Approximating Upper Degree-Constrained Partial Orientations

Marek Cygan and Tomasz Kociumaka

Institute of Informatics
University of Warsaw

APPROX 2015

August 26th, 2015
Princeton, NJ, USA

Problem Definition

Upper Degree-Constrained Partial Orientation (UDPO)

Input: undirected graph G, degree constraints $d^{+}, d^{-}: V(G) \rightarrow \mathbb{Z}_{\geq 0}$.
Find: A subset $\bar{F} \subseteq E(G)$ and its orientation F such that:

- $\operatorname{deg}_{F}^{+}(v) \leq d^{+}(v)$ for each $v \in V(G)$,
- $\operatorname{deg}_{F}^{-}(v) \leq d^{-}(v)$ for each $v \in V(G)$.

Maximize: $|\bar{F}|$

Problem Definition

Upper Degree-Constrained Partial Orientation (UDPO)

Input: undirected graph G, degree constraints $d^{+}, d^{-}: V(G) \rightarrow \mathbb{Z}_{\geq 0}$.
Find: A subset $\bar{F} \subseteq E(G)$ and its orientation F such that:

- $\operatorname{deg}_{F}^{+}(v) \leq d^{+}(v)$ for each $v \in V(G)$,
- $\operatorname{deg}_{F}^{-}(v) \leq d^{-}(v)$ for each $v \in V(G)$.

Maximize: $|\bar{F}|$

Problem Definition

Upper Degree-Constrained Partial Orientation (UDPO)

Input: undirected graph G, degree constraints $d^{+}, d^{-}: V(G) \rightarrow \mathbb{Z}_{\geq 0}$.
Find: A subset $\bar{F} \subseteq E(G)$ and its orientation F such that:

- $\operatorname{deg}_{F}^{+}(v) \leq d^{+}(v)$ for each $v \in V(G)$,
- $\operatorname{deg}_{F}^{-}(v) \leq d^{-}(v)$ for each $v \in V(G)$.

Maximize: $|\bar{F}|$

Problem Definition

Upper Degree-Constrained Partial Orientation (UDPO)

Input: undirected graph G, degree constraints $d^{+}, d^{-}: V(G) \rightarrow \mathbb{Z}_{\geq 0}$.
Find: A subset $\bar{F} \subseteq E(G)$ and its orientation F such that:

- $\operatorname{deg}_{F}^{+}(v) \leq d^{+}(v)$ for each $v \in V(G)$,
- $\operatorname{deg}_{F}^{-}(v) \leq d^{-}(v)$ for each $v \in V(G)$.

Maximize: $|\bar{F}|$

Results

Previous work: Gabow, SODA 2006

- Natural reduction to 3-Set Packing (3-Dimensional Matching),
- $(3 / 2+\varepsilon)$-approximation (since 1989),
- $(4 / 3+\varepsilon)$-approximation (since 2013).

Results

Previous work: Gabow, SODA 2006

- Natural reduction to 3-Set Packing (3-Dimensional Matching),
- $(3 / 2+\varepsilon)$-approximation (since 1989),
- $(4 / 3+\varepsilon)$-approximation (since 2013).
- Natural LP relaxation,
- LP-rounding approximation algorithm (ratio 4/3),

Results

Previous work: Gabow, SODA 2006

- Natural reduction to 3-Set Packing (3-Dimensional Matching),
- $(3 / 2+\varepsilon)$-approximation (since 1989),
- $(4 / 3+\varepsilon)$-approximation (since 2013).
- Natural LP relaxation,
- LP-rounding approximation algorithm (ratio 4/3),
- lower bound 5/4 for LP gap.

Results

Previous work: Gabow, SODA 2006

- Natural reduction to 3-Set Packing (3-Dimensional Matching),
- $(3 / 2+\varepsilon)$-approximation (since 1989),
- $(4 / 3+\varepsilon)$-approximation (since 2013).
- Natural LP relaxation,
- LP-rounding approximation algorithm (ratio 4/3),
- lower bound 5/4 for LP gap.
- APX-hardness.

Results

Previous work: Gabow, SODA 2006

- Natural reduction to 3-Set Packing (3-Dimensional Matching),
- $(3 / 2+\varepsilon)$-approximation (since 1989),
- $(4 / 3+\varepsilon)$-approximation (since 2013).
- Natural LP relaxation,
- LP-rounding approximation algorithm (ratio 4/3),
- lower bound 5/4 for LP gap.
- APX-hardness.

