Approximating Upper Degree-Constrained Partial Orientations

Marek Cygan and Tomasz Kociumaka

Institute of Informatics University of Warsaw

APPROX 2015

August 26th, 2015 Princeton, NJ, USA

Upper Degree-Constrained Partial Orientation (UDPO)

Upper Degree-Constrained Partial Orientation (UDPO)

Upper Degree-Constrained Partial Orientation (UDPO)

Upper Degree-Constrained Partial Orientation (UDPO)

- Natural reduction to 3-SET PACKING (3-DIMENSIONAL MATCHING),
 - $(3/2 + \varepsilon)$ -approximation (since 1989),
 - $(4/3 + \varepsilon)$ -approximation (since 2013).

- Natural reduction to 3-SET PACKING (3-DIMENSIONAL MATCHING),
 - $(3/2 + \varepsilon)$ -approximation (since 1989),
 - $(4/3 + \varepsilon)$ -approximation (since 2013).
- Natural LP relaxation,
 - LP-rounding approximation algorithm (ratio 4/3),

- Natural reduction to 3-SET PACKING (3-DIMENSIONAL MATCHING),
 - $(3/2 + \varepsilon)$ -approximation (since 1989),
 - $(4/3 + \varepsilon)$ -approximation (since 2013).
- Natural LP relaxation,
 - LP-rounding approximation algorithm (ratio 4/3),
 - lower bound 5/4 for LP gap.

- Natural reduction to 3-SET PACKING (3-DIMENSIONAL MATCHING),
 - $(3/2 + \varepsilon)$ -approximation (since 1989),
 - $(4/3 + \varepsilon)$ -approximation (since 2013).
- Natural LP relaxation,
 - LP-rounding approximation algorithm (ratio 4/3),
 - lower bound 5/4 for LP gap.
- APX-hardness.

Previous work: Gabow, SODA 2006

- Natural reduction to 3-SET PACKING (3-DIMENSIONAL MATCHING),
 - $(3/2 + \varepsilon)$ -approximation (since 1989),
 - $(4/3 + \varepsilon)$ -approximation (since 2013).
- Natural LP relaxation,
 - LP-rounding approximation algorithm (ratio 4/3),
 - lower bound 5/4 for LP gap.
- APX-hardness.

This work:

• improved analysis of existing 3-SET PACKING algorithms on instances coming from UDPO:

Previous work: Gabow, SODA 2006

- Natural reduction to 3-SET PACKING (3-DIMENSIONAL MATCHING),
 - $(3/2 + \varepsilon)$ -approximation (since 1989),
 - $(4/3 + \varepsilon)$ -approximation (since 2013).
- Natural LP relaxation,
 - LP-rounding approximation algorithm (ratio 4/3),
 - lower bound 5/4 for LP gap.
- APX-hardness.

This work:

- improved analysis of existing 3-SET PACKING algorithms on instances coming from UDPO:
 - $3/2 + \varepsilon \longrightarrow 4/3 + \varepsilon$
 - $4/3 + \varepsilon \longrightarrow 5/4 + \varepsilon$

Previous work: Gabow, SODA 2006

- Natural reduction to 3-SET PACKING (3-DIMENSIONAL MATCHING),
 - $(3/2 + \varepsilon)$ -approximation (since 1989),
 - $(4/3 + \varepsilon)$ -approximation (since 2013).
- Natural LP relaxation,
 - LP-rounding approximation algorithm (ratio 4/3),
 - lower bound 5/4 for LP gap.
- APX-hardness.

This work:

• improved analysis of existing 3-SET PACKING algorithms on instances coming from UDPO:

•
$$3/2 + \varepsilon \longrightarrow 4/3 + \varepsilon$$

• $4/3 + \varepsilon \longrightarrow 5/4 + \varepsilon$ (best known for ratio UDPO)

k-Set Packing

Input: a family $\mathcal{F} \subseteq 2^U$ of sets of size at most k. **Goal**: find a maximum-size subfamily of \mathcal{F} of pairwise disjoint sets.

k-Set Packing

Input: a family $\mathcal{F} \subseteq 2^U$ of sets of size at most k. **Goal**: find a maximum-size subfamily of \mathcal{F} of pairwise disjoint sets.

k-Set Packing

Input: a family $\mathcal{F} \subseteq 2^U$ of sets of size at most k. **Goal**: find a maximum-size subfamily of \mathcal{F} of pairwise disjoint sets.

k-Set Packing

Input: a family $\mathcal{F} \subseteq 2^U$ of sets of size at most k. **Goal**: find a maximum-size subfamily of \mathcal{F} of pairwise disjoint sets.

