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Problem Definition

Upper Degree-Constrained Partial Orientation (UDPO)

Input: undirected graph G ,
degree constraints d+, d− : V (G )→ Z≥0.

Find: A subset F ⊆ E (G ) and its orientation F such that:

deg+
F (v) ≤ d+(v) for each v ∈ V (G ),

deg−F (v) ≤ d−(v) for each v ∈ V (G ).

Maximize: |F |

(d+, d−) = (1, 0)

(1, 1)

(0, 2) (1, 1)

(1, 1)

(2, 1)
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Results

Previous work: Gabow, SODA 2006

Natural reduction to 3-Set Packing
(3-Dimensional Matching),

(3/2 + ε)-approximation (since 1989),
(4/3 + ε)-approximation (since 2013).

Natural LP relaxation,

LP-rounding approximation algorithm (ratio 4/3),
lower bound 5/4 for LP gap.

APX-hardness.

This work:

improved analysis of existing 3-Set Packing algorithms
on instances coming from UDPO:

3/2 + ε −→ 4/3 + ε
4/3 + ε −→ 5/4 + ε (best known for ratio UDPO)

Marek Cygan, Tomasz Kociumaka Approximating Upper Degree-Constrained Partial Orientations 3/15



Results

Previous work: Gabow, SODA 2006

Natural reduction to 3-Set Packing
(3-Dimensional Matching),

(3/2 + ε)-approximation (since 1989),
(4/3 + ε)-approximation (since 2013).

Natural LP relaxation,

LP-rounding approximation algorithm (ratio 4/3),

lower bound 5/4 for LP gap.

APX-hardness.

This work:

improved analysis of existing 3-Set Packing algorithms
on instances coming from UDPO:

3/2 + ε −→ 4/3 + ε
4/3 + ε −→ 5/4 + ε (best known for ratio UDPO)

Marek Cygan, Tomasz Kociumaka Approximating Upper Degree-Constrained Partial Orientations 3/15



Results

Previous work: Gabow, SODA 2006

Natural reduction to 3-Set Packing
(3-Dimensional Matching),

(3/2 + ε)-approximation (since 1989),
(4/3 + ε)-approximation (since 2013).

Natural LP relaxation,

LP-rounding approximation algorithm (ratio 4/3),
lower bound 5/4 for LP gap.

APX-hardness.

This work:

improved analysis of existing 3-Set Packing algorithms
on instances coming from UDPO:

3/2 + ε −→ 4/3 + ε
4/3 + ε −→ 5/4 + ε (best known for ratio UDPO)

Marek Cygan, Tomasz Kociumaka Approximating Upper Degree-Constrained Partial Orientations 3/15



Results

Previous work: Gabow, SODA 2006

Natural reduction to 3-Set Packing
(3-Dimensional Matching),

(3/2 + ε)-approximation (since 1989),
(4/3 + ε)-approximation (since 2013).

Natural LP relaxation,

LP-rounding approximation algorithm (ratio 4/3),
lower bound 5/4 for LP gap.

APX-hardness.

This work:

improved analysis of existing 3-Set Packing algorithms
on instances coming from UDPO:

3/2 + ε −→ 4/3 + ε
4/3 + ε −→ 5/4 + ε (best known for ratio UDPO)

Marek Cygan, Tomasz Kociumaka Approximating Upper Degree-Constrained Partial Orientations 3/15



Results

Previous work: Gabow, SODA 2006

Natural reduction to 3-Set Packing
(3-Dimensional Matching),

(3/2 + ε)-approximation (since 1989),
(4/3 + ε)-approximation (since 2013).

Natural LP relaxation,

LP-rounding approximation algorithm (ratio 4/3),
lower bound 5/4 for LP gap.

APX-hardness.

This work:

improved analysis of existing 3-Set Packing algorithms
on instances coming from UDPO:

3/2 + ε −→ 4/3 + ε
4/3 + ε −→ 5/4 + ε (best known for ratio UDPO)

Marek Cygan, Tomasz Kociumaka Approximating Upper Degree-Constrained Partial Orientations 3/15



Results

Previous work: Gabow, SODA 2006

Natural reduction to 3-Set Packing
(3-Dimensional Matching),

(3/2 + ε)-approximation (since 1989),
(4/3 + ε)-approximation (since 2013).

Natural LP relaxation,

LP-rounding approximation algorithm (ratio 4/3),
lower bound 5/4 for LP gap.

APX-hardness.

This work:

improved analysis of existing 3-Set Packing algorithms
on instances coming from UDPO:

3/2 + ε −→ 4/3 + ε
4/3 + ε −→ 5/4 + ε

(best known for ratio UDPO)

Marek Cygan, Tomasz Kociumaka Approximating Upper Degree-Constrained Partial Orientations 3/15



Results

Previous work: Gabow, SODA 2006

Natural reduction to 3-Set Packing
(3-Dimensional Matching),

(3/2 + ε)-approximation (since 1989),
(4/3 + ε)-approximation (since 2013).

Natural LP relaxation,

LP-rounding approximation algorithm (ratio 4/3),
lower bound 5/4 for LP gap.

APX-hardness.