This work:

- improved analysis of existing 3-SEt Packing algorithms on instances coming from UDPO:

Results

Previous work: Gabow, SODA 2006

- Natural reduction to 3-Set Packing (3-Dimensional Matching),
- $(3 / 2+\varepsilon)$-approximation (since 1989),
- $(4 / 3+\varepsilon)$-approximation (since 2013).
- Natural LP relaxation,
- LP-rounding approximation algorithm (ratio 4/3),
- lower bound 5/4 for LP gap.
- APX-hardness.

This work:

- improved analysis of existing 3-SEt Packing algorithms on instances coming from UDPO:
- $3 / 2+\varepsilon \longrightarrow 4 / 3+\varepsilon$
- $4 / 3+\varepsilon \longrightarrow 5 / 4+\varepsilon$

Results

Previous work: Gabow, SODA 2006

- Natural reduction to 3-Set Packing (3-Dimensional Matching),
- $(3 / 2+\varepsilon)$-approximation (since 1989),
- $(4 / 3+\varepsilon)$-approximation (since 2013).
- Natural LP relaxation,
- LP-rounding approximation algorithm (ratio 4/3),
- lower bound 5/4 for LP gap.
- APX-hardness.

This work:

- improved analysis of existing 3-SET Packing algorithms on instances coming from UDPO:
- $3 / 2+\varepsilon \longrightarrow 4 / 3+\varepsilon$
- $4 / 3+\varepsilon \longrightarrow 5 / 4+\varepsilon$ (best known for ratio UDPO)

k-SeT Packing

k-SET Packing

Input: a family $\mathcal{F} \subseteq 2^{U}$ of sets of size at most k.
Goal: find a maximum-size subfamily of \mathcal{F} of pairwise disjoint sets.

k-Set Packing

Input: a family $\mathcal{F} \subseteq 2^{U}$ of sets of size at most k.
Goal: find a maximum-size subfamily of \mathcal{F} of pairwise disjoint sets.

k-Set Packing

k-SET PACKing

Input: a family $\mathcal{F} \subseteq 2^{U}$ of sets of size at most k.
Goal: find a maximum-size subfamily of \mathcal{F} of pairwise disjoint sets.

$$
k=3
$$

k-Set Packing

Input: a family $\mathcal{F} \subseteq 2^{U}$ of sets of size at most k.
Goal: find a maximum-size subfamily of \mathcal{F} of pairwise disjoint sets.

$$
k=3
$$

3-Dimensional Matching

Input: a universe $U=X \uplus Y \uplus Z$, a family $\mathcal{F} \subseteq X \times Y \times Z$.
Goal: find a maximum-size subfamily of \mathcal{F} of pairwise disjoint sets.

Reduction to 3-Dimensional Matching

$V^{+} d^{+}(v)$ copies of each vertex $v \in V$, $V^{-} d^{-}(v)$ copies of each vertex $v \in V$,
E the set of (undirected) edges,
$\mathcal{F}\left(v_{i}^{+}, u_{j}^{-}, e\right)$ and $\left(u_{i}^{+}, v_{j}^{-}, e\right)$ for each $e=u v$.

E

Reduction to 3-Dimensional Matching

$V^{+} d^{+}(v)$ copies of each vertex $v \in V$, $V^{-} d^{-}(v)$ copies of each vertex $v \in V$,
E the set of (undirected) edges,
$\mathcal{F}\left(v_{i}^{+}, u_{j}^{-}, e\right)$ and $\left(u_{i}^{+}, v_{j}^{-}, e\right)$ for each $e=u v$.
E

Reduction to 3-Dimensional Matching

$V^{+} d^{+}(v)$ copies of each vertex $v \in V$, $V^{-} d^{-}(v)$ copies of each vertex $v \in V$,
E the set of (undirected) edges,
$\mathcal{F}\left(v_{i}^{+}, u_{j}^{-}, e\right)$ and $\left(u_{i}^{+}, v_{j}^{-}, e\right)$ for each $e=u v$.

$$
E
$$

Local-Search Algorithm for k-Set PACKING

```
\(p\)-local search for \(k\)-Set Packing
Set \(\mathcal{A}=\emptyset\).
While there exists \(Y \subseteq \mathcal{F}\) such that:
- the symmetric difference \(\mathcal{A} \Delta Y\) consists of disjoint sets,
- \(|\mathcal{A} \Delta Y|>|\mathcal{A}|\),
- \(|Y \backslash \mathcal{A}| \leq p\).
Set \(\mathcal{A}:=\mathcal{A} \Delta Y\).
```


Local-Search Algorithm for k-Set PACKING

p-local search for k-Set Packing
Set $\mathcal{A}=\emptyset$.
While there exists $Y \subseteq \mathcal{F}$ such that:

- the symmetric difference $\mathcal{A} \Delta Y$ consists of disjoint sets,
- $|\mathcal{A} \Delta Y|>|\mathcal{A}|$,
- $|Y \backslash \mathcal{A}| \leq p$.

