Fast Algorithm for Partial Covers in Words

Tomasz Kociumaka ${ }^{1}$, Solon P. Pissis ${ }^{2,3}$, Jakub Radoszewski ${ }^{1}$, Wojciech Rytter ${ }^{1}$, Tomasz Waleń4,1
${ }^{1}$ University of Warsaw
${ }^{2}$ Heidelberg Institute for Theoretical Studies
${ }^{3}$ University of Florida
${ }^{4}$ International Institute of Molecular and Cell Biology in Warsaw
CPM 2013 Bad Herrenalb, June 17, 2013

Periodicity and Quasiperiodicity

Periodicity: occurrences are aligned.

Periodicity and Quasiperiodicity

Periodicity: occurrences are aligned.

Quasiperiodicity: occurrences may overlap.

Covers

Definition (Apostolico, Farach, Iliopoulos, 1991)

Let u be a factor of w. We say that u is a cover of w, if each position (letter) in w lies within some occurrence of u in w.

The covers of w are aabaa

Covers

Definition (Apostolico, Farach, Iliopoulos, 1991)

Let u be a factor of w. We say that u is a cover of w, if each position (letter) in w lies within some occurrence of u in w.

The covers of w are aabaa, aabaaabaa

Covers

Definition (Apostolico, Farach, Iliopoulos, 1991)

Let u be a factor of w. We say that u is a cover of w, if each position (letter) in w lies within some occurrence of u in w.

The covers of w are aabaa, aabaaabaa and aabaaabaabaaabaa.

Covers

Definition (Apostolico, Farach, Iliopoulos, 1991)

Let u be a factor of w. We say that u is a cover of w, if each position (letter) in w lies within some occurrence of u in w.

The covers of w are aabaa, aabaaabaa and aabaaabaabaaabaa.
The whole word is always a cover of itself, most words do not have any other cover.

Cover Index, Partial Covers

Definition

The cover index of u in w is the number of positions in w which lie within some occurrence of u in w.

$$
w: \mathrm{a} a \mathrm{~b} a \mathrm{a} a \mathrm{~b} a \mathrm{a} \mathrm{~b} a \mathrm{a} a \mathrm{~b} a \mathrm{a} \mathrm{~b}
$$

Cover Index, Partial Covers

Definition

The cover index of u in w is the number of positions in w which lie within some occurrence of u in w.

The cover index of a is 12

Cover Index, Partial Covers

Definition

The cover index of u in w is the number of positions in w which lie within some occurrence of u in w.

The cover index of a is 12 , of abaa is 15

Cover Index, Partial Covers

Definition

The cover index of u in w is the number of positions in w which lie within some occurrence of u in w.

The cover index of a is 12 , of abaa is 15 , of aab is 15

Cover Index, Partial Covers

Definition

The cover index of u in w is the number of positions in w which lie within some occurrence of u in w.

$$
w: \bar{a} a b a a \operatorname{a} b a \operatorname{a} a \mathrm{a} a \mathrm{~b} a \mathrm{a} b
$$

The cover index of a is 12 , of abaa is 15 , of aab is 15 , only of aabaaabaabaaaabaab is 17 .

Cover Index, Partial Covers

Definition

The cover index of u in w is the number of positions in w which lie within some occurrence of u in w.

$$
w: \mathrm{a} a \mathrm{~b} a \mathrm{a} a \mathrm{~b} a \mathrm{a} \mathrm{~b} a \mathrm{a} a \mathrm{~b} a \mathrm{a} \mathrm{~b}
$$

The cover index of a is 12 , of abaa is 15 , of aab is 15 , only of aabaaabaabaaaabaab is 17 .

Definition

For a positive integer α an α-partial cover of w is a factor of w with cover index at least α.

Other variants of covers

- seeds (Iliopoulos, Moore, Park; 1996) - covers of a superstring

Other variants of covers

- seeds (Iliopoulos, Moore, Park; 1996) - covers of a superstring
- k-covers (Iliopoulos, Smyth; 1998) - each position lies within an occurrence of at least one of k factors, together being a k-cover

Other variants of covers

$$
b a a b a a b a a a a b a a a b a a a b a
$$

- seeds (Iliopoulos, Moore, Park; 1996) - covers of a superstring
- k-covers (Iliopoulos, Smyth; 1998) - each position lies within an occurrence of at least one of k factors, together being a k-cover
- approximate covers (Sim, Park, Kim, Lee; 2002) - each position is lies within an occurrence of a factor similar to the approximate cover

Other variants of covers

baabaabaa abaa abaa aba

- seeds (Iliopoulos, Moore, Park; 1996) - covers of a superstring
- k-covers (Iliopoulos, Smyth; 1998) - each position lies within an occurrence of at least one of k factors, together being a k-cover
- approximate covers (Sim, Park, Kim, Lee; 2002) - each position is lies within an occurrence of a factor similar to the approximate cover
- enhanced covers (Flouri, Iliopoulos, K., Pissis, Puglisi, Smyth, Tyczyński; 2012) - as partial covers with an additional requirement of being simultaneously a border

Our Results

Problem (PartialCovers)

Given a word w and a positive integer α, identify all shortest α-partial covers of w.

