

Numeryczne rozwiązywanie
SRR w Octave

Piotr Dobaczewski
knn.mimuw.edu.pl

Do czego służy sdesolve?
● Jak na razie – do wyliczania trajektorii

rozwiązania stochastycznych równań
różniczkowych

Dla ustalenia uwagi
● SRR nazywamy

gdzie:

standardowy proces Wienera

dX t=a  X t ,t dt∑
i=1

m

bi X t , t dW t
i

X t∈R
d a ,b1 , b2 ,... , bm : R

d×RRd

W t
i ,i=1,2,... ,m

Dla jeszcze lepszego ustalenia
uwagi

● Zapis macierzowy, B – macierz d x m

dX t=a  X t ,t dtB X t , t dW t

Co zrobi sdesolve?
● Weźmie od nas

– a
– B
– X

0

● Przyjmijmy d=m=1

● Odda nam
– X

W świecie Octave
● a, B są funkcjami umieszczonymi w plikach

function y = nazwa (x, t)

y = 5*x + 0.5*t;

end
● Plik musi się nazywać nazwa.m i być w

katalogu roboczym

W świecie Octave 2
● Rozpatrujemy nasze SRR na przedziale

czasowym [0, 1]
● Załóżmy, że potrzeba nam X

t
dla

t = 0, 0.01, 0.02, ..., 1
● W Octave:

> t = [0 : 0.01 : 1];

W świecie Octave 3
● Wzywamy sdesolve:

X = sdesolve({'rhsa', 'rhsb'},
 1,
t,
20);

● {} - lista z nazwami funkcji, pamiętaj o ' '
● 1 – X

0

● 20 – ilość trajektorii do wylosowania

W świecie Octave 4
● Wynik: macierz X
> size(X)
ans : 101 20

● 101 wierszy – 101 momentów czasowych
● 20 kolumn – 20 trajektorii
● Błyskawiczny obrazek poglądowy:
> plot (t, X(:,1:3))

W wielu wymiarach
● Zwiększamy d:
● X

0
jest wektorem d-wymiarowym

> X0 = [1, 3.4, 55];
● Funkcja rhsa – wektorem stojącym!
● function y = rhsa (x, t)
y = [x(2); -x(1); - x(2) * x(1)];
end

W wielu wymiarach 2
● Funkcja rhsb jest macierzą d x m:

function y = rhsb (x, t)
y = [0.5*x(1), 0 ;
 0 , 0.1* x(2) * x(1);

 0 , 0];
end

● UWAGA! W 3. równaniu 'nie ma' dW

W wielu wymiarach 3
● Wynik: macierz X
> size(X)
ans : 101 3 20

● 101 wierszy – 101 momentów czasowych
● 3 kolumny – 3 współrzędne trajektorii
● 20 razy macierz 101 x 3 – 20 trajektorii
● Błyskawiczny obrazek poglądowy:
> plot(X(:, 1, 1:3), X(:, 3, 1:3))

Jak to działa?
● Domyślnie używa

Silnego schematu rzędu 1

w skrócie --- EO1S
● Rzędu 1 tzn. błąd proporcjonalny do kroku

E max 0≤n≤nT
∣Y n−X t n

∣2 ≤ Kd 2

Co z wynikiem?
● średnia ścieżka – funckja mean
● estymator jądrowy gęstości rozkładu X

T

funkcja (autorska, prościutka)
[x,y] = ke(X_t, h);
plot (x, y)
albo kernel_density w octave-forge

● zapisać do pliku i wgrać do R
save -ascii nazwa_zmiennej plik

Gdzie znaleźć sdesolve?
● Weboctave
● Ściągnąć do własnego octave’a
● Kiedyś (może) trafi do octave-forge

http://knn.mimuw.edu.pl/weboctave

http://knn.mimuw.edu.pl/weboctave

Gdzie znaleźć sdesolve?
● Weboctave
● Ściągnąć do własnego octave’a
● Kiedyś (może) trafi do octave-forge

knn.mimuw.edu.pl/sdesolve.tar

- trzeba skompilować .oct-plik
mkoctfile doubleii.cc
- i umieścić pliki w odpowiednim katalogu