Set $\mathcal{A}:=\mathcal{A} \Delta Y$.
We then call $Y \backslash \mathcal{A}$ a p-improving set.

Approximation Ratios

Approximation ratios of p-local search for k-Set Packing and UPDO (upper bounds).

author	p	$k-$ SP	UDPO
folklore	1	k	
folklore	2	$\frac{1}{2}(k+1)$	
Hurkens \& Schrijver [1989]	$\mathcal{O}(1)$	$\frac{1}{2}(k+\varepsilon)$	
Cygan et al. [2013]	$\mathcal{O}(\log n)$	$\frac{1}{3}(k+1+\varepsilon)$	
Cygan [2013]	$\mathcal{O}(\log n)^{*}$	$\frac{1}{3}(k+1+\varepsilon)$	

*Considering only special type of improving sets of size $\mathcal{O}(\log n)$, possible to find in polynomial time.

Approximation Ratios

Approximation ratios of p-local search for k-Set Packing and UPDO (upper bounds).

author	p	$k-S P$	UDPO
folklore	1	k	
folklore	2	$\frac{1}{2}(k+1)$	
Hurkens \& Schrijver [1989]	$\mathcal{O}(1)$	$\frac{1}{2}(k+\varepsilon)$	$\frac{4}{3}+\varepsilon$
Cygan et al. [2013]	$\mathcal{O}(\log n)$	$\frac{1}{3}(k+1+\varepsilon)$	
Cygan [2013]	$\mathcal{O}(\log n)^{*}$	$\frac{1}{3}(k+1+\varepsilon)$	$\frac{5}{4}+\varepsilon$

*Considering only special type of improving sets of size $\mathcal{O}(\log n)$, possible to find in polynomial time.

Local \& Global Optima

Definition

A local optimum F has no improving set (satisfying considered constraints), while a global optimum OPT is largest possible.

Local \& Global Optima

Definition

A local optimum F has no improving set (satisfying considered constraints), while a global optimum OPT is largest possible.

Notation: directed: $F, O P T$; undirected: $\bar{F}, \overline{O P T}$.

Local \& Global Optima

Definition

A local optimum F has no improving set (satisfying considered constraints), while a global optimum OPT is largest possible.

Notation: directed: $F, O P T$; undirected: $\bar{F}, \overline{O P T}$.

Local \& Global Optima

Definition

A local optimum F has no improving set (satisfying considered constraints), while a global optimum OPT is largest possible.

Notation: directed: $F, O P T$; undirected: $\bar{F}, \overline{O P T}$.

Without loss of generality we can:

Local \& Global Optima

Definition

A local optimum F has no improving set (satisfying considered constraints), while a global optimum OPT is largest possible.

Notation: directed: $F, O P T$; undirected: $\bar{F}, \overline{O P T}$.

Without loss of generality we can:

- remove edges in neither \bar{F} nor $\overline{O P T}(|O P T| /|F|$ preserved $)$,

Local \& Global Optima

Definition

A local optimum F has no improving set (satisfying considered constraints), while a global optimum OPT is largest possible.

Notation: directed: $F, O P T$; undirected: $\bar{F}, \overline{O P T}$.

Without loss of generality we can:

- remove edges in neither \bar{F} nor $\overline{O P T}(|O P T| /|F|$ preserved $)$,

Local \& Global Optima

Definition

A local optimum F has no improving set (satisfying considered constraints), while a global optimum OPT is largest possible.

Notation: directed: $F, O P T$; undirected: $\bar{F}, \overline{O P T}$.

Without loss of generality we can:

- remove edges in neither \bar{F} nor $\overline{O P T}(|O P T| /|F|$ preserved $)$,
- remove edges oriented in the same way in F and $O P T$ (decreasing degree bounds; $|O P T| /|F|$ increases).

