Modal Separation of Fixpoint Formulae
Jean Christoph Jung & ®

TU Dortmund University

Jedrzej Kolodziejski & @®

TU Dortmund University

—— Abstract

Modal separability for modal fixpoint formulae is the problem to decide for two given modal fixpoint

formulae ¢, ¢’ whether there is a modal formula v that separates them, in the sense that ¢ |= 1 and
¥ = —¢’. We study modal separability and its special case modal definability over various classes of
models, such as arbitrary models, finite models, trees, and models of bounded outdegree. Our main
results are that modal separability is PSPACE-complete over words, that is, models of outdegree < 1,
ExpTIME-complete over unrestricted and over binary models, and 2-ExpTIME-complete over models
of outdegree bounded by some d > 3. Interestingly, this latter case behaves fundamentally different
from the other cases also in that modal logic does not enjoy the Craig interpolation property over
this class. Motivated by this we study also the induced interpolant existence problem as a special
case of modal separability, and show that it is CONExPTIME-complete and thus harder than validity
in the logic. Besides deciding separability, we also investigate the problem of efficient construction of
separators. Finally, we consider in a case study the extension of modal fixpoint formulae by graded
modalities and investigate separability by modal formulae and graded modal formulae.

2012 ACM Subject Classification Theory of computation — Modal and temporal logics
Keywords and phrases Modal Logic, Fixpoint Logic, Separability, Interpolation

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.63

1 Introduction

For given logics £, LT, the L-separability problem for LT is to decide given two LT -formulae
©, ¢’ whether there is an L-formula ¢ that separates ¢ and ¢’ in the sense that ¢ =4 and
¥ | —¢'. Obviously, a separator can only exist when ¢ and ¢’ are mutually exclusive, and
the problem is only meaningful when £ is less expressive than £T. Intuitively, a separator
formulated in a “simpler” logic £ explains a given inconsistency in a “complicated” logic £7.
Note that, for logics £T closed under negation, £-separability generalizes the £-definability
problem for L1: decide whether a given £T-formula is equivalent to an £-formula. Indeed,
© € LT is equivalent to an L-formula iff ¢ and —¢ are L-separable. Since separability is more
general than definability, solving it requires an even better understanding of the logics under
consideration. Both separability and definability are central problems with many applications
in computer science. As seminal work let us only mention definability and separability of
regular word languages by first-order logic [26, 29, 9].

In this paper we study definability and separability of formulae of the modal u-calculus
uML [27, 20] by formulae in propositional modal logic ML. ML is the extension of ML with
fixpoints that encompasses virtually all specification languages such as PDL [12] and LTL
and CTL [3]. Let us consider an example.

» Example 1. Consider the following properties Py, Po, P3 of vertex-labelled trees:

P;: there is an infinite path starting in the root on which each point satisfies a;

P5: on every path there are only finitely many points satisfying a;

Ps3: on every path at most two points satisfy a.
The properties are expressible in ¢xML but not in ML, and both P;, P, and Pj, P3 are mutually
exclusive. The properties P;, P3 are separated by the ML-formula ¢ = a A O(a A $a) which

© Jean Christoph Jung and Jedrzej Kolodziejski;

licensed under Creative Commons License CC-BY 4.0
42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michat Pilipczuk, Elaine Pimentel, and Nguyen Kim Thang; Article No. 63; pp. 63:1-63:32
Leibniz International Proceedings in Informatics
. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:jean.jung@tu-dortmund.de
mailto:jedrzej.kolodziejski@tu-dortmund.de
https://doi.org/10.4230/LIPIcs.STACS.2025.63
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

63:2

Modal Separation of Fixpoint Formulae

‘ all models ‘ words binary trees ‘ d-ary trees, d > 3
ML-definability ExPTIME [24] PSPACE | EXPTIME [24] EXPTIME [24]
ML-separability ExPTIME PSpPACE ExpTIME 2-ExpTIME
separator construction double exp. single exp. double exp. triple exp.
ML interpolant existence always always always CONExPTIME

Table 1 Overview of our results. All complexity results are completeness results.

expresses that there is a path starting with three points satisfying a. On the other hand,
no ML-formula separates P;, P,. The intuitive reason for this is that any ML-formula
only sees trees up to depth [¢|, and one can find two trees with properties Pj, P, which
nonetheless look the same up to depth |¢]. <

We explore the definability and separability problems over several classes of models
relevant for computer science: all models, words, trees of bounded or unbounded outdegree;
as well as restrictions of all these classes to finite models. On top of analyzing the decision
problems, we also address the problem of constructing efficient definitions and separators
whenever they exist. The starting point for our research is the seminal paper of Otto [24],
where he solves modal definability over models of bounded and unbounded outdegree. In
this paper, we continue this line of research and establish a fairly complete and interesting
picture. Table 1 summarizes our results. We now explain its content further.