Theorem

The PartialCovers problem can be solved in $\mathcal{O}(n \log n)$ time and $\mathcal{O}(n)$ space, where $n=|w|$.

Our Results

Problem (PartialCovers)

Given a word w and a positive integer α, identify all shortest α-partial covers of w.

Theorem

The PartialCovers problem can be solved in $\mathcal{O}(n \log n)$ time and $\mathcal{O}(n)$ space, where $n=|w|$.

Theorem

For any word w of length n exists a data structure of size $\mathcal{O}(n)$, which given u can find the cover index of u in $\mathcal{O}(|u|)$ time. It can be built in $\mathcal{O}(n \log n)$ time and $\mathcal{O}(n)$ space. If $u=w[i . . j]$ is given as a pair of integers i, j, then $\mathcal{O}(\log \log |u|)$ query time can be achieved.

Suffix Trees: Notation

- The suffix trie of w for each factor u of w has a node corresponding to u, called the locus of u.

Suffix Trees: Notation

- The suffix trie of w for each factor u of w has a node corresponding to u, called the locus of u.
- In the suffix tree only $\mathcal{O}(|w|)$ nodes are stored explicitely (explicit nodes).

Suffix Trees: Notation

- The suffix trie of w for each factor u of w has a node corresponding to u, called the locus of u.
- In the suffix tree only $\mathcal{O}(|w|)$ nodes are stored explicitely (explicit nodes).
- The remaining nodes (implicit nodes) are represented by the highest explicit descendant and the distance to it.

Suffix Trees: Notation

- The suffix trie of w for each factor u of w has a node corresponding to u, called the locus of u.
- In the suffix tree only $\mathcal{O}(|w|)$ nodes are stored explicitely (explicit nodes).
- The remaining nodes (implicit nodes) are represented by the highest explicit descendant and the distance to it.
- We augment the suffix tree: some implicit nodes are back explicit (called extra nodes).

Suffix Trees: Notation

- The suffix trie of w for each factor u of w has a node corresponding to u, called the locus of u.
- In the suffix tree only $\mathcal{O}(|w|)$ nodes are stored explicitely (explicit nodes).
- The remaining nodes (implicit nodes) are represented by the highest explicit descendant and the distance to it.
- We augment the suffix tree: some implicit nodes are back explicit (called extra nodes).
- An edge of a tree contains all implicit nodes and the lower explicit end.

Auxiliary definitions

Definition

A factor u is a primitive square if $u=v^{2}$ for some v, but $u \neq v^{2 k}$ for any v and $k \geq 2$.

Examples: aa, abaaba. Non-examples: ababa, abababab.

Auxiliary definitions

Definition

A factor u is a primitive square if $u=v^{2}$ for some v, but $u \neq v^{2 k}$ for any v and $k \geq 2$.

Examples: aa, abaaba. Non-examples: ababa, abababab.

Definition

An occurrence of u in w is active if no other occurrence of u in w starts within it.

—_ active
\ldots............. not active

Cover Suffix Tree

The cover suffix tree of $w \operatorname{CST}(w)$ is the suffix tree of w :

CST (ababbabbaba)

Cover Suffix Tree

The cover suffix tree of $w \operatorname{CST}(w)$ is the suffix tree of w :

- augmented with nodes corresponding to halves of primitive squares,

CST (ababbabbaba)

Cover Suffix Tree

The cover suffix tree of $w \operatorname{CST}(w)$ is the suffix tree of w :

- augmented with nodes corresponding to halves of primitive squares,
- with each explicit node annotated with a pair $(c v(v), \Delta(v))$, where $c v(v)$ is the cover index of v and $\Delta(v)$ is the number of active occurrences of v.

CST (ababbabbaba)

Cover Suffix Tree

The cover suffix tree of $w \operatorname{CST}(w)$ is the suffix tree of w :

- augmented with nodes corresponding to halves of primitive squares,
- with each explicit node annotated with a pair $(c v(v), \Delta(v))$, where $c v(v)$ is the cover index of v and $\Delta(v)$ is the number of active occurrences of v.
The number of square factors is linear (Fraenkel, Simpson, 1998), so the size of $\operatorname{CST}(w)$ is $O(|w|)$.