Local \& Global Optima

Definition

A local optimum F has no improving set (satisfying considered constraints), while a global optimum OPT is largest possible.

Notation: directed: $F, O P T$; undirected: $\bar{F}, \overline{O P T}$.

Without loss of generality we can:

- remove edges in neither \bar{F} nor $\overline{O P T}(|O P T| /|F|$ preserved $)$,
- remove edges oriented in the same way in F and $O P T$ (decreasing degree bounds; $|O P T| /|F|$ increases).

Simple Instances

Definition

An instance of UDPO is simple if $d^{+}, d^{-}: V(G) \rightarrow\{0,1\}$.

Simple Instances

Definition

An instance of UDPO is simple if $d^{+}, d^{-}: V(G) \rightarrow\{0,1\}$.
Motivation:
2006: Gabow UDPO on simple instances is already APX-hard.

Simple Instances

Definition

An instance of UDPO is simple if $d^{+}, d^{-}: V(G) \rightarrow\{0,1\}$.
Motivation:
2006: Gabow UDPO on simple instances is already APX-hard.
Benefit:

- sets in 3-Set Packing bijectively map to edge orientations,

Simple Instances

Definition

An instance of UDPO is simple if $d^{+}, d^{-}: V(G) \rightarrow\{0,1\}$.
Motivation:
2006: Gabow UDPO on simple instances is already APX-hard.
Benefit:

- sets in 3-Set Packing bijectively map to edge orientations,
- any feasible solution in a set of paths and cycles.

Reduction to Simple Instances

Theorem

For an arbitrary instance I, and two local optima A and B, there is a simple instance I^{\prime} with local optima A^{\prime} and B^{\prime} satisfying $|A|=\left|A^{\prime}\right|$ and $|B|=\left|B^{\prime}\right|$.

Reduction to Simple Instances

Theorem

For an arbitrary instance I, and two local optima A and B, there is a simple instance I^{\prime} with local optima A^{\prime} and B^{\prime} satisfying $|A|=\left|A^{\prime}\right|$ and $|B|=\left|B^{\prime}\right|$.

Splitting vertices:

Reduction to Simple Instances

Theorem

For an arbitrary instance I, and two local optima A and B, there is a simple instance I^{\prime} with local optima A^{\prime} and B^{\prime} satisfying $|A|=\left|A^{\prime}\right|$ and $|B|=\left|B^{\prime}\right|$.

Splitting vertices:

Reduction to Simple Instances

Theorem

For an arbitrary instance I, and two local optima A and B, there is a simple instance I^{\prime} with local optima A^{\prime} and B^{\prime} satisfying $|A|=\left|A^{\prime}\right|$ and $|B|=\left|B^{\prime}\right|$.

Splitting vertices:

Few Common Edges: Improved Analysis

Conflicts between edges in F and $O P T$ are represented in a graph.

- bipartite,
- degrees between 1 and 3 .

Lemma

$$
3|O P T| \leq 4(1+\varepsilon)|F| 3(1+\varepsilon)|F|+|\{e \in F: \operatorname{deg}(e)=3\}|
$$

Few Common Edges: Improved Analysis

Conflicts between edges in F and $O P T$ are represented in a graph.

- bipartite,
- degrees between 1 and 3 .

Lemma

$3|O P T| \leq 4(1+\varepsilon)|F| 3(1+\varepsilon)|F|+|\{e \in F: \operatorname{deg}(e)=3\}|$
What three conflicting edges may $u v \in F$ have in $O P T$?

Few Common Edges: Improved Analysis

Conflicts between edges in F and $O P T$ are represented in a graph.

- bipartite,
- degrees between 1 and 3 .

Lemma

$3|O P T| \leq 4(1+\varepsilon)|F| 3(1+\varepsilon)|F|+|\{e \in F: \operatorname{deg}(e)=3\}|$
What three conflicting edges may $u v \in F$ have in OPT?

- an edge leaving u (at most one),

Few Common Edges: Improved Analysis

Conflicts between edges in F and $O P T$ are represented in a graph.

- bipartite,
- degrees between 1 and 3 .

Lemma

$3|O P T| \leq 4(1+\varepsilon)|F| 3(1+\varepsilon)|F|+|\{e \in F: \operatorname{deg}(e)=3\}|$
What three conflicting edges may $u v \in F$ have in OPT?

