
Fast Algorithm for Partial Covers in Words

Tomasz Kociumaka1, Solon P. Pissis4,5,?, Jakub Radoszewski1,
Wojciech Rytter1,2,??, and Tomasz Waleń3,1

1 Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, Warsaw, Poland

[kociumaka,jrad,rytter,walen]@mimuw.edu.pl
2 Faculty of Mathematics and Computer Science,

Copernicus University, Toruń, Poland
3 Laboratory of Bioinformatics and Protein Engineering,

International Institute of Molecular and Cell Biology in Warsaw, Poland
4 Laboratory of Molecular Systematics and Evolutionary Genetics,

Florida Museum of Natural History, University of Florida, USA
5 Scientific Computing Group (Exelixis Lab & HPC Infrastructure),

Heidelberg Institute for Theoretical Studies (HITS gGmbH), Germany
solon.pissis@h-its.org

Abstract. A factor u of a word w is a cover of w if every position in
w lies within some occurrence of u in w. A word w covered by u thus
generalizes the idea of a repetition, that is, a word composed of exact
concatenations of u. In this article we introduce a new notion of partial
cover, which can be viewed as a relaxed variant of cover, that is, a factor
covering at least a given number of positions in w. Our main result is an
O(n logn)-time algorithm for computing the shortest partial covers of a
word of length n.

1 Introduction

The notion of periodicity in words and its many variants have been well-studied
in numerous fields like combinatorics on words, pattern matching, data compres-
sion, automata theory, formal language theory, and molecular biology. However
the classic notion of periodicity is too restrictive to provide a description of a
word such as abaababaaba, which is covered by copies of aba, yet not exactly
periodic. To fill this gap, the idea of quasiperiodicity was introduced [1]. In a
periodic word, the occurrences of the single periods do not overlap. In contrast,
the occurrences of a quasiperiod in a quasiperiodic word may overlap. Quasiperi-
odicity thus enables the detection of repetitive structures that would be ignored
by the classic characterization of periods.

The most well-known formalization of quasiperiodicity is the cover of word.
A factor u of a word w is said to be a cover of w if u 6= w, and every position in
w lies within some occurrence of u in w. Equivalently, we say that u covers w.

? Supported by the NSF–funded iPlant Collaborative (NSF grant #DBI-0735191).
?? Supported by grant no. N206 566740 of the National Science Centre.

Note that a cover of w must also be a border — both prefix and suffix — of w.
Thus, in the above example, aba is the shortest cover of abaababaaba.

A linear-time algorithm for computing the shortest cover of a word was pro-
posed by Apostolico et al. [2], and a linear-time algorithm for computing all
the covers of a word was proposed by Moore & Smyth [3]. Breslauer [4] gave
an online linear-time algorithm computing the minimal cover array of a word
— a data structure specifying the shortest cover of every prefix of the word. Li
& Smyth [5] provided a linear-time algorithm for computing the maximal cover
array of a word, and showed that, analogous to the border array [6], it actually
determines the structure of all the covers of every prefix of the word.

Still it remains unlikely that an arbitrary word, even over the binary alphabet,
has a cover; for example, abaaababaabaaaababaa is a word that not only has
no cover, but whose every prefix also has no cover. In this article we provide a
natural form of quasiperiodicity. We introduce the notion of partial covers, that
is, factors covering at least a given number of positions in w. Recently, Flouri
et al. [7] suggested a related notion of enhanced covers which are additionally
required to be borders of the word.

Partial covers can be viewed as a relaxed variant of covers alternative to ap-
proximate covers [8]. The approximate covers require each position to lie within
an approximate occurrence of the cover. This allows for small irregularities within
each fragment of a word. On the other hand partial covers require exact occur-
rences but drop the condition that all positions need to be covered. This allows
some fragments to be completely irregular as long as the total length of such
fragments is small. The significant advantage of partial covers is that they en-
joy a more combinatorial structure, and consequently the algorithms solving the
most natural problems are much more efficient than those concerning approxi-
mate covers, where the time complexity rarely drops below quadratic and some
problems are even NP-hard.

Let Covered(v, w) denote the number of positions in w covered by occurrences
of the word v in w; we call this value the cover index of v within w. For example,
Covered(aba, aababab) = 5. We primarily concentrate on the following problem,
but the tools we develop can be used to answer various questions concerning
partial covers.

PartialCovers problem
Input: a word w and a positive integer α ≤ |w|.
Output: all shortest factors v such that Covered(v, w) ≥ α.

