Range Minimum and Lowest Common Ancestor Queries

Slides by Solon P. Pissis

November 15, 2019

Definition

Given an array A[1...n], preprocess A so that a minimum of any fragment A[i...j] can be computed efficiently:

$$RMQ_A(i,j) = arg min A[k]$$

with $1 \le i \le k \le j \le n$.

Definition

Given an array A[1...n], preprocess A so that a minimum of any fragment A[i...j] can be computed efficiently:

$$RMQ_A(i,j) = arg min A[k]$$

with $1 \le i \le k \le j \le n$.

Definition

Given an array A[1...n], preprocess A so that a minimum of any fragment A[i...j] can be computed efficiently:

$$RMQ_A(i,j) = arg min A[k]$$

with $1 \le i \le k \le j \le n$.

Answering any query in O(1) time is trivial if we allow $O(n^2)$ time and space preprocessing.

Let us show the following lemma.

Let us show the following lemma.

Lemma

The RMQ problem can be solved in O(1) time after $O(n \log n)$ time and space preprocessing.

Let us show the following lemma.

Lemma

The RMQ problem can be solved in O(1) time after $O(n \log n)$ time and space preprocessing.

We apply the well-known doubling technique for preprocessing.

Let us show the following lemma.

Lemma

The RMQ problem can be solved in O(1) time after $O(n \log n)$ time and space preprocessing.

We apply the well-known doubling technique for preprocessing.

For all $k = 0, 1, ..., \log n$ construct:

$$B_k[i] = \min\{A[i], A[i+1], \dots, A[i+2^k-1]\}.$$

Let us show the following lemma.

Lemma

The RMQ problem can be solved in O(1) time after $O(n \log n)$ time and space preprocessing.

We apply the well-known doubling technique for preprocessing.

For all $k = 0, 1, ..., \log n$ construct:

$$B_k[i] = \min\{A[i], A[i+1], \dots, A[i+2^k-1]\}.$$

How?

Let us show the following lemma.

Lemma

The RMQ problem can be solved in O(1) time after $O(n \log n)$ time and space preprocessing.

We apply the well-known doubling technique for preprocessing.

For all $k = 0, 1, ..., \log n$ construct:

$$B_k[i] = \min\{A[i], A[i+1], \dots, A[i+2^k-1]\}.$$

How? $B_0[i] = A[i]$ and $B_{k+1}[i] = \min\{B_k[i], B_k[i+2^k]\}$, for all i.

And now the querying part.

And now the querying part.

Two cases:

And now the querying part.

Two cases:

Fragment of length 2^k : Trivial, use B;

And now the querying part.

Two cases:

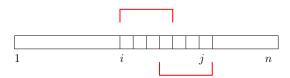
- Fragment of length 2^k : Trivial, use B;
- Otherwise, we can cover any range with two power-of-2 ranges.

And now the querying part.

Two cases:

- Fragment of length 2^k : Trivial, use B;
- ► Otherwise, we can cover any range with two power-of-2 ranges.

Compute $k = \lfloor \log(j - i + 1) \rfloor$.

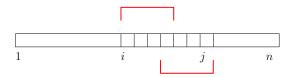


And now the querying part.

Two cases:

- Fragment of length 2^k : Trivial, use B;
- Otherwise, we can cover any range with two power-of-2 ranges.

Compute $k = \lfloor \log(j - i + 1) \rfloor$.



Return min $\{B_k[i], B_k[j-2^k+1]\}$ in O(1) time!

Let us show the following lemma.

Let us show the following lemma.

Lemma

The RMQ problem can be solved in $O(\log n)$ time after O(n) time and space preprocessing.

Let us show the following lemma.

Lemma

The RMQ problem can be solved in $O(\log n)$ time after O(n) time and space preprocessing.

(Segment tree.)

Let us show the following lemma.

Lemma

The RMQ problem can be solved in $O(\log n)$ time after O(n) time and space preprocessing.

(Segment tree.)

We apply the well-known micro-macro decomposition technique.