- an edge leaving u (at most one),
- an edge entering v (at most one),

Few Common Edges: Improved Analysis

Conflicts between edges in F and $O P T$ are represented in a graph.

- bipartite,
- degrees between 1 and 3 .

Lemma

$3|O P T| \leq 4(1+\varepsilon)|F| 3(1+\varepsilon)|F|+|\{e \in F: \operatorname{deg}(e)=3\}|$
What three conflicting edges may $u v \in F$ have in OPT?

- an edge leaving u (at most one),
- an edge entering v (at most one),
- the reverse edge $v u$.

Few Common Edges: Improved Analysis

Conflicts between edges in F and $O P T$ are represented in a graph.

- bipartite,
- degrees between 1 and 3 .

Lemma

$3|O P T| \leq 4(1+\varepsilon)|F| 3(1+\varepsilon)|F|+|\{e \in F: \operatorname{deg}(e)=3\}|$
What three conflicting edges may $u v \in F$ have in OPT?

- an edge leaving u (at most one),
- an edge entering v (at most one),
- the reverse edge $v u$.

$$
3|O P T| \leq 3(1+\varepsilon)|F|+|\bar{F} \cap \overline{O P T}| .
$$

Few Common Edges: Improved Analysis

Conflicts between edges in F and $O P T$ are represented in a graph.

- bipartite,
- degrees between 1 and 3 .

Lemma

$3|O P T| \leq 4(1+\varepsilon)|F| 3(1+\varepsilon)|F|+|\{e \in F: \operatorname{deg}(e)=3\}|$
What three conflicting edges may $u v \in F$ have in OPT?

- an edge leaving u (at most one),
- an edge entering v (at most one),
- the reverse edge $v u$.

$$
3|O P T| \leq 3(1+\varepsilon)|F|+|\bar{F} \cap \overline{O P T}| .
$$

Corollary

If $|\bar{F} \cap \overline{O P T}| \leq \frac{3}{4}|F|$, then F is a $(5 / 4+\varepsilon)$-approximate solution.

Many Common Edges: Exploiting the Structure

What if we insist on adding an edge $e \in \overline{O P T} \backslash \bar{F}$ to F ?

Many Common Edges: Exploiting the Structure

What if we insist on adding an edge $e \in \overline{O P T} \backslash \bar{F}$ to F ?

What happens to F :

Many Common Edges: Exploiting the Structure

What if we insist on adding an edge $e \in \overline{O P T} \backslash \bar{F}$ to F ?

What happens to F :

- add one edge (e),

Many Common Edges: Exploiting the Structure

What if we insist on adding an edge $e \in \overline{O P T} \backslash \bar{F}$ to F ?

What happens to F :

- add one edge (e),
- reorient some edges (components of $\overline{O P T} \cap \bar{F}$ incident to e),

Many Common Edges: Exploiting the Structure

What if we insist on adding an edge $e \in \overline{O P T} \backslash \bar{F}$ to F ?

What happens to F :

- add one edge (e),
- reorient some edges (components of $\overline{O P T} \cap \bar{F}$ incident to e),
- remove at most four edges (incident to those components).

Many Common Edges: Exploiting the Structure

What if we insist on adding an edge $e \in \overline{O P T} \backslash \bar{F}$ to F ?

What happens to F :

- add one edge (e),
- reorient some edges (components of $\overline{O P T} \cap \bar{F}$ incident to e),
- remove at most four edges (incident to those components).

Many Common Edges: Exploiting the Structure

What if we insist on adding an edge $e \in \overline{O P T} \backslash \bar{F}$ to F ?

What happens to F :

- add one edge (e),
- reorient some edges (components of $\overline{O P T} \cap \bar{F}$ incident to e),
- remove at most four edges (incident to those components).

Many Common Edges: 4-Set Packing

Build a conflict graph between $\overline{O P T} \backslash \bar{F}$ and $\bar{F} \backslash \overline{O P T}$.

Many Common Edges: 4-Set Packing

Build a conflict graph between $\overline{O P T} \backslash \bar{F}$ and $\bar{F} \backslash \overline{O P T}$.

- in conflict: incident to the same component of $\overline{O P T} \cap \bar{F}$,

Many Common Edges: 4-Set Packing

Build a conflict graph between $\overline{O P T} \backslash \bar{F}$ and $\bar{F} \backslash \overline{O P T}$.

