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Square in a word
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Square in a tree
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Number of squares in a tree

We consider unrooted, unoriented trees with edges
labeled by single letters. Subword of such a tree is a
value of a simple path.
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Squares in T : aa, abaaba, bb, bcbc, cbcb.
There are 5 distinct squares, i.e. sq(T ) = 5.
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Maximum number of squares

What is the maximum number of squares a tree of
n nodes might contain?

Theorem (This paper)

A tree of n nodes contains O(n4/3) squares.
This bound is asymptotically tight.

Theorem (Fraenkel & Simpson, 1998)
A word of length n contains at most 2n squares.
There is a word of length n with n − o(n) squares.

Conjecture
A word of length n contains at most n squares.
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Lower bound
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Branches at {0, 1, 2, . . . ,m− 1,m, 2m, 3m, . . . ,m2}.
Θ(m3) nodes,
Θ(m4) squares: {aibai+jbaj : 1 ≤ i + j ≤ m2}.

Theorem

There are trees of n nodes with Θ(n4/3) squares.
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Centroid decomposition of T

R
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Tk

|Ti | ≤ |T |
2

sq(T ,R) – number of squares passing through R

sq(T ) ≤ sq(T ,R) + Σisq(Ti)

Fact

If sq(T ,R) = O(n4/3) for every tree T of size n,
then sq(T ) = O(n4/3) for every tree T of size n.
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D-trees — deterministic double trees
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Squares in D-trees

R

Tl

Tu

border border

The following lemma implies the main theorem:

Lemma
For any D-tree of size n the number of squares with
midpoint in Tl and ending in Tu is O(n4/3).
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Types of borders

Definition
We say that u is of periodic type (p, q) if
u = (pq)kp for k ≥ 2, q 6= ε, and pq is primitive.

Let w be a word of length ≤ n.
O(log n) borders of w have no periodic type.
Remaining borders are of O(log n) types.

If w has borders of periodic type (p, q) then it has
the following representation:
w = (pq)kp (global borders) or
w = (pq)lpyp(qp)r (regular borders).
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Squares and borders

Global borders – easy, O(n) in total.
Regular boders of a single type:
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General combs

A (p, q, y)-comb of T is the maximal common
subtree of T and the following infinite D-tree:
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Squares induced by combs
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The blue nodes are called main nodes of a comb.
Squares with both endpoints at these nodes are
induced by a comb.

Size of a comb is the number of main nodes.
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Outline of the central proof

1 Just O(n log n) squares are not induced by
combs.

2 Small combs (≤ n0.6) induce o(n4/3) squares:
a comb of size k induces O(k1/2) squares starting
in a single main node,
a single node in Tl can be a main node of O(log n)
combs.

3 Big combs (> n0.6) induce O(n4/3) squares:
combs are almost disjoint in a certain sense:
|Main(C) ∩Main(C ′)| ≤ 4,
the total size of big combs is O(n),
a comb of size k induces O(k4/3) squares.
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Thank you

Thank you for your attention!
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