

v

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 7/17

Suffix Trees: Notation

The suffix trie of w for each factor u of
w has a node corresponding to u, called
the locus of u.

In the suffix tree only O(|w |) nodes are
stored explicitely (explicit nodes).

The remaining nodes (implicit nodes) are
represented by the highest explicit
descendant and the distance to it.

We augment the suffix tree: some
implicit nodes are back explicit (called
extra nodes).

An edge of a tree contains all implicit
nodes and the lower explicit end.

d

v

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 7/17

Suffix Trees: Notation

The suffix trie of w for each factor u of
w has a node corresponding to u, called
the locus of u.

In the suffix tree only O(|w |) nodes are
stored explicitely (explicit nodes).

The remaining nodes (implicit nodes) are
represented by the highest explicit
descendant and the distance to it.

We augment the suffix tree: some
implicit nodes are back explicit (called
extra nodes).

An edge of a tree contains all implicit
nodes and the lower explicit end.

d

v

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 7/17

Suffix Trees: Notation

The suffix trie of w for each factor u of
w has a node corresponding to u, called
the locus of u.

In the suffix tree only O(|w |) nodes are
stored explicitely (explicit nodes).

The remaining nodes (implicit nodes) are
represented by the highest explicit
descendant and the distance to it.

We augment the suffix tree: some
implicit nodes are back explicit (called
extra nodes).

An edge of a tree contains all implicit
nodes and the lower explicit end.

d

v

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 7/17

Auxiliary definitions

Definition

A factor u is a primitive square if u = v 2 for some v , but
u 6= v 2k for any v and k ≥ 2.

Examples: aa, abaaba. Non-examples: ababa, abababab.

Definition
An occurrence of u in w is active if no other occurrence of u
in w starts within it.

a a a a a a a a a a a a a a ab b b b b

not active
active

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 8/17

Auxiliary definitions

Definition

A factor u is a primitive square if u = v 2 for some v , but
u 6= v 2k for any v and k ≥ 2.

Examples: aa, abaaba. Non-examples: ababa, abababab.

Definition
An occurrence of u in w is active if no other occurrence of u
in w starts within it.

a a a a a a a a a a a a a a ab b b b b

not active
active

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 8/17

Cover Suffix Tree

The cover suffix tree of w CST (w)
is the suffix tree of w :

augmented with nodes
corresponding to halves of
primitive squares,

with each explicit node
annotated with a pair
(cv(v),∆(v)), where cv(v) is
the cover index of v and
∆(v) is the number of active
occurrences of v .

The number of square factors is lin-
ear (Fraenkel, Simpson, 1998), so
the size of CST (w) is O(|w |).

a

b

a

b

b

a

b

b

a

b

a

a

b

a

b

b

a

b

b

a

b

a

b

a

b

b

a

b

a

b

a

b

b

a

b

a

a

a

a

(11,1)

(6,2)

(8,4)

(5,5)

(9,1)

(6,1)

(8,1)

(6,2)

(10,1)

(7,1)

(9,1)

(4,1)

(9,3)

(8,4)

(6,6)

(8,1)

(5,1)

(7,1)

(6,2)

CST (ababbabbaba)

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 9/17

Cover Suffix Tree

The cover suffix tree of w CST (w)
is the suffix tree of w :

augmented with nodes
corresponding to halves of
primitive squares,

with each explicit node
annotated with a pair
(cv(v),∆(v)), where cv(v) is
the cover index of v and
∆(v) is the number of active
occurrences of v .

The number of square factors is lin-
ear (Fraenkel, Simpson, 1998), so
the size of CST (w) is O(|w |).

a

b

a

b

b

a

b

b

a

b

a

a

b

a

b

b

a

b

b

a

b

a

b

a

b

b

a

b

a

b

a

b

b

a

b

a

a

a

a

(11,1)

(6,2)

(8,4)

(5,5)

(9,1)

(6,1)

(8,1)

(6,2)

(10,1)

(7,1)

(9,1)

(4,1)

(9,3)

(8,4)

(6,6)

(8,1)

(5,1)

(7,1)

(6,2)

CST (ababbabbaba)

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 9/17

Cover Suffix Tree

The cover suffix tree of w CST (w)
is the suffix tree of w :

augmented with nodes
corresponding to halves of
primitive squares,

with each explicit node
annotated with a pair
(cv(v),∆(v)), where cv(v) is
the cover index of v and
∆(v) is the number of active
occurrences of v .

