The Maximum Number of Squares in a Tree

Maxime Crochemore, Costas Iliopoulos, Tomasz Kociumaka, Marcin Kubica, Jakub Radoszewski, Wojciech Rytter, Tomasz Waleń, Wojciech Tyczyński

King's College London, University of Warsaw
CPM 2012 Helsinki, July 3, 2012

Square

Square in a word

Square in a tree

Square in a tree

Square in a tree

Number of squares in a tree

We consider unrooted, unoriented trees with edges labeled by single letters. Subword of such a tree is a value of a simple path.

Number of squares in a tree

We consider unrooted, unoriented trees with edges labeled by single letters. Subword of such a tree is a value of a simple path.

Number of squares in a tree

We consider unrooted, unoriented trees with edges labeled by single letters. Subword of such a tree is a value of a simple path.

Squares in T : aa

Number of squares in a tree

We consider unrooted, unoriented trees with edges labeled by single letters. Subword of such a tree is a value of a simple path.

Squares in T : aa

Number of squares in a tree

We consider unrooted, unoriented trees with edges labeled by single letters. Subword of such a tree is a value of a simple path.

Squares in T : aa, abaaba

Number of squares in a tree

We consider unrooted, unoriented trees with edges labeled by single letters. Subword of such a tree is a value of a simple path.

Squares in T : aa, abaaba

Number of squares in a tree

We consider unrooted, unoriented trees with edges labeled by single letters. Subword of such a tree is a value of a simple path.

Squares in T : aa, abaaba, bb

Number of squares in a tree

We consider unrooted, unoriented trees with edges labeled by single letters. Subword of such a tree is a value of a simple path.

Squares in T : aa, abaaba, bb

Number of squares in a tree

We consider unrooted, unoriented trees with edges labeled by single letters. Subword of such a tree is a value of a simple path.

Squares in T : aa, abaaba, bb

Number of squares in a tree

We consider unrooted, unoriented trees with edges labeled by single letters. Subword of such a tree is a value of a simple path.

Squares in T : aa, abaaba, bb

Number of squares in a tree

We consider unrooted, unoriented trees with edges labeled by single letters. Subword of such a tree is a value of a simple path.

Squares in T : aa, abaaba, bb, bcbc

Number of squares in a tree

We consider unrooted, unoriented trees with edges labeled by single letters. Subword of such a tree is a value of a simple path.

Squares in T : aa, abaaba, bb, bcbc, cbcb

Number of squares in a tree

We consider unrooted, unoriented trees with edges labeled by single letters. Subword of such a tree is a value of a simple path.

Squares in T : aa, abaaba, bb, bcbc, cbcb. There are 5 distinct squares, i.e. $s q(T)=5$.

Maximum number of squares

What is the maximum number of squares a tree of n nodes might contain?

Maximum number of squares

What is the maximum number of squares a tree of n nodes might contain?

Theorem (This paper)

A tree of n nodes contains $O\left(n^{4 / 3}\right)$ squares.
This bound is asymptotically tight.

Maximum number of squares

What is the maximum number of squares a tree of n nodes might contain?

Theorem (This paper)

A tree of n nodes contains $O\left(n^{4 / 3}\right)$ squares.
This bound is asymptotically tight.
Theorem (Fraenkel \& Simpson, 1998)
A word of length n contains at most $2 n$ squares.
There is a word of length n with $n-o(n)$ squares.
Conjecture
A word of length n contains at most n squares.

Comb

Standard comb

Lower bound

Branches at $\left\{0,1,2, \ldots, m-1, m, 2 m, 3 m, \ldots, m^{2}\right\}$.
$\Theta\left(m^{3}\right)$ nodes,
$\Theta\left(m^{4}\right)$ squares: $\left\{a^{i} b a^{i+j} b a^{j}: 1 \leq i+j \leq m^{2}\right\}$.

Lower bound

Branches at $\left\{0,1,2, \ldots, m-1, m, 2 m, 3 m, \ldots, m^{2}\right\}$.
$\Theta\left(m^{3}\right)$ nodes,
$\Theta\left(m^{4}\right)$ squares: $\left\{a^{i} b a^{i+j} b a^{j}: 1 \leq i+j \leq m^{2}\right\}$.
Theorem
There are trees of n nodes with $\Theta\left(n^{4 / 3}\right)$ squares.