Example 1. Let w = bcccacccaccaccb and α = 11. Then the only shortest
partial covers are ccac and cacc.

Our contribution. The following summarizes our main result.

Theorem 1. The PartialCovers problem can be solved in O(n log n) time
and O(n) space, where n = |w|.

We extensively use suffix trees, for an exposition see [6, 9]. A suffix tree is a
compact trie of suffixes, the nodes of the trie which become nodes of the suffix

tree are called explicit nodes, while the other nodes are called implicit. Each edge
of the suffix tree can be viewed as an upward maximal path of implicit nodes
starting with an explicit node. Moreover, each node belongs to a unique path
of that kind. Then, each node of the trie can be represented in the suffix tree
by the edge it belongs to and an index within the corresponding path. Such a
representation of the unique node in the trie corresponding to a factor is called
the locus of that factor. Our algorithm finds the loci of the shortest partial
covers.

Informal Structure of the Algorithm. The algorithm first augments the
suffix tree of w, and a linear number of implicit extra nodes become explicit.
Then, for each node of the augmented tree, two integer values are computed.
They allow for determining the size of the covered area for each implicit node
by a simple formula, since limited to a single edge of the augmented suffix tree,
these values form an arithmetic progression.

2 Augmented and Annotated Suffix Trees

Let w be a word of length n over a totally ordered alphabet Σ. Then the suffix
tree T of w can be constructed in O(n log |Σ|) time [10, 11]. For an explicit or
implicit node v of T , we denote by v̂ the word obtained by spelling the characters
on a path from the root to v. We also denote |v| = |v̂|. The leaves of T play an
auxiliary role and do not correspond to factors, instead they are labeled with
the starting positions of the suffixes.

We define the Cover Suffix Tree of w, denoted by CST (w), as an augmented
— new nodes are added — suffix tree in which the nodes are annotated with
information relevant to covers. CST (w) is similar to the data structure named
MAST (see [12, 13]).

For a set X of integers and x ∈ X, we define

nextX(x) = min{y ∈ X, y > x},

and we assume nextX(x) = ∞ if x = maxX. By Occ(v) we denote the set of
starting positions of occurrences of v̂ in w. For any i ∈ Occ(v), we define:

δ(i, v) = nextOcc(v)(i)− i.

Note that δ(i, v) =∞ if i is the last occurrence of v̂. Additionally, we define:

cv(v) = Covered(v̂, w), ∆(v) =
∣∣ {i ∈ Occ(v) : δ(i, v) ≥ |v|}

∣∣;
see, for example, Fig. 1.

In CST (w), we introduce additional explicit nodes called extra nodes, which
correspond to halves of square factors in w, i.e. we make v explicit if v̂v̂ is a factor
of w. Moreover we annotate all explicit nodes (including extra nodes) with the
values cv , ∆; see, for example, Fig. 2. The number of extra nodes is linear [14],
so CST (w) takes O(n) space.

b
1

c
2

c
3

c
4

a
5

c
6

c
7

c
8

a
9

c
10

c
11

a
12

c
13

c
14

b
15

Fig. 1. Let w = bcccacccaccaccb and let v be the node corresponding to cacc. We
have Occ(v) = {4, 8, 11}, cv(v) = 11, ∆(v) = 2.

Lemma 1. Let v1, v2, . . . , vk be the consecutive implicit nodes on the edge from
an explicit node v of CST (w) to its explicit parent. Then

(cv(v1), cv(v2), cv(v3), . . . , cv(vk)) =

(cv(v)−∆(v), cv(v)− 2∆(v), cv(v)− 3∆(v), . . . , c(v)− k ·∆(v)).

Proof. Consider any vi, 1 ≤ i ≤ k. Note that Occ(vi) = Occ(v), since otherwise
vi would be an explicit node of CST (w). Also note that if any two occurrences of
v̂ in w overlap, then the corresponding occurrences of v̂i overlap. Otherwise the
path from v to vi (excluding v) would contain an extra node. Hence, when we
go up from v (before reaching its parent) the size of the covered area decreases
at each step by ∆(v). ut

c
c
a

9, 3

7, 1

4, 1

11, 1

b
c
c
a

b

c
a
c
c
a
c
c
b

b

b
c
c
a
c
c
a
c
c
c
a
c
c
c

2, 2

15, 1

c

10, 10

11, 2

8, 1

5, 1

12, 1

c
a

9, 3

c

b
c
c
a

b

c
a
c
c
a
c
c
b

b

c

2, 1

10, 4

9, 3

11, 2

12, 1

9, 1

6, 1

13, 1

a

c

c

b
c
c
a

b

c
a
c
c
a
c
c
b

b

3, 1

c
a

8, 2

c
c

10, 1

b
c
c
a

c
a
c
c
a
c
c
b

10, 1 14, 1

Fig. 2. CST (w) for w = bcccacccaccaccb. It contains four extra nodes that are de-
noted by squares in the figure. Each node is annotated with cv(v),∆(v). Leaves are
omitted for clarity.