CST (ababbabbaba)

Crucial Lemma

Lemma

Let $v=u_{0}, u_{1}, \ldots, u_{k}$ be the nodes of an edge of CST (w) with v being the lowest node. Then $c v\left(u_{i}\right)=c v(v)-i \Delta(v)$.

$$
\left\{\begin{array}{l}
u_{5} \\
u_{4} \\
u_{3} \\
u_{2} \\
u_{1} \\
v
\end{array}\right.
$$

Crucial Lemma

Lemma

Let $v=u_{0}, u_{1}, \ldots, u_{k}$ be the nodes of an edge of CST (w) with v being the lowest node. Then $\operatorname{cv}\left(u_{i}\right)=c v(v)-i \Delta(v)$.

Proof.

Recall that if u, u^{\prime} are on the same edge of the suffix tree, then occurrences of u and u^{\prime} start at the same positions. In $\operatorname{CST}(w)$ also the active occurrences agree. Thus, u_{i+1} covers $\Delta\left(u_{i}\right)=\Delta(v)$ positions less than u_{i}.

Crucial Lemma

Lemma

Let $v=u_{0}, u_{1}, \ldots, u_{k}$ be the nodes of an edge of CST (w) with v being the lowest node. Then $\operatorname{cv}\left(u_{i}\right)=c v(v)-i \Delta(v)$.

Proof.

Recall that if u, u^{\prime} are on the same edge of the suffix tree, then occurrences of u and u^{\prime} start at the same positions. In $\operatorname{CST}(w)$ also the active occurrences agree. Thus, u_{i+1} covers $\Delta\left(u_{i}\right)=\Delta(v)$ positions less than u_{i}.

Crucial Lemma

Lemma

Let $v=u_{0}, u_{1}, \ldots, u_{k}$ be the nodes of an edge of CST (w) with v being the lowest node. Then $c v\left(u_{i}\right)=c v(v)-i \Delta(v)$.

Proof.

Recall that if u, u^{\prime} are on the same edge of the suffix tree, then occurrences of u and u^{\prime} start at the same positions. In $\operatorname{CST}(w)$ also the active occurrences agree. Thus, u_{i+1} covers $\Delta\left(u_{i}\right)=\Delta(v)$ positions less than u_{i}.

Crucial Lemma

Lemma

Let $v=u_{0}, u_{1}, \ldots, u_{k}$ be the nodes of an edge of CST (w) with v being the lowest node. Then $c v\left(u_{i}\right)=c v(v)-i \Delta(v)$.

Proof.

Recall that if u, u^{\prime} are on the same edge of the suffix tree, then occurrences of u and u^{\prime} start at the same positions. In $\operatorname{CST}(w)$ also the active occurrences agree. Thus, u_{i+1} covers $\Delta\left(u_{i}\right)=\Delta(v)$ positions less than u_{i}.

Crucial Lemma

Lemma

Let $v=u_{0}, u_{1}, \ldots, u_{k}$ be the nodes of an edge of CST (w) with v being the lowest node. Then $c v\left(u_{i}\right)=c v(v)-i \Delta(v)$.

Proof.

Recall that if u, u^{\prime} are on the same edge of the suffix tree, then occurrences of u and u^{\prime} start at the same positions. In CST(w) also the active occurrences agree. Thus, u_{i+1} covers $\Delta\left(u_{i}\right)=\Delta(v)$ positions less than u_{i}.

Crucial Lemma

Lemma

Let $v=u_{0}, u_{1}, \ldots, u_{k}$ be the nodes of an edge of CST (w) with v being the lowest node. Then $c v\left(u_{i}\right)=c v(v)-i \Delta(v)$.

Proof.

$\left\{\begin{array}{l}u_{5} \\ u_{4} \\ u_{3} \\ u_{2} \\ u_{1} \\ v\end{array}\right.$
Recall that if u, u^{\prime} are on the same edge of the suffix tree, then occurrences of u and u^{\prime} start at the same positions. In $\operatorname{CST}(w)$ also the active occurrences agree. Thus, u_{i+1} covers $\Delta\left(u_{i}\right)=\Delta(v)$ positions less than u_{i}.

Crucial Lemma

Lemma

Let $v=u_{0}, u_{1}, \ldots, u_{k}$ be the nodes of an edge of CST (w) with v being the lowest node. Then $c v\left(u_{i}\right)=c v(v)-i \Delta(v)$.

Proof.