3-DIMENSIONAL MATCHING

Input: a universe $U = X \uplus Y \uplus Z$, a family $\mathcal{F} \subseteq X \times Y \times Z$. **Goal**: find a maximum-size subfamily of \mathcal{F} of pairwise disjoint sets.

Marek Cygan, Tomasz Kociumaka Approximating Upper Degree-Constrained Partial Orientations

Reduction to 3-DIMENSIONAL MATCHING

 V^+ $d^+(v)$ copies of each vertex $v \in V$, $V^ d^-(v)$ copies of each vertex $v \in V$, *E* the set of (undirected) edges, $\mathcal{F}(v_i^+, u_i^-, e)$ and (u_i^+, v_i^-, e) for each e = uv. Ε V^+

Reduction to 3-DIMENSIONAL MATCHING

 V^+ $d^+(v)$ copies of each vertex $v \in V$, $V^ d^-(v)$ copies of each vertex $v \in V$, *E* the set of (undirected) edges, $\mathcal{F}(v_i^+, u_i^-, e)$ and (u_i^+, v_i^-, e) for each e = uv. Ε IIVU1 $d^+(u) = 2$ $d^+(v) = 1$

Reduction to 3-DIMENSIONAL MATCHING

 V^+ $d^+(v)$ copies of each vertex $v \in V$, $V^ d^-(v)$ copies of each vertex $v \in V$, *E* the set of (undirected) edges, $\mathcal{F}(v_i^+, u_i^-, e)$ and (u_i^+, v_i^-, e) for each e = uv. Ε uv u_2^+ V^+ U1 U_1 $d^-(u)=1$ $d^+(u) = 2$ $d^{-}(v) = 2$ $d^+(v) = 1$ V-

p-local search for *k*-SET PACKING

Set $\mathcal{A} = \emptyset$.

While there exists $Y \subseteq \mathcal{F}$ such that:

- the symmetric difference $\mathcal{A}\Delta Y$ consists of disjoint sets,
- $|\mathcal{A}\Delta Y| > |\mathcal{A}|$,

•
$$|Y \setminus \mathcal{A}| \leq p$$
.

Set $\mathcal{A} := \mathcal{A} \Delta Y$.

p-local search for *k*-SET PACKING

Set $\mathcal{A} = \emptyset$.

While there exists $Y \subseteq \mathcal{F}$ such that:

- the symmetric difference $\mathcal{A}\Delta Y$ consists of disjoint sets,
- $|\mathcal{A}\Delta Y| > |\mathcal{A}|$,

•
$$|Y \setminus \mathcal{A}| \leq p$$
.

Set $\mathcal{A} := \mathcal{A} \Delta Y$.

We then call $Y \setminus A$ a *p*-improving set.

Approximation ratios of p-local search for k-SET PACKING and UPDO (upper bounds).

author	р	<i>k</i> -SP	UDPO
folklore	1	k	
folklore	2	$\frac{1}{2}(k+1)$	
Hurkens & Schrijver [1989]	$\mathcal{O}(1)$	$\frac{1}{2}(k+\varepsilon)$	
Cygan et al. [2013]	$\mathcal{O}(\log n)$	$\frac{1}{3}(k+1+\varepsilon)$	
Cygan [2013]	$\mathcal{O}(\log n)^*$	$\frac{1}{3}(k+1+\varepsilon)$	

*Considering only special type of improving sets of size $O(\log n)$, possible to find in polynomial time.

Approximation ratios of p-local search for k-SET PACKING and UPDO (upper bounds).

author	р	<i>k</i> -SP	UDPO
folklore	1	k	
folklore	2	$\frac{1}{2}(k+1)$	
Hurkens & Schrijver [1989]	$\mathcal{O}(1)$	$\frac{1}{2}(k+\varepsilon)$	$\frac{4}{3} + \varepsilon$
Cygan et al. [2013]	$\mathcal{O}(\log n)$	$\frac{1}{3}(k+1+\varepsilon)$	
Cygan [2013]	$\mathcal{O}(\log n)^*$	$\frac{1}{3}(k+1+\varepsilon)$	$\frac{5}{4} + \varepsilon$

*Considering only special type of improving sets of size $O(\log n)$, possible to find in polynomial time.