Example 2. Consider the word w from Fig. 2. The word cccacc corresponds to
an explicit node of CST (w); we denote it by v. We have cv(v) = 10 and ∆(v) = 1
since the two occurrences of the factor cccacc in w overlap. The word cccac

corresponds to an implicit node v′ and cv(v′) = 10− 1 = 9. Now the word ccca

corresponds to an extra node v′′ of CST (w). Its occurrences are adjacent in w
and cv(v′′) = 8, ∆(v′′) = 2. The word ccc corresponds to an implicit node v′′′

and cv(v′′′) = 8− 2 = 6.

As a consequence of Lemma 1 we obtain the following result.

Lemma 2. Assume we are given CST (w). Then we can compute:

(1) for any α, the loci of the shortest partial covers in linear time;
(2) given the locus of a factor u in the suffix tree CST (w), the cover index

Covered(u,w) in O(1) time.

Proof. Part (2) is a direct consequence of Lemma 1. As for part (1), for each
edge of CST (w), leading from v to its parent v′, we need to find minimum
|v| ≥ j > |v′| for which cv(v)−∆(v) · (|v| − j) ≥ α. Such a linear inequality can
be solved in constant time. ut

Due to this fact the efficiency of the PartialCovers problem (Theorem 1)
relies on the complexity of CST (w) construction.

3 Extension of Disjoint-Set Data Structure

In this section we extend the classic disjoint-set data structure to compute the
change lists of the sets being merged, as defined below. First let us extend the
next notation. For a partition P = {P1, . . . , Pk} of U = {1, . . . , n}, we define

nextP(x) = nextPi
(x) where x ∈ Pi.

Now for two partitions P,P ′ let us define the change list (see also Fig. 3) by

ChangeList(P,P ′) = {(x,nextP′(x)) : nextP(x) 6= nextP′(x)}.

1 2 3 4 5 6 7 8 9

v

v1

v2
v3

7 5 2 6
9 8

4

3 1

Fig. 3. Let P be the partition of {1, . . . , 9} whose classes consist of leaves in the subtrees
rooted at children of v, P = {{1, 3, 4}, {2, 5, 6, 7}, {8, 9}}, and let P ′ = {{1, . . . , 9}}.
Then ChangeList(P,P ′) = {(1, 2), (2, 3), (4, 5), (7, 8)} (depicted by dotted arrows).

We say that (P, id) is a partition of U labeled by L if P is a partition of U
and id : P → L is a one-to-one (injective) mapping. A label ` ∈ L is called valid
if id(P) = ` for some P ∈ P and free otherwise.

Lemma 3. Let n ≤ k be positive integers such that k is of magnitude Θ(n).
There exists a data structure of size O(n), which maintains a partition (P, id)
of {1, . . . , n} labeled by L = {1, . . . , k}. Initially P is a partition into singletons
with id({x}) = x. The data structure supports the following operations:

– Find(x) for x ∈ {1, . . . , n} gives the label of P ∈ P containing x.
– Union(I, `) for a set I of valid labels and a free label ` replaces all P ∈ P

with labels in I by their set-theoretic union with the label `. The change list
of the corresponding modification of P is returned.

Any valid sequence of Union operations is performed in O(n log n) time and
O(n) space in total. A single Find operation takes O(1) time.

Proof. Note that these are actually standard disjoint-set data structure opera-
tions except for the fact that we require Union to return the change list.

We use an approach similar to Brodal and Pedersen [15] (who use the results
of [16]) originally devised for computation of maximal quasiperiodicities.

Theorem 3 of [15] states that a subset X of a linearly ordered universe can be
stored in a height-balanced tree of linear size supporting the following operations:

X.MultiInsert(Y): insert all elements of Y to X,
X.MultiPred(Y): return all (y, x) for y ∈ Y and x = max{z ∈ X, z < y},
X.MultiSucc(Y): return all (y, x) for y ∈ Y and x = min{z ∈ X, z > y},

in O
(
|Y |max

(
1, log |X||Y |

))
time.