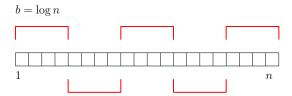
Let us show the following lemma.

Lemma

The RMQ problem can be solved in $O(\log n)$ time after O(n) time and space preprocessing.

(Segment tree.)

We apply the well-known micro-macro decomposition technique.



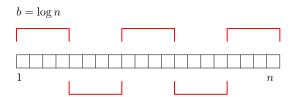
Let us show the following lemma.

Lemma

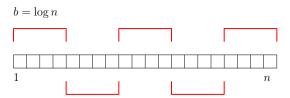
The RMQ problem can be solved in $O(\log n)$ time after O(n) time and space preprocessing.

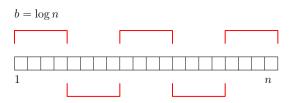
(Segment tree.)

We apply the well-known *micro-macro decomposition* technique.



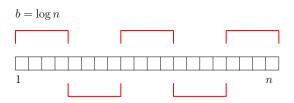
Decompose array A into blocks of length $b = \log n_0$





► Construct a new array A':

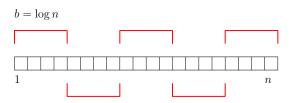
$$A'[i] = \min\{A[i \cdot b + 1], A[i \cdot b + 2], \dots, A[(i + 1) \cdot b]\}.$$



► Construct a new array A':

$$A'[i] = \min\{A[i \cdot b + 1], A[i \cdot b + 2], \dots, A[(i + 1) \cdot b]\}.$$

▶ Build the previously described structure for $A'[1...\frac{n}{\log n}]$.

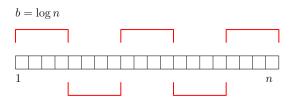


► Construct a new array A':

$$A'[i] = \min\{A[i \cdot b + 1], A[i \cdot b + 2], \dots, A[(i + 1) \cdot b]\}.$$

▶ Build the previously described structure for $A'[1...\frac{n}{\log n}]$.

How much time and space do we need?

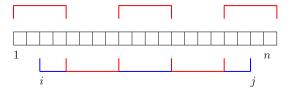


► Construct a new array A':

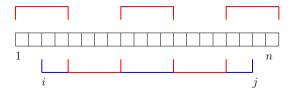
$$A'[i] = \min\{A[i \cdot b + 1], A[i \cdot b + 2], \dots, A[(i + 1) \cdot b]\}.$$

▶ Build the previously described structure for $A'[1...\frac{n}{\log n}]$.

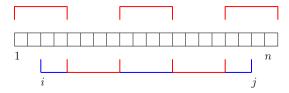
How much time and space do we need? $O(\frac{n}{\log n}\log(\frac{n}{\log n}))=O(n)$.



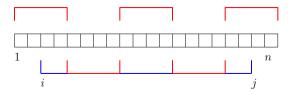
Let i, j be a query (Notice: endpoints are inside blocks).



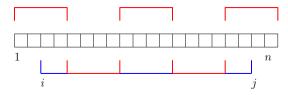
We do not have the min in the prefix and suffix of every block.



- We do not have the min in the prefix and suffix of every block.
- ▶ For each block, precompute it: O(n) time and space!

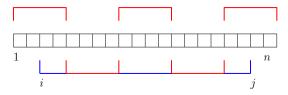


- ▶ We do not have the min in the prefix and suffix of every block.
- ▶ For each block, precompute it: O(n) time and space!
- For the rest: use the structure we have built for A'.



- ▶ We do not have the min in the prefix and suffix of every block.
- ▶ For each block, precompute it: O(n) time and space!
- For the rest: use the structure we have built for A'.
- Now any such query takes O(1) time.

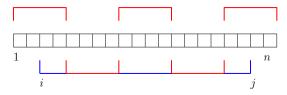
Let i, j be a query (Notice: endpoints are inside blocks).