- in conflict: incident to the same component of $\overline{O P T} \cap \bar{F}$,
- degrees: between 1 and 4,

Many Common Edges: 4-SET PACKing

Build a conflict graph between $\overline{O P T} \backslash \bar{F}$ and $\bar{F} \backslash \overline{O P T}$.

- in conflict: incident to the same component of $\overline{O P T} \cap \bar{F}$,
- degrees: between 1 and 4,
- improving set requires reorienting adjacent component,
- ignore edges incident to $\Theta(\varepsilon|F|)$ largest components,
- constant-size $\left(\mathcal{O}\left(\varepsilon^{-1}\right)\right.$-size $)$ components remain.

Many Common Edges: 4-SET PACKing

Build a conflict graph between $\overline{O P T} \backslash \bar{F}$ and $\bar{F} \backslash \overline{O P T}$.

- in conflict: incident to the same component of $\overline{O P T} \cap \bar{F}$,
- degrees: between 1 and 4,
- improving set requires reorienting adjacent component,
- ignore edges incident to $\Theta(\varepsilon|F|)$ largest components,
- constant-size $\left(\mathcal{O}\left(\varepsilon^{-1}\right)\right.$-size $)$ components remain.

Theorem

Local search maximum F satisfies $|\overline{O P T} \backslash \bar{F}| \leq 2|\bar{F} \backslash \overline{O P T}|+\varepsilon|F|$. $|O P T| \leq(1+\varepsilon)|F|+|\bar{F} \backslash \overline{O P T}| \leq\left(\frac{5}{4}+\varepsilon\right)|F|$ if $|\bar{F} \backslash \overline{O P T}| \leq \frac{1}{4}|F|$.

Conclusions and Open Problems

Our results:
(1) Local-search algorithms for 3-Set Packing perform better on UDPO instances:

- $\mathcal{O}(1)$-local-search (Hurkens \& Schrijver, 1989): $4 / 3+\varepsilon$,
- restricted $\mathcal{O}(\log n)$-local-search (Cygan, 2013): $5 / 4+\varepsilon$.

Conclusions and Open Problems

Our results:
(1) Local-search algorithms for 3-SET Packing perform better on UDPO instances:

- $\mathcal{O}(1)$-local-search (Hurkens \& Schrijver, 1989): $4 / 3+\varepsilon$,
- restricted $\mathcal{O}(\log n)$-local-search (Cygan, 2013): 5/4+
(2) Improved state-of-the art approximation ratio.

Conclusions and Open Problems

Our results:
(1) Local-search algorithms for 3-SET Packing perform better on UDPO instances:

- $\mathcal{O}(1)$-local-search (Hurkens \& Schrijver, 1989): $4 / 3+\varepsilon$,
- restricted $\mathcal{O}(\log n)$-local-search (Cygan, 2013): 5/4+
(2) Improved state-of-the art approximation ratio.
(3) Reduction to simple instances for reasonable local-search rules.

Conclusions and Open Problems

Our results:
(1) Local-search algorithms for 3-SET PACKING perform better on UDPO instances:

- $\mathcal{O}(1)$-local-search (Hurkens \& Schrijver, 1989): $4 / 3+\varepsilon$,
- restricted $\mathcal{O}(\log n)$-local-search (Cygan, 2013): 5/4+
(2) Improved state-of-the art approximation ratio.
(3) Reduction to simple instances for reasonable local-search rules.

Open problems:

- Tight example? Improved analysis?
- One can restrict to simple instances.

Conclusions and Open Problems

Our results:
(1) Local-search algorithms for 3-SET Packing perform better on UDPO instances:

- $\mathcal{O}(1)$-local-search (Hurkens \& Schrijver, 1989): $4 / 3+\varepsilon$,
- restricted $\mathcal{O}(\log n)$-local-search (Cygan, 2013): 5/4+
(2) Improved state-of-the art approximation ratio.
(3) Reduction to simple instances for reasonable local-search rules.

Open problems:

- Tight example? Improved analysis?
- One can restrict to simple instances.
- Improved approximation ratio?
- $\mathcal{O}(\log n)$-local search: $(11 / 9+\varepsilon)$! (not in the paper),
- quasipolynomial running time,
- polynomial-time $(11 / 9+\varepsilon)$-approximation?

Questions?

Thank you for your attention!

NATIONAL COHESION STRATEGY

EUROPEAN UNION

EUROPEAN REGIONAL
DEVELOPMENT FUND

Grants for innovation. The project is cofinanced from European Union under the Regional Development Fund.