In the data structure we store each P ∈ P as a height-balanced tree. Ad-
ditionally, we store several auxiliary arrays, whose semantics follows. For each
x ∈ {1, . . . , n} we maintain a value next [x] = nextP(x) and a pointer tree[x] to
the tree representing P such that x ∈ P . For each P ∈ P (technically for each
tree representing P ∈ P) we store id[P] and for each ` ∈ L we store id−1[`], a
pointer to the corresponding tree (null for free labels).

Answering Find is trivial as it suffices to follow the tree pointer and return
the id value. The Union operation is perfomed according to the pseudocode
given below (for brevity we write Pi instead of id−1[i]).

Claim. The Union operation correctly computes the change list and updates the
data structure.

Proof. If (a, b) is in the change list, then a and b come from different sets Pi, in
particular at least one of them does not come from Pi0 . Depending on which one
it is, the pair (a, b) is found by MultiPred or MultiSucc operation. On the other
hand, while computing C, the table next is not updated yet (i.e. corresponds to
the state before Union operation) while S is already updated. Consequently the
pairs inserted to C indeed belong to the change list. Once C is proved to be the
change list, it is clear that next is updated correctly. For the other components
of the data structure, correctness of updates is evident. ut

Function Union(I, `)

i0 := argmax{|Pi| : i ∈ I}; S := Pi0 ;

foreach i ∈ I \ {i0} do
foreach x ∈ Pi do tree[x] := S;

;

S.MultiInsert(Pi);

C := ∅;
foreach i ∈ I \ {i0} do

foreach (b, a) ∈ S.MultiPred(Pi) do

if next[a] 6= b then C := C ∪ {(a, b)};
;

foreach (a, b) ∈ S.MultiSucc(Pi) do

if next[a] 6= b then C := C ∪ {(a, b)};
;

id−1[i] := null;

id[S] := `; id−1[`] := S;

foreach (x, y) ∈ C do next[x] := y;

;

return C;

Claim. Any sequence of Union operations takes O(n log n) time in total.

Proof. Let us introduce a potential function Φ(P) =
∑
P∈P |P | log |P |. We shall

prove that the running time of a single Union operation is proportional to the
increase in potential. Clearly

0 ≤ Φ(P) =
∑
P∈P
|P | log |P | ≤

∑
P∈P
|P | log n = n log n,

so this suffices to obtain a desired O(n log n) bound.
Let us consider a Union operation that merges partition classes of sizes p1 ≥

p2 ≥ . . . ≥ pk to a single class of size p =
∑k
i=1 pi. The most time-consuming

steps of the algorithm are the operations on height-balanced trees, which, for

single i, run in O
(

max
(
pi, pi log p

pi

))
time. These operations are not performed

for the largest set and for the remaining ones we have pi <
1
2p (i.e. log p

pi
≥ 1).

This lets us bound the time complexity of the Union operations as follows:

k∑
i=2

max
(
pi, pi log p

pi

)
=

k∑
i=2

pi log p
pi
≤

k∑
i=1

pi log p
pi

=

k∑
i=1

pi(log p− log pi) = p log p−
k∑
i=1

pi log pi,

which is equal to the potential growth. ut

This concludes the proof of Lemma 3. ut

4 O(n log n)-time Construction of CST(w)

The suffix tree of w augmented with extra nodes is called the skeleton of CST (w),
which we denote by sCST (w). The following lemma follows from the fact that
all square factors can be computed in linear time [17, 18], and the nodes corre-
sponding to them (a linear number) can be inserted into the suffix tree easily in
O(n log n) time.

Lemma 4. sCST (w) can be constructed in O(n log n) time.

We introduce auxiliary notions related to covered area of nodes:

cvh(v) =
∑

i∈Occ(v)
δ(i,v)<h

δ(i, v), ∆h(v) = |{i ∈ Occ(v) : h ≤ δ(i, v)}|.

Observation 1 cv(v) = cv |v|(v) +∆|v|(v) · |v|, ∆(v) = ∆|v|(v).

In the course of the algorithm some nodes will have their values c,∆ already
computed; we call them processed nodes. Whenever v will be processed, so will
its descendants.