Recall that if u, u^{\prime} are on the same edge of the suffix tree, then occurrences of u and u^{\prime} start at the same positions. In $\operatorname{CST}(w)$ also the active occurrences agree. Thus, u_{i+1} covers $\Delta\left(u_{i}\right)=\Delta(v)$ positions less than u_{i}.

Answering Queries

- Recall that we have defined the locus of u as a pair (v, d), where v is the highest explicit descendant of u.
- The Lemma proves that $c v(u)=c v(v)-d \Delta(v)$, so computing the cover index of u given its locus in $\operatorname{CST}(w)$ is trivial.

Answering Queries

- Recall that we have defined the locus of u as a pair (v, d), where v is the highest explicit descendant of u.
- The Lemma proves that $c v(u)=c v(v)-d \Delta(v)$, so computing the cover index of u given its locus in $\operatorname{CST}(w)$ is trivial.
- If u is given explicitly, simply traverse $\operatorname{CST}(w)$ to find the locus ($\mathcal{O}(|u|)$ time)
- If $u=w[i . . j]$ is given as a pair of indices, use the weighted ancestors data structure $(\mathcal{O}(\log \log |u|)$ time $)$.

Answering Queries

- Recall that we have defined the locus of u as a pair (v, d), where v is the highest explicit descendant of u.
- The Lemma proves that $c v(u)=c v(v)-d \Delta(v)$, so computing the cover index of u given its locus in $\operatorname{CST}(w)$ is trivial.
- If u is given explicitly, simply traverse $\operatorname{CST}(w)$ to find the locus ($\mathcal{O}(|u|)$ time)
- If $u=w[i . . j]$ is given as a pair of indices, use the weighted ancestors data structure $(\mathcal{O}(\log \log |u|)$ time $)$.
- Finding the shortest α-partial covers reduces to solving one linear inequality per edge $(\operatorname{cv}(v)-d \Delta(v) \geq \alpha)$, this takes linear time once $\operatorname{CST}(w)$ is given.

Construction Algorithm

The structure resembles an $\mathcal{O}(n \log n)$-time construction of a similar data structure, MAST (Brodal et al.; 2002).

- We start with the suffix tree.

Construction Algorithm

The structure resembles an $\mathcal{O}(n \log n)$-time construction of a similar data structure, MAST (Brodal et al.; 2002).

- We start with the suffix tree.
- We process the nodes in the decreasing order of the corresponding factors' lengths.
- While at level d, for each factor of length d we implicitly keep a sorted linked list of its occurrences.

Construction Algorithm

The structure resembles an $\mathcal{O}(n \log n)$-time construction of a similar data structure, MAST (Brodal et al.; 2002).

- We start with the suffix tree.
- We process the nodes in the decreasing order of the corresponding factors' lengths.
- While at level d, for each factor of length d we implicitly keep a sorted linked list of its occurrences.

Construction Algorithm

The structure resembles an $\mathcal{O}(n \log n)$-time construction of a similar data structure, MAST (Brodal et al.; 2002).

- We start with the suffix tree.
- We process the nodes in the decreasing order of the corresponding factors' lengths.
- While at level d, for each factor of length d we implicitly keep a sorted linked list of its occurrences.
- At implicit nodes, these lists do not need to be update.

Construction Algorithm

The structure resembles an $\mathcal{O}(n \log n)$-time construction of a similar data structure, MAST (Brodal et al.; 2002).

- We start with the suffix tree.
- We process the nodes in the decreasing order of the corresponding factors' lengths.
- While at level d, for each factor of length d we implicitly keep a sorted linked list of its occurrences.
- At implicit nodes, these lists do not need to be update.
- We need manually to take care of explicit nodes.

Construction Algorithm

The structure resembles an $\mathcal{O}(n \log n)$-time construction of a similar data structure, MAST (Brodal et al.; 2002).

- We start with the suffix tree.
- We process the nodes in the decreasing order of the corresponding factors' lengths.
- While at level d, for each factor of length d we implicitly keep a sorted linked list of its occurrences.
- At implicit nodes, these lists do not need to be update.
- We need manually to take care of explicit nodes.

Construction Algorithm

The structure resembles an $\mathcal{O}(n \log n)$-time construction of a similar data structure, MAST (Brodal et al.; 2002).

- We start with the suffix tree.
- We process the nodes in the decreasing order of the corresponding factors' lengths.
- While at level d, for each factor of length d we implicitly keep a sorted linked list of its occurrences.
- At implicit nodes, these lists do not need to be update.
- We need manually to take care of explicit nodes.
- We also need to add extra nodes.