Gdzie znaleźć sdesolve?
● Weboctave
● Ściągnąć do własnego octave’a
● Kiedyś (może) trafi do octave-forge

... nieprędko

W świecie R
● W laboratorium:

trzeba załadować paczkę „sde” (niestety stara
wersja)

d <- expression (-1*x)
s <- expression (x)
s.x = expression (1)

● Tak określamy prawą stronę SRR

W świecie R 2
● set.seed(1) – dla powtarzalności
● X_mi <- sde.sim (t0=0, T = 1,

X0 = 1, N = 1024,
 drift = d,
sigma = s,

 sigma.x = s.x,
 scheme = "milstein")

● plot(X_mi)

W świecie R 3
● Przy nowej paczce sde!
● X_mi <- sde.sim (t0=0, T = 1,

X0 = 1, N = 1024,
M = 20,

 drift = d,
sigma = s,

 sigma.x = s.x,
 method = "milstein")

● Plot(X_mi [, 1:2])

W świecie R 4
W porównaniu z Octave'em:
● Wolniejsze (6 razy!), jednowymiarowe sde
● Poza tym często szybszy, ale... niekoniecznie
● Bogatsze narzędzia statystyczne
● Trudniej zrównoleglić

Równolegle
Po co?
● W wielu wymiarach dużo wolniej!
● Może być i 10 razy szybciej (moją metodą)
● Łatwo zrównoleglić

Równolegle w labie
Potrzebne jest:
● Trochę miejsca na koncie wydziałowym
● Wygenerowanie klucza dla SSH
● Jak najwięcej włączonych komputerów (Linux)
● Odrobina znajomości Unixa i Basha
● Napisany .m-plik z zadaniem obliczenia

konkretnej próbki trajektorii
● Zrozumienie jak działa sdesolve.m

Równolegle w labie
Potrzebne jest:
● Trochę miejsca na koncie wydziałowym
● Wygenerowanie klucza dla SSH
● Jak najwięcej włączonych komputerów (Linux)
● Odrobina znajomości Unixa i Basha
● Napisany .m-plik z zadaniem obliczenia

konkretnej próbki trajektorii
● Zrozumienie jak działa sdesolve.m

Równolegle w labie
Potrzebne jest:
● Trochę miejsca na koncie wydziałowym
● Wygenerowanie klucza dla SSH
● Jak najwięcej włączonych komputerów (Linux)
● Odrobina znajomości Unixa i Basha
● Napisany .m-plik z zadaniem obliczenia

konkretnej próbki trajektorii
● Zrozumienie jak działa sdesolve.m

Równolegle w labie
Potrzebne jest:
● Trochę miejsca na koncie wydziałowym
● Wygenerowanie klucza dla SSH
● Jak najwięcej włączonych komputerów (Linux)
● Odrobina znajomości Unixa i Basha
● Napisany .m-plik z zadaniem obliczenia

konkretnej próbki trajektorii
● Zrozumienie jak działa sdesolve.m

Równolegle w labie
Potrzebne jest:
● Trochę miejsca na koncie wydziałowym
● Wygenerowanie klucza dla SSH
● Jak najwięcej włączonych komputerów (Linux)
● Odrobina znajomości Unixa i Basha
● Napisany .m-plik z zadaniem obliczenia

konkretnej próbki trajektorii
● Zrozumienie jak działa sdesolve.m

Równolegle w labie
Potrzebne jest:
● Trochę miejsca na koncie wydziałowym
● Wygenerowanie klucza dla SSH
● Jak najwięcej włączonych komputerów (Linux)
● Odrobina znajomości Unixa i Basha
● Napisany .m-plik z zadaniem obliczenia

konkretnej próbki trajektorii
● Zrozumienie jak działa sdesolve.m

Numeryczne rozwiązywanie
SRR w Octave

Piotr Dobaczewski
knn.mimuw.edu.pl

Dziękuję za uwagę.