This work:

improved analysis of existing 3-Set Packing algorithms
on instances coming from UDPO:

3/2 + ε −→ 4/3 + ε
4/3 + ε −→ 5/4 + ε (best known for ratio UDPO)

Marek Cygan, Tomasz Kociumaka Approximating Upper Degree-Constrained Partial Orientations 3/15



k-Set Packing

k-Set Packing

Input: a family F ⊆ 2U of sets of size at most k.
Goal: find a maximum-size subfamily of F of pairwise disjoint sets.

k = 3 k = 3

3-Dimensional Matching

Input: a universe U = X ] Y ] Z , a family F ⊆ X × Y × Z .
Goal: find a maximum-size subfamily of F of pairwise disjoint sets.
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Reduction to 3-Dimensional Matching

V+ d+(v) copies of each vertex v ∈ V ,

V− d−(v) copies of each vertex v ∈ V ,

E the set of (undirected) edges,

F (v+
i , u−j , e) and (u+

i , v
−
j , e) for each e = uv .

V−V+

E

u−1

v−2
v−1

u+
1

u+
2

v+
1

uv

d+(v) = 1

d+(u) = 2

d−(v) = 2

d−(u) = 1
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Local-Search Algorithm for k-Set Packing

p-local search for k-Set Packing

Set A = ∅.
While there exists Y ⊆ F such that:

the symmetric difference A∆Y consists of disjoint sets,

|A∆Y | > |A|,
|Y \ A| ≤ p.

Set A := A∆Y .

We then call Y \ A a p-improving set.
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Approximation Ratios

Approximation ratios of p-local search for k-Set Packing and
UPDO (upper bounds).

author p k-SP UDPO

folklore 1 k

folklore 2 1
2 (k + 1)

Hurkens & Schrijver [1989] O(1) 1
2 (k + ε)

4
3 + ε

Cygan et al. [2013] O(log n) 1
3 (k + 1 + ε)

Cygan [2013] O(log n)* 1
3 (k + 1 + ε)

5
4 + ε

*Considering only special type of improving sets of size O(log n),
possible to find in polynomial time.
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Local & Global Optima

Definition

A local optimum F has no improving set (satisfying considered
constraints), while a global optimum OPT is largest possible.

Notation: directed: F ,OPT ; undirected: F ,OPT .

(1, 0)

(1, 1)

(0, 2) (1, 1)

(1, 1)

(2, 1)

F

OPT

Without loss of generality we can:

remove edges in neither F nor OPT (|OPT |/|F | preserved),

remove edges oriented in the same way in F and OPT
(decreasing degree bounds; |OPT |/|F | increases).
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Simple Instances

Definition

An instance of UDPO is simple if d+, d− : V (G )→ {0, 1}.

Motivation:

2006: Gabow UDPO on simple instances is already APX-hard.

Benefit:

sets in 3-Set Packing bijectively map to edge orientations,

any feasible solution in a set of paths and cycles.

F

OPT
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Reduction to Simple Instances

Theorem

For an arbitrary instance I , and two local optima A and B, there is
a simple instance I ′ with local optima A′ and B ′ satisfying
|A| = |A′| and |B| = |B ′|.

Splitting vertices:

(1, 0)

(1, 1)

(0, 2)
(0, 1)

(0, 1)

(2, 1)
(1, 1)

(1, 0)

(1, 1)

(1, 1)
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Few Common Edges: Improved Analysis

Conflicts between edges in F and OPT are represented in a graph.

bipartite,

degrees between 1 and 3.

Lemma

3|OPT | ≤ 4(1 + ε)|F | 3(1 + ε)|F |+ |{e ∈ F : deg(e) = 3}|

What three conflicting edges may uv ∈ F have in OPT?

an edge leaving u (at most one),

an edge entering v (at most one),

the reverse edge vu.

3|OPT | ≤ 3(1 + ε)|F |+ |F ∩ OPT |.

Corollary

If |F ∩ OPT | ≤ 3
4 |F |, then F is a (5/4 + ε)-approximate solution.
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Few Common Edges: Improved Analysis

Conflicts between edges in F and OPT are represented in a graph.
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Many Common Edges: Exploiting the Structure

What if we insist on adding an edge e ∈ OPT \ F to F?

e

e

What happens to F :

add one edge (e),

reorient some edges (components of OPT ∩ F incident to e),

remove at most four edges (incident to those components).
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Many Common Edges: 4-Set Packing

e

Build a conflict graph between OPT \ F and F \ OPT .

in conflict: incident to the same component of OPT ∩ F ,

degrees: between 1 and 4,

improving set requires reorienting adjacent component,

ignore edges incident to Θ(ε|F |) largest components,

constant-size (O(ε−1)-size) components remain.

Theorem

Local search maximum F satisfies |OPT \ F | ≤ 2|F \OPT |+ ε|F |.
|OPT | ≤ (1 + ε)|F |+ |F \OPT | ≤ ( 5

4 + ε)|F | if |F \OPT | ≤ 1
4 |F |.
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Conclusions and Open Problems

Our results:
1 Local-search algorithms for 3-Set Packing perform better

on UDPO instances:

O(1)-local-search (Hurkens & Schrijver, 1989): 4/3 + ε,
restricted O(log n)-local-search (Cygan, 2013): 5/4 + ε.

2 Improved state-of-the art approximation ratio.

3 Reduction to simple instances for reasonable local-search rules.

Open problems:

Tight example? Improved analysis?

One can restrict to simple instances.

Improved approximation ratio?

O(log n)-local search: (11/9 + ε)! (not in the paper),
quasipolynomial running time,
polynomial-time (11/9 + ε)-approximation?
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Questions?

Thank you for your attention!

Grants for innovation. The project is cofinanced from European Union under the Regional Development Fund.
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