The number of square factors is lin-
ear (Fraenkel, Simpson, 1998), so
the size of CST (w) is O(|w |).

a

b

a

b

b

a

b

b

a

b

a

a

b

a

b

b

a

b

b

a

b

a

b

a

b

b

a

b

a

b

a

b

b

a

b

a

a

a

a

(11,1)

(6,2)

(8,4)

(5,5)

(9,1)

(6,1)

(8,1)

(6,2)

(10,1)

(7,1)

(9,1)

(4,1)

(9,3)

(8,4)

(6,6)

(8,1)

(5,1)

(7,1)

(6,2)

CST (ababbabbaba)

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 9/17

Cover Suffix Tree

The cover suffix tree of w CST (w)
is the suffix tree of w :

augmented with nodes
corresponding to halves of
primitive squares,

with each explicit node
annotated with a pair
(cv(v),∆(v)), where cv(v) is
the cover index of v and
∆(v) is the number of active
occurrences of v .

The number of square factors is lin-
ear (Fraenkel, Simpson, 1998), so
the size of CST (w) is O(|w |).

a

b

a

b

b

a

b

b

a

b

a

a

b

a

b

b

a

b

b

a

b

a

b

a

b

b

a

b

a

b

a

b

b

a

b

a

a

a

a

(11,1)

(6,2)

(8,4)

(5,5)

(9,1)

(6,1)

(8,1)

(6,2)

(10,1)

(7,1)

(9,1)

(4,1)

(9,3)

(8,4)

(6,6)

(8,1)

(5,1)

(7,1)

(6,2)

CST (ababbabbaba)

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 9/17

Crucial Lemma

Lemma
Let v = u0, u1, . . . , uk be the nodes of an edge of CST (w)
with v being the lowest node. Then cv(ui) = cv(v)− i∆(v).

v

u1

u2

u3

u4

u5

Proof.
Recall that if u, u′ are on the same edge of the
suffix tree, then occurrences of u and u′ start
at the same positions. In CST (w) also the
active occurrences agree. Thus, ui+1 covers
∆(ui) = ∆(v) positions less than ui .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 10/17

Crucial Lemma

Lemma
Let v = u0, u1, . . . , uk be the nodes of an edge of CST (w)
with v being the lowest node. Then cv(ui) = cv(v)− i∆(v).

v

u1

u2

u3

u4

u5

Proof.
Recall that if u, u′ are on the same edge of the
suffix tree, then occurrences of u and u′ start
at the same positions. In CST (w) also the
active occurrences agree. Thus, ui+1 covers
∆(ui) = ∆(v) positions less than ui .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 10/17

Crucial Lemma

Lemma
Let v = u0, u1, . . . , uk be the nodes of an edge of CST (w)
with v being the lowest node. Then cv(ui) = cv(v)− i∆(v).

v

u1

u2

u3

u4

u5

Proof.
Recall that if u, u′ are on the same edge of the
suffix tree, then occurrences of u and u′ start
at the same positions. In CST (w) also the
active occurrences agree. Thus, ui+1 covers
∆(ui) = ∆(v) positions less than ui .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 10/17

Crucial Lemma

Lemma
Let v = u0, u1, . . . , uk be the nodes of an edge of CST (w)
with v being the lowest node. Then cv(ui) = cv(v)− i∆(v).

v

u1

u2

u3

u4

u5

Proof.
Recall that if u, u′ are on the same edge of the
suffix tree, then occurrences of u and u′ start
at the same positions. In CST (w) also the
active occurrences agree. Thus, ui+1 covers
∆(ui) = ∆(v) positions less than ui .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 10/17