- ▶ We do not have the min in the prefix and suffix of every block.
- ▶ For each block, precompute it: O(n) time and space!
- For the rest: use the structure we have built for A'.
- Now any such query takes O(1) time.

Any problems?

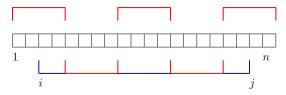
Let i, j be a query (Notice: endpoints are inside blocks).



- ▶ We do not have the min in the prefix and suffix of every block.
- ▶ For each block, precompute it: O(n) time and space!
- For the rest: use the structure we have built for A'.
- Now any such query takes O(1) time.

Any problems? Yes!

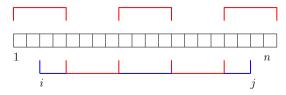
Let i, j be a query (Notice: endpoints are inside blocks).



- ▶ We do not have the min in the prefix and suffix of every block.
- ▶ For each block, precompute it: O(n) time and space!
- For the rest: use the structure we have built for A'.
- Now any such query takes O(1) time.

Any problems? Yes! When i, j are fully contained in a single block.

Let i, j be a query (Notice: endpoints are inside blocks).



- ▶ We do not have the min in the prefix and suffix of every block.
- ▶ For each block, precompute it: O(n) time and space!
- For the rest: use the structure we have built for A'.
- Now any such query takes O(1) time.

Any problems? Yes! When i, j are fully contained in a single block.

Solution: Naïve search in block gives $O(\log n)$ -time queries!

OK. Now it is time to show the breakthrough.

OK. Now it is time to show the breakthrough.

Theorem (Bender and Farach-Colton, LATIN 2000)

The RMQ problem can be solved in O(1) time after O(n) time and space preprocessing.

OK. Now it is time to show the breakthrough.

Theorem (Bender and Farach-Colton, LATIN 2000)

The RMQ problem can be solved in O(1) time after O(n) time and space preprocessing.

▶ We only have to deal with the strictly-inside-a-block case.

OK. Now it is time to show the breakthrough.

Theorem (Bender and Farach-Colton, LATIN 2000)

The RMQ problem can be solved in O(1) time after O(n) time and space preprocessing.

- ▶ We only have to deal with the strictly-inside-a-block case.
- ▶ We will show how to do that for a very restricted case:

$$|A[i+1] - A[i]| = 1$$

OK. Now it is time to show the breakthrough.

Theorem (Bender and Farach-Colton, LATIN 2000)

The RMQ problem can be solved in O(1) time after O(n) time and space preprocessing.

- ▶ We only have to deal with the strictly-inside-a-block case.
- ▶ We will show how to do that for a very restricted case:

$$|A[i+1] - A[i]| = 1$$

▶ We will then explain why this restricted case is sufficient!

Assume: |A[i+1] - A[i]| = 1.

Assume: |A[i+1] - A[i]| = 1.

Assume: |A[i+1] - A[i]| = 1.

Observation: If two arrays $X[1 \dots k]$, $Y[1 \dots k]$ differ by some fixed value at each position; i.e. there is a c such that X[i] = Y[i] + c for every i, then all RMQ answers will be the same for X and Y.

Normalize blocks by subtracting the initial offset from every element.

Assume: |A[i+1] - A[i]| = 1.

- Normalize blocks by subtracting the initial offset from every element.
- ▶ Choose $b = 1/2 \cdot \log n$ (instead of $b = \log n$).

Assume: |A[i+1] - A[i]| = 1.

- Normalize blocks by subtracting the initial offset from every element.
- ▶ Choose $b = 1/2 \cdot \log n$ (instead of $b = \log n$).
- ▶ A normalized block is a vector of length b-1.

Assume: |A[i+1] - A[i]| = 1.

- Normalize blocks by subtracting the initial offset from every element.
- ▶ Choose $b = 1/2 \cdot \log n$ (instead of $b = \log n$).
- ▶ A normalized block is a vector of length b-1.
- ▶ There are $2^{b-1} = \Theta(\sqrt{n})$ distinct vectors.

