The Maximum Number of Squares in a Tree

Maxime Crochemore, Costas Iliopoulos, **Tomasz Kociumaka**, Marcin Kubica, Jakub Radoszewski, Wojciech Rytter, Tomasz Waleń, Wojciech Tyczyński

King's College London, University of Warsaw

CPM 2012 Helsinki, July 3, 2012

Square

Square in a word

b a b **a b b b a b b b** a a b

Square in a tree

Square in a tree

Square in a tree

Squares in T: aa

Squares in T: aa

Squares in T: aa, abaaba, bb, bcbc, cbcb

Squares in T: aa, abaaba, bb, bcbc, cbcb. There are 5 distinct squares, i.e. sq(T) = 5.

Maximum number of squares

What is the maximum number of squares a tree of *n* nodes might contain?

Maximum number of squares

What is the maximum number of squares a tree of *n* nodes might contain?

Theorem (This paper)

A tree of n nodes contains $O(n^{4/3})$ squares. This bound is asymptotically tight.

Maximum number of squares

What is the maximum number of squares a tree of *n* nodes might contain?

Theorem (This paper)

A tree of n nodes contains $O(n^{4/3})$ squares. This bound is asymptotically tight.

Theorem (Fraenkel & Simpson, 1998)

A word of length n contains at most 2n squares. There is a word of length n with n - o(n) squares.

Conjecture

A word of length n contains at most n squares.

Comb

Standard comb

Lower bound

Branches at $\{0, 1, 2, ..., m-1, m, 2m, 3m, ..., m^2\}$. $\Theta(m^3)$ nodes, $\Theta(m^4)$ squares: $\{a^i b a^{i+j} b a^j : 1 \le i+j \le m^2\}$.

Lower bound

Branches at $\{0, 1, 2, ..., m-1, m, 2m, 3m, ..., m^2\}$. $\Theta(m^3)$ nodes, $\Theta(m^4)$ squares: $\{a^i b a^{i+j} b a^j : 1 \le i+j \le m^2\}$.

Theorem

There are trees of n nodes with $\Theta(n^{4/3})$ squares.

Centroid decomposition of T

Centroid decomposition of T

 $ext{sq}(\mathcal{T}, \mathcal{R}) - ext{number}$ of squares passing through \mathcal{R} $ext{sq}(\mathcal{T}) \leq ext{sq}(\mathcal{T}, \mathcal{R}) + \Sigma_i ext{sq}(\mathcal{T}_i)$

Centroid decomposition of T

 $ext{sq}(\mathcal{T}, \mathcal{R})$ – number of squares passing through \mathcal{R} $ext{sq}(\mathcal{T}) \leq ext{sq}(\mathcal{T}, \mathcal{R}) + \Sigma_i ext{sq}(\mathcal{T}_i)$

Fact

If $sq(T, R) = O(n^{4/3})$ for every tree T of size n, then $sq(T) = O(n^{4/3})$ for every tree T of size n.

D-trees — deterministic double trees

D-trees — deterministic double trees

D-trees — deterministic double trees

The following lemma implies the main theorem:

Lemma

For any D-tree of size n the number of squares with midpoint in T_1 and ending in T_u is $O(n^{4/3})$.

The following lemma implies the main theorem:

Lemma

For any D-tree of size n the number of squares with midpoint in T_1 and ending in T_u is $O(n^{4/3})$.

The following lemma implies the main theorem:

Lemma

For any D-tree of size n the number of squares with midpoint in T_1 and ending in T_u is $O(n^{4/3})$.

Types of borders

Definition

We say that u is of periodic type (p, q) if $u = (pq)^k p$ for $k \ge 2$, $q \ne \varepsilon$, and pq is primitive.

Types of borders

Definition

We say that u is of periodic type (p, q) if $u = (pq)^k p$ for $k \ge 2$, $q \ne \varepsilon$, and pq is primitive.

Let w be a word of length $\leq n$.

- $O(\log n)$ borders of w have no periodic type.
- Remaining borders are of $O(\log n)$ types.

Types of borders

Definition

We say that u is of periodic type (p, q) if $u = (pq)^k p$ for $k \ge 2$, $q \ne \varepsilon$, and pq is primitive.

Let w be a word of length $\leq n$.

- $O(\log n)$ borders of w have no periodic type.
- Remaining borders are of $O(\log n)$ types.

If w has borders of periodic type (p, q) then it has the following representation:

•
$$w = (pq)^k p$$
 (global borders) or

• $w = (pq)^{l} pyp(qp)^{r}$ (regular borders).

- Global borders easy, O(n) in total.
- Regular boders of a single type:

- Global borders easy, O(n) in total.
- Regular boders of a single type:

- Global borders easy, O(n) in total.
- Regular boders of a single type:

- Global borders easy, O(n) in total.
- Regular boders of a single type:

General combs

A (p, q, y)-comb of T is the maximal common subtree of T and the following infinite D-tree:

Squares induced by combs

The blue nodes are called *main* nodes of a comb. Squares with both endpoints at these nodes are *induced* by a comb.

Squares induced by combs

The blue nodes are called *main* nodes of a comb. Squares with both endpoints at these nodes are *induced* by a comb. *Size* of a comb is the number of main nodes.

13/15

Outline of the central proof

- Just O(n log n) squares are not induced by combs.
- Small combs ($\leq n^{0.6}$) induce $o(n^{4/3})$ squares:
 - a comb of size k induces O(k^{1/2}) squares starting in a single main node,
 - a single node in T₁ can be a main node of O(log n) combs.

Solution Big combs (> $n^{0.6}$) induce $O(n^{4/3})$ squares:

- combs are almost disjoint in a certain sense: $|Main(C) \cap Main(C')| \le 4$,
- the total size of big combs is O(n),
- a comb of size k induces $O(k^{4/3})$ squares.

Thank you for your attention!