Definition

A local optimum F has no improving set (satisfying considered constraints), while a global optimum OPT is largest possible.

Definition

A local optimum F has no improving set (satisfying considered constraints), while a global optimum OPT is largest possible.

Notation: directed: F, OPT; undirected: \overline{F} , \overline{OPT} .

Definition

A local optimum F has no improving set (satisfying considered constraints), while a global optimum OPT is largest possible.

Notation: directed: F, OPT; undirected: \overline{F} , \overline{OPT} .

Definition

A local optimum F has no improving set (satisfying considered constraints), while a global optimum OPT is largest possible.

Notation: directed: F, OPT; undirected: \overline{F} , \overline{OPT} .

Without loss of generality we can:

Definition

A local optimum F has no improving set (satisfying considered constraints), while a global optimum OPT is largest possible.

Notation: directed: F, OPT; undirected: \overline{F} , \overline{OPT} .

Without loss of generality we can:

• remove edges in neither \overline{F} nor \overline{OPT} (|OPT|/|F| preserved),

Definition

A local optimum F has no improving set (satisfying considered constraints), while a global optimum OPT is largest possible.

Notation: directed: F, OPT; undirected: \overline{F} , \overline{OPT} .

Without loss of generality we can:

• remove edges in neither \overline{F} nor \overline{OPT} (|OPT|/|F| preserved),

Definition

A local optimum F has no improving set (satisfying considered constraints), while a global optimum OPT is largest possible.

Notation: directed: F, OPT; undirected: \overline{F} , \overline{OPT} .

Without loss of generality we can:

- remove edges in neither \overline{F} nor \overline{OPT} (|OPT|/|F| preserved),
- remove edges oriented in the same way in F and OPT (decreasing degree bounds; |OPT|/|F| increases).

Definition

A local optimum F has no improving set (satisfying considered constraints), while a global optimum OPT is largest possible.

Notation: directed: F, OPT; undirected: \overline{F} , \overline{OPT} .

Without loss of generality we can:

- remove edges in neither \overline{F} nor \overline{OPT} (|OPT|/|F| preserved),
- remove edges oriented in the same way in F and OPT (decreasing degree bounds; |OPT|/|F| increases).

Simple Instances

Definition

An instance of UDPO is simple if $d^+, d^- : V(G) \to \{0, 1\}$.

Simple Instances

Definition

An instance of UDPO is simple if d^+ , d^- : $V(G) \rightarrow \{0,1\}$.

Motivation:

2006: Gabow UDPO on simple instances is already APX-hard.

Simple Instances

Definition

An instance of UDPO is simple if $d^+, d^- : V(G) \to \{0, 1\}$.

Motivation:

2006: Gabow UDPO on simple instances is already APX-hard.

Benefit:

• sets in 3-SET PACKING bijectively map to edge orientations,

Definition

An instance of UDPO is simple if $d^+, d^-: V(G) \to \{0, 1\}$.

Motivation:

2006: Gabow UDPO on simple instances is already APX-hard.

Benefit:

- sets in 3-SET PACKING bijectively map to edge orientations,
- any feasible solution in a set of paths and cycles.

9/15

Theorem

For an arbitrary instance I, and two local optima A and B, there is a simple instance I' with local optima A' and B' satisfying |A| = |A'| and |B| = |B'|.

Theorem

For an arbitrary instance I, and two local optima A and B, there is a simple instance I' with local optima A' and B' satisfying |A| = |A'| and |B| = |B'|.

Splitting vertices:

Theorem

For an arbitrary instance I, and two local optima A and B, there is a simple instance I' with local optima A' and B' satisfying |A| = |A'| and |B| = |B'|.

Splitting vertices:

Theorem

For an arbitrary instance I, and two local optima A and B, there is a simple instance I' with local optima A' and B' satisfying |A| = |A'| and |B| = |B'|.

Splitting vertices:

Conflicts between edges in F and OPT are represented in a graph.

- bipartite,
- degrees between 1 and 3.