Assume: |A[i+1] - A[i]| = 1.

- Normalize blocks by subtracting the initial offset from every element.
- ▶ Choose $b = 1/2 \cdot \log n$ (instead of $b = \log n$).
- ▶ A normalized block is a vector of length b-1.
- ▶ There are $2^{b-1} = \Theta(\sqrt{n})$ distinct vectors.
- Precompute and store all answers!

Assume: |A[i+1] - A[i]| = 1.

Assume: |A[i+1] - A[i]| = 1.

Observation: If two arrays $X[1 \dots k]$, $Y[1 \dots k]$ differ by some fixed value at each position; i.e. there is a c such that X[i] = Y[i] + c for every i, then all RMQ answers will be the same for X and Y.

• Create $\Theta(\sqrt{n})$ tables.

Assume: |A[i+1] - A[i]| = 1.

- Create $\Theta(\sqrt{n})$ tables.
- ▶ In each table put all $(\log n/2)^2$ answers to all in-block queries.

Assume: |A[i+1] - A[i]| = 1.

- Create $\Theta(\sqrt{n})$ tables.
- ▶ In each table put all $(\log n/2)^2$ answers to all in-block queries.
- ▶ $\Theta(\sqrt{n}\log^2 n)$ extra preprocessing.

Assume: |A[i+1] - A[i]| = 1.

- Create $\Theta(\sqrt{n})$ tables.
- ▶ In each table put all $(\log n/2)^2$ answers to all in-block queries.
- ▶ $\Theta(\sqrt{n}\log^2 n)$ extra preprocessing.
- Query time is O(1).

Assume: |A[i+1] - A[i]| = 1.

- Create $\Theta(\sqrt{n})$ tables.
- ▶ In each table put all $(\log n/2)^2$ answers to all in-block queries.
- ▶ $\Theta(\sqrt{n}\log^2 n)$ extra preprocessing.
- Query time is O(1).
- ▶ Preprocessing time and space is O(n).

Assume: |A[i+1] - A[i]| = 1.

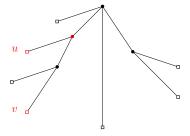
Observation: If two arrays $X[1 \dots k]$, $Y[1 \dots k]$ differ by some fixed value at each position; i.e. there is a c such that X[i] = Y[i] + c for every i, then all RMQ answers will be the same for X and Y.

- Create $\Theta(\sqrt{n})$ tables.
- ▶ In each table put all $(\log n/2)^2$ answers to all in-block queries.
- ▶ $\Theta(\sqrt{n}\log^2 n)$ extra preprocessing.
- Query time is O(1).
- ▶ Preprocessing time and space is O(n).

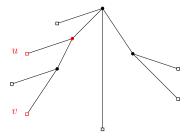
We still need to explain why this restricted case is sufficient!

The lowest common ancestor (LCA) of two nodes u and v is the deepest node that is an ancestor of both u and v.

The lowest common ancestor (LCA) of two nodes u and v is the deepest node that is an ancestor of both u and v.



The lowest common ancestor (LCA) of two nodes u and v is the deepest node that is an ancestor of both u and v.



Definition

Given a rooted tree T, preprocess T so that the LCA of u and v can be computed efficiently.

Given array A we can build the **Cartesian tree** T of A:

Given array A we can build the **Cartesian tree** T of A:

▶ The root is a minimum element.

Given array A we can build the **Cartesian tree** T of A:

- ▶ The root is a minimum element.
- Removing this element splits the array into two.

Given array A we can build the **Cartesian tree** T of A:

- ▶ The root is a minimum element.
- Removing this element splits the array into two.
- Recurse on the two subarrays.

Given array A we can build the **Cartesian tree** T of A:

- ▶ The root is a minimum element.
- Removing this element splits the array into two.
- Recurse on the two subarrays.

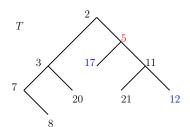
Querying:

Given array A we can build the **Cartesian tree** T of A:

- ▶ The root is a minimum element.
- Removing this element splits the array into two.
- Recurse on the two subarrays.