The algorithm processes inner nodes v of sCST (w) in the order of non-
increasing height |v|. We maintain the partition P of {1, . . . , n} given by sets of
leaves of subtrees rooted at peak nodes. Initially the peak nodes are the leaves of
sCST (w). Each time we process v all its children are peak nodes. Consequently,
after processing v they are no longer peak nodes and v becomes a new peak node;
see, for example, Fig. 4. The sets in the partition are labeled with identifiers of
the corresponding peak nodes. Recall that leaves are labeled with the starting
positions of the corresponding suffixes. We allow any labeling of the remaining
nodes as long as each node of sCST (w) has a distinct label of magnitude O(n).
We maintain the following technical invariant.

Invariant(h):

(A) For each peak node z we store:

cv ′[z] = cvh(z), ∆′[z] = ∆h(z).

(B) For each i ∈ {1, . . . , n} we store Dist [i] = δ(i, Find(i)).

(C) For each d < h we store List [d] = {i : Dist [i] = d}.

v1 v2
v3 v4

v5

v

root

h
h′

i

Fig. 4. One stage of the algorithm, where the peak nodes are v1, . . . , v5 while
the currently processed node is v. If i ∈ List [d] and v3 = Find(i), then
d = δ(i, v3) = Dist[i]. The current partition is P = {Leaves(v1), Leaves(v2),
Leaves(v3), Leaves(v4), Leaves(v5)}. After v is processed, the partition changes to
P = {Leaves(v1), Leaves(v2), Leaves(v), Leaves(v5)}. The Union operation merges
Leaves(v4),Leaves(v3) and returns the corresponding change list.

Algorithm ComputeCST(w)

T := sCST (w);

P := partition of {1, . . . , n} into singletons;

foreach v : a leaf of T do cv ′[v] := 0;∆′[v] := 1;

;

h := n+ 1;

foreach v : an inner node of T , in non-increasing order of |v| do
Lift(h, |v|); h := |v|;
{Now part (A) of Invariant(h) is satisfied}
cv ′[v] :=

∑
u∈children(v) cv ′[u];

∆′[v] :=
∑

u∈children(v)∆
′[u];

ChangeList(v) := Union(children(v), v)

foreach (p, q) ∈ ChangeList(v) do LocalCorrect(p, q, v);

;

cv [v] := cv ′[v] +∆′[v] · |v|; ∆[v] := ∆′[v];

return T together with values of cv ,∆;

In the algorithm, h is the smallest height (the smallest value of |z|) among the
current set of peak nodes z; the height is not defined for leaves, so we start with
h = n+ 1.

Description of the Lift(hold, hnew) Operation. The procedure Lift is of aux-
iliary nature but plays an important preparatory role in processing the current
node. According to part (A) of our invariant, for all peak nodes z we know the
values: cv ′[z] = cvhold

(z), ∆′[z] = ∆hold
(z). Now we have to change hold to hnew

and guarantee validity of the invariant: cv ′[z] = cvhnew
(z), ∆′[z] = ∆hnew

(z).
This is exactly what the following operation does.

Function Lift(hold, hnew)

for h := hold − 1 downto hnew do

foreach i in List [h] do

v := Find(i);

∆′[v] := ∆′[v] + 1; cv ′[v] := cv ′[v]− h;

Description of the LocalCorrect(p, q, v) Operation. Here we assume that v̂
occurs at positions p < q and that these are consecutive occurrences. Moreover,
we assume that these occurrences are followed by distinct characters, i.e. (p, q) ∈
ChangeList(v). The LocalCorrect procedure updates Dist [p] to make part (B) of
the invariant hold for p again. The data structure List is updated accordingly
so that (C) remains satisfied.

Function LocalCorrect(p, q, v)

d := q − p; d′ := Dist [p];

if d′ < |v| then cv ′[v] := cv ′[v]− d′ ;

else ∆′[v] := ∆′[v]− 1;

;

if d < |v| then cv ′[v] := cv ′[v] + d ;

else ∆′[v] := ∆′[v] + 1;

;

Dist [p] := d;

remove(i,List [d′]); insert(i,List [d]);

Complexity of the Algorithm. In the course of the algorithm we compute
ChangeList(v) for each v ∈ T . Due to Lemma 3 we have:∑

v∈T
|ChangeList(v)| = O(n log n).

Consequently we perform O(n log n) operations LocalCorrect . In each of them at
most one element is added to a list List [d] for some d. Hence the total number
of insertions to these lists is also O(n log n).

The cost of each operation Lift is proportional to the total size of lists List [h]
processed in this operation. As for each h the list List [h] is processed once
and the total number of insertions into lists is O(n log n), the total cost of all
operations Lift is also O(n log n). This proves the following fact which, together
with Lemma 3, implies our main result (Theorem 1).