Lemma

 $3|OPT| \le 4(1+\varepsilon)|F| 3(1+\varepsilon)|F| + |\{e \in F : \deg(e) = 3\}|$

Conflicts between edges in F and OPT are represented in a graph.

- bipartite,
- degrees between 1 and 3.

Conflicts between edges in F and OPT are represented in a graph.

- bipartite,
- degrees between 1 and 3.

Lemma
$$3|OPT| \le \frac{4(1+\varepsilon)|F|}{3}(1+\varepsilon)|F| + |\{e \in F : \deg(e) = 3\}|$$

What three conflicting edges may $uv \in F$ have in *OPT*?

• an edge leaving *u* (at most one),

Conflicts between edges in F and OPT are represented in a graph.

- bipartite,
- degrees between 1 and 3.

Lemma
$$3|OPT| \le \frac{4(1+\varepsilon)|F|}{3}(1+\varepsilon)|F| + |\{e \in F : \deg(e) = 3\}|$$

- an edge leaving *u* (at most one),
- an edge entering v (at most one),

Conflicts between edges in F and OPT are represented in a graph.

- bipartite,
- degrees between 1 and 3.

Lemma
$$3|OPT| \le 4(1+\varepsilon)|F| 3(1+\varepsilon)|F| + |\{e \in F : \deg(e) = 3\}|$$

- an edge leaving *u* (at most one),
- an edge entering v (at most one),
- the reverse edge vu.

Conflicts between edges in F and OPT are represented in a graph.

- bipartite,
- degrees between 1 and 3.

Lemma
$$3|OPT| \le 4(1+\varepsilon)|F|$$
 $3(1+\varepsilon)|F| + |\{e \in F : \deg(e) = 3\}|$

- an edge leaving *u* (at most one),
- an edge entering v (at most one),
- the reverse edge vu.

$$3|OPT| \leq 3(1+\varepsilon)|F| + |\overline{F} \cap \overline{OPT}|.$$

Conflicts between edges in F and OPT are represented in a graph.

- bipartite,
- degrees between 1 and 3.

Lemma
$$3|OPT| \le 4(1+\varepsilon)|F|$$
 $3(1+\varepsilon)|F| + |\{e \in F : \deg(e) = 3\}|$

What three conflicting edges may $uv \in F$ have in *OPT*?

- an edge leaving *u* (at most one),
- an edge entering v (at most one),
- the reverse edge vu.

$$3|OPT| \leq 3(1+\varepsilon)|F| + |\overline{F} \cap \overline{OPT}|.$$

Corollary

If $|\overline{F} \cap \overline{OPT}| \leq \frac{3}{4}|F|$, then F is a $(5/4 + \varepsilon)$ -approximate solution.

What if we insist on adding an edge $e \in \overline{OPT} \setminus \overline{F}$ to F?

What if we insist on adding an edge $e \in \overline{OPT} \setminus \overline{F}$ to F?

What if we insist on adding an edge $e \in \overline{OPT} \setminus \overline{F}$ to F?

What happens to F:

• add one edge (e),

What if we insist on adding an edge $e \in \overline{OPT} \setminus \overline{F}$ to F?

- add one edge (e),
- reorient some edges (components of $\overline{OPT} \cap \overline{F}$ incident to e),

What if we insist on adding an edge $e \in \overline{OPT} \setminus \overline{F}$ to F?

- add one edge (e),
- reorient some edges (components of $\overline{OPT} \cap \overline{F}$ incident to e),
- remove at most four edges (incident to those components).

What if we insist on adding an edge $e \in \overline{OPT} \setminus \overline{F}$ to F?

- add one edge (e),
- reorient some edges (components of $\overline{OPT} \cap \overline{F}$ incident to e),
- remove at most four edges (incident to those components).

What if we insist on adding an edge $e \in \overline{OPT} \setminus \overline{F}$ to F?

- add one edge (e),
- reorient some edges (components of $\overline{OPT} \cap \overline{F}$ incident to e),
- remove at most four edges (incident to those components).

Build a conflict graph between $\overline{OPT} \setminus \overline{F}$ and $\overline{F} \setminus \overline{OPT}$.

Build a conflict graph between $\overline{OPT} \setminus \overline{F}$ and $\overline{F} \setminus \overline{OPT}$.