Crucial Lemma

Lemma
Let v = u0, u1, . . . , uk be the nodes of an edge of CST (w)
with v being the lowest node. Then cv(ui) = cv(v)− i∆(v).

v

u1

u2

u3

u4

u5

Proof.
Recall that if u, u′ are on the same edge of the
suffix tree, then occurrences of u and u′ start
at the same positions. In CST (w) also the
active occurrences agree. Thus, ui+1 covers
∆(ui) = ∆(v) positions less than ui .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 10/17

Crucial Lemma

Lemma
Let v = u0, u1, . . . , uk be the nodes of an edge of CST (w)
with v being the lowest node. Then cv(ui) = cv(v)− i∆(v).

v

u1

u2

u3

u4

u5

Proof.
Recall that if u, u′ are on the same edge of the
suffix tree, then occurrences of u and u′ start
at the same positions. In CST (w) also the
active occurrences agree. Thus, ui+1 covers
∆(ui) = ∆(v) positions less than ui .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 10/17

Crucial Lemma

Lemma
Let v = u0, u1, . . . , uk be the nodes of an edge of CST (w)
with v being the lowest node. Then cv(ui) = cv(v)− i∆(v).

v

u1

u2

u3

u4

u5

Proof.
Recall that if u, u′ are on the same edge of the
suffix tree, then occurrences of u and u′ start
at the same positions. In CST (w) also the
active occurrences agree. Thus, ui+1 covers
∆(ui) = ∆(v) positions less than ui .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 10/17

Crucial Lemma

Lemma
Let v = u0, u1, . . . , uk be the nodes of an edge of CST (w)
with v being the lowest node. Then cv(ui) = cv(v)− i∆(v).

v

u1

u2

u3

u4

u5

Proof.
Recall that if u, u′ are on the same edge of the
suffix tree, then occurrences of u and u′ start
at the same positions. In CST (w) also the
active occurrences agree. Thus, ui+1 covers
∆(ui) = ∆(v) positions less than ui .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 10/17

Answering Queries

Recall that we have defined the locus of u as a pair
(v , d), where v is the highest explicit descendant of u.

The Lemma proves that cv(u) = cv(v)− d∆(v), so
computing the cover index of u given its locus in CST (w)
is trivial.

If u is given explicitly, simply traverse CST (w) to find the
locus (O(|u|) time)

If u = w [i ..j] is given as a pair of indices, use the
weighted ancestors data structure (O(log log |u|) time).

Finding the shortest α-partial covers reduces to solving
one linear inequality per edge (cv(v)− d∆(v) ≥ α),
this takes linear time once CST (w) is given.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 11/17

Answering Queries

Recall that we have defined the locus of u as a pair
(v , d), where v is the highest explicit descendant of u.

The Lemma proves that cv(u) = cv(v)− d∆(v), so
computing the cover index of u given its locus in CST (w)
is trivial.

If u is given explicitly, simply traverse CST (w) to find the
locus (O(|u|) time)

If u = w [i ..j] is given as a pair of indices, use the
weighted ancestors data structure (O(log log |u|) time).

Finding the shortest α-partial covers reduces to solving
one linear inequality per edge (cv(v)− d∆(v) ≥ α),
this takes linear time once CST (w) is given.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 11/17

Answering Queries

Recall that we have defined the locus of u as a pair
(v , d), where v is the highest explicit descendant of u.

The Lemma proves that cv(u) = cv(v)− d∆(v), so
computing the cover index of u given its locus in CST (w)
is trivial.

If u is given explicitly, simply traverse CST (w) to find the
locus (O(|u|) time)

If u = w [i ..j] is given as a pair of indices, use the
weighted ancestors data structure (O(log log |u|) time).

Finding the shortest α-partial covers reduces to solving
one linear inequality per edge (cv(v)− d∆(v) ≥ α),
this takes linear time once CST (w) is given.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 11/17

Construction Algorithm

The structure resembles an O(n log n)-time construction of a
similar data structure, MAST (Brodal et al.; 2002).

We start with the suffix tree.

We process the nodes in the
decreasing order of the
corresponding factors’ lengths.