Change Sets

Definition

Let \mathcal{P} be a partition of $[n]=\{1, \ldots, n\}$. For any $a \in[n]$ we define the successor of a in \mathcal{P} as $\min \{b \in P: b>a\}$ where $P \in \mathcal{P}$ is the partition class containing a.
We assume $\min \emptyset=\infty$.

Change Sets

Definition

Let \mathcal{P} be a partition of $[n]=\{1, \ldots, n\}$. For any $a \in[n]$ we define the successor of a in \mathcal{P} as $\min \{b \in P: b>a\}$ where $P \in \mathcal{P}$ is the partition class containing a.
We assume $\min \emptyset=\infty$.

Definition

Consider two partitions $\mathcal{P}, \mathcal{P}^{\prime}$ of $[n]$. The change set of \mathcal{P} and \mathcal{P}^{\prime} is the family of pairs (i, j) such that j is the successor of i in \mathcal{P}^{\prime}, but not in \mathcal{P}.

Let $\mathcal{P}=\{\{1,3,4\},\{2,5,6,7\},\{8,9\}\}$ and $\mathcal{P}^{\prime}=\{\{1, \ldots, 9\}\}$. The change set is $\{(1,2),(2,3),(4,5),(7,8)\}$.

Ordered Disjoint Sets

Problem (Ordered Disjoint Sets)

Maintain a partition of [n], support the following operations:

- given i find the partition class of i,
- given I $\subseteq[n]$ merge all the partition classes of elements contained in I, return the change set of the underlying modification of the partition.

Ordered Disjoint Sets

Problem (Ordered Disjoint Sets)

Maintain a partition of [n], support the following operations:

- given i find the partition class of i,
- given I $\subseteq[n]$ merge all the partition classes of elements contained in I, return the change set of the underlying modification of the partition.

Lemma

There is a data structure of size $\mathcal{O}(n)$, which handles a sequence of q operations in $\mathcal{O}(q+n \log n)$ total time. Moreover, the total size of change sets is $\mathcal{O}(n \log n)$.

Ordered Disjoint Sets

Problem (Ordered Disjoint Sets)

Maintain a partition of [n], support the following operations:

- given i find the partition class of i,
- given I $\subseteq[n]$ merge all the partition classes of elements contained in I, return the change set of the underlying modification of the partition.

Lemma

There is a data structure of size $\mathcal{O}(n)$, which handles a sequence of q operations in $\mathcal{O}(q+n \log n)$ total time. Moreover, the total size of change sets is $\mathcal{O}(n \log n)$.

We use this data structure to store a partition into equivalence classes of the $w[i . . i+d-1]=w[j . . j+d-1]$ relation.

Construction Algorithm

We handle two types of events:

- A branching node, the lists need to be merged.

Construction Algorithm

We handle two types of events:

- A branching node, the lists need to be merged.

Construction Algorithm

We handle two types of events:

- A branching node, the lists need to be merged.
- An occurrence becomes active. The corresponding node must be made explicit.

Construction Algorithm

We handle two types of events:

- A branching node, the lists need to be merged.
- An occurrence becomes active. The corresponding node must be made explicit.

Construction Algorithm

We handle two types of events:

- A branching node, the lists need to be merged.
- An occurrence becomes active. The corresponding node must be made explicit.

- With each list we keep a few aggregation values, which let us determine $c v(v)$ and $\Delta(v)$.

Construction Algorithm

We handle two types of events:

- A branching node, the lists need to be merged.
- An occurrence becomes active. The corresponding node must be made explicit.

- With each list we keep a few aggregation values, which let us determine $c v(v)$ and $\Delta(v)$.
The complexity of the construction algorithm is amortized by the total size of change sets, which gives

Theorem

Given a word w of length n, its Cover Suffix Tree CST(w) can be constructed in $\mathcal{O}(n \log n)$ time and $\mathcal{O}(n)$ space.

Summary

- We have shown that with CST it is very easy compute the cover index of any factor u.

Summary

- We have shown that with CST it is very easy compute the cover index of any factor u.
- We can also find the shortest factor covering at least α positions of w.

Summary

- We have shown that with CST it is very easy compute the cover index of any factor u.
- We can also find the shortest factor covering at least α positions of w.
- These are just sample queries on partial covers that CST can handle, e.g. a different criterion instead of length.

Summary

- We have shown that with CST it is very easy compute the cover index of any factor u.
- We can also find the shortest factor covering at least α positions of w.
- These are just sample queries on partial covers that CST can handle, e.g. a different criterion instead of length.
Can CST be constructed faster?
A linear time algorithm might be difficult, all seeds can be easily found in linear time using CST.

Thank you for your attention!