Querying:

$$A = [8, 7, 3, 20, 2, \textcolor{red}{17, 5}, 21, 11, \textcolor{red}{12}]$$



Linear-Time Reduction: LCA to RMQ

Linear-Time Reduction: LCA to RMQ

Given a rooted tree T on n nodes we construct:

Given a rooted tree T on n nodes we construct:

▶ E[1...2n-1]: node labels traversed in an Euler Tour (DFS).

Given a rooted tree T on n nodes we construct:

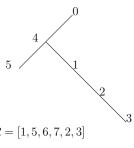
- ▶ E[1...2n-1]: node labels traversed in an Euler Tour (DFS).
- ▶ L[1...2n-1]: the distance of E[i] from the root.

Given a rooted tree T on n nodes we construct:

- ▶ E[1...2n-1]: node labels traversed in an Euler Tour (DFS).
- ▶ L[1...2n-1]: the distance of E[i] from the root.
- ▶ $R[i] = \min\{j : E[j] = i\}$ (first occurrence of E[i] in the tour).

Given a rooted tree T on n nodes we construct:

- ▶ E[1...2n-1]: node labels traversed in an Euler Tour (DFS).
- ▶ L[1...2n-1]: the distance of E[i] from the root.
- ▶ $R[i] = \min\{j : E[j] = i\}$ (first occurrence of E[i] in the tour).



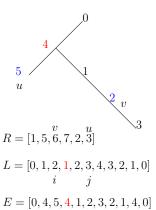
$$R = [1, 5, 6, 7, 2, 3]$$

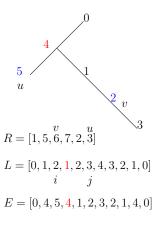
$$L = \left[0, 1, 2, 1, 2, 3, 4, 3, 2, 1, 0\right]$$

$$E = [0, 4, 5, 4, 1, 2, 3, 2, 1, 4, 0]$$

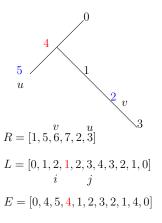
Querying:

- ▶ LCA(u, v) is translated to $E[RMQ_L(R[u], R[v])]$.
- LCA(5,2) is $E[RMQ_L(R[u], R[v])] = E[RMQ_L(3,6)] = E[4] = 4.$





Any observation about array *L*?



Any observation about array L?

Yes:
$$|L[i+1] - L[i]| = 1$$
.

Let's put things together:

Reduce RMQ problem to the LCA problem.

- Reduce RMQ problem to the LCA problem.
- Reduce LCA problem back to the RMQ problem.

- ▶ Reduce RMQ problem to the LCA problem.
- Reduce LCA problem back to the RMQ problem.
- ► The reduction leads to a restricted RMQ problem.

- Reduce RMQ problem to the LCA problem.
- Reduce LCA problem back to the RMQ problem.
- ► The reduction leads to a restricted RMQ problem.
- Solve it and we are done!

Let's put things together:

- Reduce RMQ problem to the LCA problem.
- Reduce LCA problem back to the RMQ problem.
- ► The reduction leads to a restricted RMQ problem.
- Solve it and we are done!

Theorem (Bender and Farach-Colton, LATIN 2000)

The RMQ problem can be solved in O(1) time after O(n) time and space preprocessing.

Let's put things together:

- ▶ Reduce RMQ problem to the LCA problem.
- Reduce LCA problem back to the RMQ problem.
- ► The reduction leads to a restricted RMQ problem.
- Solve it and we are done!

Theorem (Bender and Farach-Colton, LATIN 2000)

The RMQ problem can be solved in O(1) time after O(n) time and space preprocessing.

Theorem (Bender and Farach-Colton, LATIN 2000)

The LCA problem can be solved in O(1) time after O(n) time and space preprocessing.

Note

Lecture by P. Charalampopoulos. I slightly edited the slides, so I am responsible for any errors in them.