• in conflict: incident to the same component of $\overline{OPT} \cap \overline{F}$,

Build a conflict graph between $\overline{OPT} \setminus \overline{F}$ and $\overline{F} \setminus \overline{OPT}$.

- in conflict: incident to the same component of $\overline{OPT} \cap \overline{F}$,
- degrees: between 1 and 4,

Build a conflict graph between $\overline{OPT} \setminus \overline{F}$ and $\overline{F} \setminus \overline{OPT}$.

- in conflict: incident to the same component of $\overline{OPT} \cap \overline{F}$,
- degrees: between 1 and 4,
- improving set requires reorienting adjacent component,
- ignore edges incident to $\Theta(\varepsilon|F|)$ largest components,
- constant-size ($\mathcal{O}(\varepsilon^{-1})$ -size) components remain.

Build a conflict graph between $\overline{OPT} \setminus \overline{F}$ and $\overline{F} \setminus \overline{OPT}$.

- in conflict: incident to the same component of $\overline{OPT} \cap \overline{F}$,
- degrees: between 1 and 4,
- improving set requires reorienting adjacent component,
- ignore edges incident to $\Theta(\varepsilon|F|)$ largest components,
- constant-size ($\mathcal{O}(\varepsilon^{-1})$ -size) components remain.

Theorem

Local search maximum F satisfies $|\overline{OPT} \setminus \overline{F}| \le 2|\overline{F} \setminus \overline{OPT}| + \varepsilon|F|$. $|OPT| \le (1+\varepsilon)|F| + |\overline{F} \setminus \overline{OPT}| \le (\frac{5}{4} + \varepsilon)|F| \text{ if } |\overline{F} \setminus \overline{OPT}| \le \frac{1}{4}|F|$.

Our results:

- Local-search algorithms for 3-SET PACKING perform better on UDPO instances:
 - $\mathcal{O}(1)$ -local-search (Hurkens & Schrijver, 1989): 4/3 + ε ,
 - restricted $\mathcal{O}(\log n)$ -local-search (Cygan, 2013): $5/4 + \varepsilon$.

Our results:

- Local-search algorithms for 3-SET PACKING perform better on UDPO instances:
 - $\mathcal{O}(1)$ -local-search (Hurkens & Schrijver, 1989): $4/3 + \varepsilon$,
 - restricted $\mathcal{O}(\log n)$ -local-search (Cygan, 2013): $5/4 + \varepsilon$.
- Improved state-of-the art approximation ratio.

Our results:

- Local-search algorithms for 3-SET PACKING perform better on UDPO instances:
 - $\mathcal{O}(1)$ -local-search (Hurkens & Schrijver, 1989): $4/3 + \varepsilon$,
 - restricted $\mathcal{O}(\log n)$ -local-search (Cygan, 2013): $5/4 + \varepsilon$.
- Improved state-of-the art approximation ratio.
- **③** Reduction to simple instances for reasonable local-search rules.

Our results:

- Local-search algorithms for 3-SET PACKING perform better on UDPO instances:
 - $\mathcal{O}(1)$ -local-search (Hurkens & Schrijver, 1989): 4/3 + ε ,
 - restricted $O(\log n)$ -local-search (Cygan, 2013): $5/4 + \varepsilon$.
- Improved state-of-the art approximation ratio.
- **③** Reduction to simple instances for reasonable local-search rules.

Open problems:

- Tight example? Improved analysis?
 - One can restrict to simple instances.

Our results:

- Local-search algorithms for 3-SET PACKING perform better on UDPO instances:
 - $\mathcal{O}(1)$ -local-search (Hurkens & Schrijver, 1989): 4/3 + ε ,
 - restricted $O(\log n)$ -local-search (Cygan, 2013): $5/4 + \varepsilon$.
- Improved state-of-the art approximation ratio.
- **③** Reduction to simple instances for reasonable local-search rules.

Open problems:

- Tight example? Improved analysis?
 - One can restrict to simple instances.
- Improved approximation ratio?
 - $\mathcal{O}(\log n)$ -local search: $(11/9 + \varepsilon)!$ (not in the paper),
 - quasipolynomial running time,
 - polynomial-time $(11/9 + \varepsilon)$ -approximation?

Thank you for your attention!

Grants for innovation. The project is cofinanced from European Union under the Regional Development Fund.

15/15