Centroid decomposition of T

$\left|T_{i}\right| \leq \frac{|T|}{2}$

Centroid decomposition of T

$$
\left|T_{i}\right| \leq \frac{|T|}{2}
$$

sq (T, R) - number of squares passing through R

$$
\mathrm{sq}(T) \leq \mathrm{sq}(T, R)+\sum_{i} \mathrm{sq}\left(T_{i}\right)
$$

Centroid decomposition of T

$$
\left|T_{i}\right| \leq \frac{|T|}{2}
$$

sq (T, R) - number of squares passing through R

$$
\mathrm{sq}(T) \leq \mathrm{sq}(T, R)+\sum_{i} \mathrm{sq}\left(T_{i}\right)
$$

Fact

If $s q(T, R)=O\left(n^{4 / 3}\right)$ for every tree T of size n, then $s q(T)=O\left(n^{4 / 3}\right)$ for every tree T of size n.

D-trees — deterministic double trees

Tree

D-trees — deterministic double trees

D-trees — deterministic double trees

Squares in D-trees

Squares in D-trees

The following lemma implies the main theorem:

Lemma

For any D-tree of size n the number of squares with midpoint in T_{l} and ending in T_{u} is $O\left(n^{4 / 3}\right)$.

Squares in D-trees

The following lemma implies the main theorem:

Lemma

For any D-tree of size n the number of squares with midpoint in T_{l} and ending in T_{u} is $O\left(n^{4 / 3}\right)$.

Squares in D-trees

The following lemma implies the main theorem:

Lemma

For any D-tree of size n the number of squares with midpoint in T_{l} and ending in T_{u} is $O\left(n^{4 / 3}\right)$.

Types of borders

Definition

We say that u is of periodic type (p, q) if $u=(p q)^{k} p$ for $k \geq 2, q \neq \varepsilon$, and $p q$ is primitive.

Types of borders

Definition

We say that u is of periodic type (p, q) if $u=(p q)^{k} p$ for $k \geq 2, q \neq \varepsilon$, and $p q$ is primitive.

Let w be a word of length $\leq n$.

- $O(\log n)$ borders of w have no periodic type.
- Remaining borders are of $O(\log n)$ types.

Types of borders

Definition

We say that u is of periodic type (p, q) if $u=(p q)^{k} p$ for $k \geq 2, q \neq \varepsilon$, and $p q$ is primitive.

Let w be a word of length $\leq n$.

- $O(\log n)$ borders of w have no periodic type.
- Remaining borders are of $O(\log n)$ types.

If w has borders of periodic type (p, q) then it has the following representation:

- $w=(p q)^{k} p$ (global borders) or
- $w=(p q)^{\prime} p y p(q p)^{r}$ (regular borders).

Squares and borders

- Global borders - easy, $O(n)$ in total.
- Regular boders of a single type:

Squares and borders

- Global borders - easy, $O(n)$ in total.
- Regular boders of a single type:
$(\text { pqpqpqpy })^{2}$

Squares and borders

- Global borders - easy, $O(n)$ in total.
- Regular boders of a single type:
(pqpqpqpypqpq) ${ }^{2}$

Squares and borders

- Global borders - easy, $O(n)$ in total.
- Regular boders of a single type:

General combs

A (p, q, y)-comb of T is the maximal common subtree of T and the following infinite D-tree:

Squares induced by combs

The blue nodes are called main nodes of a comb. Squares with both endpoints at these nodes are induced by a comb.

Squares induced by combs

The blue nodes are called main nodes of a comb.
Squares with both endpoints at these nodes are induced by a comb.
Size of a comb is the number of main nodes.

Outline of the central proof

(1) Just $O(n \log n)$ squares are not induced by combs.
(2) Small combs $\left(\leq n^{0.6}\right)$ induce $o\left(n^{4 / 3}\right)$ squares:

- a comb of size k induces $O\left(k^{1 / 2}\right)$ squares starting in a single main node,
- a single node in T_{l} can be a main node of $O(\log n)$ combs.
(3) Big combs $\left(>n^{0.6}\right)$ induce $O\left(n^{4 / 3}\right)$ squares:
- combs are almost disjoint in a certain sense: $\left|\operatorname{Main}(\mathcal{C}) \cap \operatorname{Main}\left(\mathcal{C}^{\prime}\right)\right| \leq 4$,
- the total size of big combs is $O(n)$,
- a comb of size k induces $O\left(k^{4 / 3}\right)$ squares.

Thank you

Thank you for your attention!