While at level d , for each factor of
length d we implicitly keep a sorted
linked list of its occurrences.

At implicit nodes, these lists do not
need to be update.

We need manually to take care of
explicit nodes.

We also need to add extra nodes.

a

b

a

b

b

a

b

b

a

b

a

a

b

a

b

b

a

b

b

a

b

a

b

a

b

b

a

b

a

b

a

b

b

a

b

a

a

a

a

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 12/17

Construction Algorithm

The structure resembles an O(n log n)-time construction of a
similar data structure, MAST (Brodal et al.; 2002).

We start with the suffix tree.

We process the nodes in the
decreasing order of the
corresponding factors’ lengths.

While at level d , for each factor of
length d we implicitly keep a sorted
linked list of its occurrences.

At implicit nodes, these lists do not
need to be update.

We need manually to take care of
explicit nodes.

We also need to add extra nodes.

a

b

a

b

b

a

b

b

a

b

a

a

b

a

b

b

a

b

b

a

b

a

b

a

b

b

a

b

a

b

a

b

b

a

b

a

a

a

a

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 12/17

Construction Algorithm

The structure resembles an O(n log n)-time construction of a
similar data structure, MAST (Brodal et al.; 2002).

We start with the suffix tree.

We process the nodes in the
decreasing order of the
corresponding factors’ lengths.

While at level d , for each factor of
length d we implicitly keep a sorted
linked list of its occurrences.

At implicit nodes, these lists do not
need to be update.

We need manually to take care of
explicit nodes.

We also need to add extra nodes.

a

b

a

b

b

a

b

b

a

b

a

a

b

a

b

b

a

b

b

a

b

a

b

a

b

b

a

b

a

b

a

b

b

a

b

a

a

a

a

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 12/17

Construction Algorithm

The structure resembles an O(n log n)-time construction of a
similar data structure, MAST (Brodal et al.; 2002).

We start with the suffix tree.

We process the nodes in the
decreasing order of the
corresponding factors’ lengths.

While at level d , for each factor of
length d we implicitly keep a sorted
linked list of its occurrences.

At implicit nodes, these lists do not
need to be update.

We need manually to take care of
explicit nodes.

We also need to add extra nodes.

a

b

a

b

b

a

b

b

a

b

a

a

b

a

b

b

a

b

b

a

b

a

b

a

b

b

a

b

a

b

a

b

b

a

b

a

a

a

a

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 12/17

Construction Algorithm

The structure resembles an O(n log n)-time construction of a
similar data structure, MAST (Brodal et al.; 2002).

We start with the suffix tree.

We process the nodes in the
decreasing order of the
corresponding factors’ lengths.

While at level d , for each factor of
length d we implicitly keep a sorted
linked list of its occurrences.

At implicit nodes, these lists do not
need to be update.

We need manually to take care of
explicit nodes.

We also need to add extra nodes.

a

b

a

b

b

a

b

b

a

b

a

a

b

a

b

b

a

b

b

a

b

a

b

a

b

b

a

b

a

b

a

b

b

a

b

a

a

a

a

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 12/17

Construction Algorithm

The structure resembles an O(n log n)-time construction of a
similar data structure, MAST (Brodal et al.; 2002).

We start with the suffix tree.

We process the nodes in the
decreasing order of the
corresponding factors’ lengths.

While at level d , for each factor of
length d we implicitly keep a sorted
linked list of its occurrences.

At implicit nodes, these lists do not
need to be update.

We need manually to take care of
explicit nodes.

We also need to add extra nodes.

a

b

a

b

b

a

b

b

a

b

a

a

b

a

b

b

a

b

b

a

b

a

b

a

b

b

a

b

a

b

a

b

b

a

b

a

a

a

a

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 12/17

Construction Algorithm

The structure resembles an O(n log n)-time construction of a
similar data structure, MAST (Brodal et al.; 2002).

We start with the suffix tree.

We process the nodes in the
decreasing order of the
corresponding factors’ lengths.

While at level d , for each factor of
length d we implicitly keep a sorted
linked list of its occurrences.