Lemma 5. Algorithm ComputeCST computes CST (w) in O(n log n) time and
O(n) space, where n = |w|.

5 Final Remarks

We have presented an algorithm which constructs a data structure, called the
Cover Suffix Tree, in O(n log n) time and O(n) space. In the algorithm, to sim-
plify its presentation, we used all halves of square factors as extra nodes. How-
ever, it suffices to consider primitive square halves only and all such nodes can
be shown to be necessary for Lemma 1 to hold. As such, they can be introduced
on the fly (in the Lift operation) without using the algorithms of [17, 18].

The Cover Suffix Tree has been developed in order to solve the PartialCov-
ers problem, but it gives a well-structured description of the cover indices of all
factors. Consequently, various queries related to partial covers can be answered
efficiently. For example, with the Cover Suffix Tree one can solve in linear time a
problem symmetric to PartialCovers: given constraints on factors of w (e.g.
on their length), find a factor that maximizes the number of positions covered.

An interesting open problem is to reduce the construction time to O(n).
This could be difficult, though, since this would yield alternative linear-time
algorithms finding primitively rooted squares and computing seeds (for a defini-
tion see [19]); and the only known linear-time algorithms for these problems are
rather complex.

References

1. Apostolico, A., Ehrenfeucht, A.: Efficient detection of quasiperiodicities in strings.
Theor. Comput. Sci. 119(2) (1993) 247–265

2. Apostolico, A., Farach, M., Iliopoulos, C.S.: Optimal superprimitivity testing for
strings. Inf. Process. Lett. 39(1) (1991) 17–20

3. Moore, D., Smyth, W.F.: An optimal algorithm to compute all the covers of a
string. Inf. Process. Lett. 50(5) (1994) 239–246

4. Breslauer, D.: An on-line string superprimitivity test. Inf. Process. Lett. 44(6)
(1992) 345–347

5. Li, Y., Smyth, W.F.: Computing the cover array in linear time. Algorithmica
32(1) (2002) 95–106

6. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge
University Press (2007)

7. Flouri, T., Iliopoulos, C.S., Kociumaka, T., Pissis, S.P., Puglisi, S.J., Smyth, W.F.,
Tyczyński, W.: New and efficient approaches to the quasiperiodic characterisation
of a string. In Holub, J., Žďárek, J., eds.: PSC, Czech Technical University in
Prague, Czech Republic (2012) 75–88

8. Sim, J.S., Park, K., Kim, S., Lee, J.: Finding approximate covers of strings. Journal
of Korea Information Science Society 29(1) (2002) 16–21

9. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific (2003)
10. Farach, M.: Optimal suffix tree construction with large alphabets. In: FOCS.

(1997) 137–143
11. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3) (1995) 249–

260
12. Apostolico, A., Preparata, F.P.: Data structures and algorithms for the string

statistics problem. Algorithmica 15(5) (1996) 481–494

13. Brodal, G.S., Lyngsø, R.B., Östlin, A., Pedersen, C.N.S.: Solving the string statis-
tics problem in time O(n logn). In Widmayer, P., Ruiz, F.T., Bueno, R.M., Hen-
nessy, M., Eidenbenz, S., Conejo, R., eds.: ICALP. Volume 2380 of Lecture Notes
in Computer Science., Springer (2002) 728–739

14. Fraenkel, A.S., Simpson, J.: How many squares can a string contain? J. Comb.
Theory, Ser. A 82(1) (1998) 112–120

15. Brodal, G.S., Pedersen, C.N.S.: Finding maximal quasiperiodicities in strings. In
Giancarlo, R., Sankoff, D., eds.: CPM. Volume 1848 of Lecture Notes in Computer
Science., Springer (2000) 397–411

16. Brown, M.R., Tarjan, R.E.: A fast merging algorithm. J. ACM 26(2) (1979)
211–226

17. Gusfield, D., Stoye, J.: Linear time algorithms for finding and representing all the
tandem repeats in a string. J. Comput. Syst. Sci. 69(4) (2004) 525–546

18. Crochemore, M., Iliopoulos, C.S., Kubica, M., Radoszewski, J., Rytter, W., Waleń,
T.: Extracting powers and periods in a string from its runs structure. In Chávez,
E., Lonardi, S., eds.: SPIRE. Volume 6393 of Lecture Notes in Computer Science.,
Springer (2010) 258–269

19. Kociumaka, T., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: A linear
time algorithm for seeds computation. In Rabani, Y., ed.: SODA, SIAM (2012)
1095–1112