At implicit nodes, these lists do not
need to be update.

We need manually to take care of
explicit nodes.

We also need to add extra nodes.

a

b

a

b

b

a

b

b

a

b

a

a

b

a

b

b

a

b

b

a

b

a

b

a

b

b

a

b

a

b

a

b

b

a

b

a

a

a

a

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 12/17

Change Sets

Definition
Let P be a partition of [n] = {1, . . . , n}. For any a ∈ [n] we
define the successor of a in P as min{b ∈ P : b > a} where
P ∈ P is the partition class containing a.
We assume min ∅ =∞.

Definition
Consider two partitions P , P ′ of [n]. The change set of P and
P ′ is the family of pairs (i , j) such that j is the successor of i
in P ′, but not in P .

Let P = {{1, 3, 4}, {2, 5, 6, 7}, {8, 9}} and P ′ = {{1, . . . , 9}}.
The change set is {(1, 2), (2, 3), (4, 5), (7, 8)}.

1 2 3 4 5 6 7 8 9

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 13/17

Change Sets

Definition
Let P be a partition of [n] = {1, . . . , n}. For any a ∈ [n] we
define the successor of a in P as min{b ∈ P : b > a} where
P ∈ P is the partition class containing a.
We assume min ∅ =∞.

Definition
Consider two partitions P , P ′ of [n]. The change set of P and
P ′ is the family of pairs (i , j) such that j is the successor of i
in P ′, but not in P .

Let P = {{1, 3, 4}, {2, 5, 6, 7}, {8, 9}} and P ′ = {{1, . . . , 9}}.
The change set is {(1, 2), (2, 3), (4, 5), (7, 8)}.

1 2 3 4 5 6 7 8 9

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 13/17

Ordered Disjoint Sets

Problem (Ordered Disjoint Sets)

Maintain a partition of [n], support the following operations:

given i find the partition class of i ,

given I ⊆ [n] merge all the partition classes of elements
contained in I , return the change set of the underlying
modification of the partition.

Lemma
There is a data structure of size O(n), which handles a
sequence of q operations in O(q + n log n) total time.
Moreover, the total size of change sets is O(n log n).

We use this data structure to store a partition into equivalence
classes of the w [i ..i + d − 1] = w [j ..j + d − 1] relation.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 14/17

Ordered Disjoint Sets

Problem (Ordered Disjoint Sets)

Maintain a partition of [n], support the following operations:

given i find the partition class of i ,

given I ⊆ [n] merge all the partition classes of elements
contained in I , return the change set of the underlying
modification of the partition.

Lemma
There is a data structure of size O(n), which handles a
sequence of q operations in O(q + n log n) total time.
Moreover, the total size of change sets is O(n log n).

We use this data structure to store a partition into equivalence
classes of the w [i ..i + d − 1] = w [j ..j + d − 1] relation.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 14/17

Ordered Disjoint Sets

Problem (Ordered Disjoint Sets)

Maintain a partition of [n], support the following operations:

given i find the partition class of i ,

given I ⊆ [n] merge all the partition classes of elements
contained in I , return the change set of the underlying
modification of the partition.

Lemma
There is a data structure of size O(n), which handles a
sequence of q operations in O(q + n log n) total time.
Moreover, the total size of change sets is O(n log n).

We use this data structure to store a partition into equivalence
classes of the w [i ..i + d − 1] = w [j ..j + d − 1] relation.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 14/17

Construction Algorithm

We handle two types of events:
A branching node, the lists need to be merged.

An occurrence becomes active. The corresponding node
must be made explicit.

i i + d

i j i + d j + di ′ i ′ + d

a b a

With each list we keep a few aggregation values, which
let us determine cv(v) and ∆(v).

The complexity of the construction algorithm is amortized by
the total size of change sets, which gives

Theorem
Given a word w of length n, its Cover Suffix Tree CST (w) can
be constructed in O(n log n) time and O(n) space.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 15/17

Construction Algorithm

We handle two types of events:
A branching node, the lists need to be merged.

An occurrence becomes active. The corresponding node
must be made explicit.

i i + d

i j i + d j + di ′ i ′ + d

a b a

With each list we keep a few aggregation values, which
let us determine cv(v) and ∆(v).

The complexity of the construction algorithm is amortized by
the total size of change sets, which gives

Theorem
Given a word w of length n, its Cover Suffix Tree CST (w) can
be constructed in O(n log n) time and O(n) space.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 15/17

Construction Algorithm

We handle two types of events:
A branching node, the lists need to be merged.
An occurrence becomes active. The corresponding node
must be made explicit.

i i + d

i j i + d j + di ′ i ′ + d

a b a

With each list we keep a few aggregation values, which
let us determine cv(v) and ∆(v).

The complexity of the construction algorithm is amortized by
the total size of change sets, which gives

Theorem
Given a word w of length n, its Cover Suffix Tree CST (w) can
be constructed in O(n log n) time and O(n) space.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 15/17

Construction Algorithm

We handle two types of events:
A branching node, the lists need to be merged.
An occurrence becomes active. The corresponding node
must be made explicit.

i i + d

i j i + d j + di ′ i ′ + d

a b a

With each list we keep a few aggregation values, which
let us determine cv(v) and ∆(v).

The complexity of the construction algorithm is amortized by
the total size of change sets, which gives

Theorem
Given a word w of length n, its Cover Suffix Tree CST (w) can
be constructed in O(n log n) time and O(n) space.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 15/17

Construction Algorithm

We handle two types of events:
A branching node, the lists need to be merged.
An occurrence becomes active. The corresponding node
must be made explicit.

i i + d

i j i + d j + di ′ i ′ + d

a b a

With each list we keep a few aggregation values, which
let us determine cv(v) and ∆(v).

The complexity of the construction algorithm is amortized by
the total size of change sets, which gives

Theorem
Given a word w of length n, its Cover Suffix Tree CST (w) can
be constructed in O(n log n) time and O(n) space.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 15/17

Construction Algorithm

We handle two types of events:
A branching node, the lists need to be merged.
An occurrence becomes active. The corresponding node
must be made explicit.

i i + d

i j i + d j + di ′ i ′ + d

a b a

With each list we keep a few aggregation values, which
let us determine cv(v) and ∆(v).

The complexity of the construction algorithm is amortized by
the total size of change sets, which gives

Theorem
Given a word w of length n, its Cover Suffix Tree CST (w) can
be constructed in O(n log n) time and O(n) space.

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 15/17

Summary

We have shown that with CST it is very easy compute
the cover index of any factor u.

We can also find the shortest factor covering at least α
positions of w .

These are just sample queries on partial covers that CST
can handle, e.g. a different criterion instead of length.

Can CST be constructed faster?
A linear time algorithm might be difficult, all seeds can be
easily found in linear time using CST .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 16/17

Summary

We have shown that with CST it is very easy compute
the cover index of any factor u.

We can also find the shortest factor covering at least α
positions of w .

These are just sample queries on partial covers that CST
can handle, e.g. a different criterion instead of length.

Can CST be constructed faster?
A linear time algorithm might be difficult, all seeds can be
easily found in linear time using CST .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 16/17

Summary

We have shown that with CST it is very easy compute
the cover index of any factor u.

We can also find the shortest factor covering at least α
positions of w .

These are just sample queries on partial covers that CST
can handle, e.g. a different criterion instead of length.

Can CST be constructed faster?
A linear time algorithm might be difficult, all seeds can be
easily found in linear time using CST .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 16/17

Summary

We have shown that with CST it is very easy compute
the cover index of any factor u.

We can also find the shortest factor covering at least α
positions of w .

These are just sample queries on partial covers that CST
can handle, e.g. a different criterion instead of length.

Can CST be constructed faster?
A linear time algorithm might be difficult, all seeds can be
easily found in linear time using CST .

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 16/17

Thank you for your attention!

T. Kociumaka, S. Pissis, J. Radoszewski, W. Rytter, T. Waleń Fast Algorithm for Partial Covers in Words 17/17