The first line essentially repeats Otto’s results; we only add the observation that ML-
definability over words is PSPACE-complete. Interestingly, separability is substantially more
difficult. The case of words is the easiest one, both in terms of computational complexity
and required arguments. Next come the cases of binary and of unrestricted trees. These two
classes possess some nice structural properties which (although true for different reasons)
enable a common algorithmic treatment. Finally, the cases of trees with outdegree bounded
by a number d > 3 enter the stage. These trees lack the good properties essential for previous
constructions which results in higher computational complexity. The hardness result for
d > 3 is interesting for two reasons. First, as it is entirely standard to encode trees of higher
outdegree into binary ones, one could expect the ternary (and higher) case to have the
same complexity as the binary one. And second, even though there are known cases when
separation is provably harder than definability (regularity of visibly pushdown languages is
decidable [23, Theorem 19] but regular separability thereof is not [19, Theorem 2.4]), to the
best of our knowledge our results are the only such case known in logic.

The complexity landscape for deciding separability is also reflected in the maximal sizes of
the separators that we construct. Relying on the well-known connection of ML to automata,
we provide effective constructions for the cases of all models, words, and binary trees. It
is worth mentioning that equally effective constructions for definability over all models are
given in [22], but they do not work for separability. The ternary case follows from a general
argument. Our construction of separators over words is optimal. Under mild assumptions
(there are at least two modalities) the constructions over binary and over unrestricted trees
are optimal as well, but we leave it open whether these assumptions are needed for the lower
bounds. In the case of ternary and higher outdegree trees we only conjecture optimality of
the constructed separators.

Finally, we observe that ML lacks the Craig interpolation property over trees of outdegree
bounded by d > 3. Recall that a Craig interpolant for ¢ = ¢’ in some logic L is a formula
1 € L only using the common symbols of ¢ and ¢’ and such that ¢ = ¥ = ¢'. A logic
satisfies the Craig interpolation property (CIP) if a Craig interpolant of ¢ |= ¢ always exists.

J.C. Jung and J. Kotodziejski

It is known that ML enjoys CIP over all models and over words [15] and it follows from
our techniques that this transfers to binary trees. In contrast and as mentioned above, over
ternary and higher-arity trees ML lacks the CIP. It is worth mentioning that modal logic over
frames of arity bounded by some d has been studied under the name K & alt; [4]. Our results
imply that K @ alt; enjoys CIP iff d < 2. Motivated by the lack of CIP over higher-arity
trees, we study the induced interpolant existence problem — determining whether two given
ML-formulae ¢, ¢’ admit a Craig interpolant — as a special case of separability. We show it to
be CONEXPTIME-complete over higher arity trees, and thus harder than validity. Interpolant
existence has recently been studied for other logics without CIP [18, 1].

As an application of our results for d-ary trees with d > 3 we additionally present a case
study: separability in the graded setting in which we allow counting modalities saying “there
are at least k children such that [...]” [11]. Counting modalities are a standard extension
of modal logic that is especially relevant in applications in knowledge representation for
conceptual modeling [2]. We show that ML-separability of graded pML is 2-EXPTIME-
complete, while it is EXPTIME-complete if we allow counting modalities also in the separator.
The intuitive reason for the hardness in the former case is that trees of bounded arity are
definable in graded uML. This former case is also related with a recent study about separating
logics supporting counting quantifiers by logics without these [21].

It is worth to mention that ML-definability of pML-formulae generalizes the boundedness
problem which asks whether a formula with a single fixpoint is equivalent to a modal formula.
Boundedness has been studied for other logics such as monadic-second order logic [6],
datalog [16], and the guarded fragment of first-order logic [5]. Our paper is an extension of
the preliminary paper [17].

The paper is organized as follows. After this introduction 1, we set notation and recall
basic facts in the preliminary Section 2. Next, we introduce some topic-specific terminology,
discuss a relevant construction of Otto, and solve the case of all models in Section 3. In the
following Sections 4 and 5 we deal with unary and binary trees, and in Section 6 we solve the
most challenging case of trees of outdegree bounded by d > 3. Section 7 applies our results to
the case with graded modalities. The last Section 8 contains conclusions and final remarks.

2 Preliminaries

We recall the main notions about modal logic ML and the modal p-calculus uML. For the
rest of this paper fix disjoint, countably infinite sets Prop of atomic propositions and Var of
variables. The syntax of uML is given by the rule

pu=T| TV |leAp|Op|Op |z | pre|vee

where 7 € Prop and « € Var. We assume that formulae of ML are in a normal form such that
every x € Var appears at most once in a formula, and if it does appear then its appearance
has a unique superformula 1 beginning with ux or vz. Modal logic ML is defined as the
fragment of pML with no fixpoint operators p and v nor variables. Both in ML and uML, we
use abbreviations like T (for a V —a for some a € Prop), O™ (for a formula & ... Oy with n
leading <©’s), and —¢. We denote with sig(¢) the set of propositions that occur in ¢, and
recall that the modal depth of an ML formula is the maximal nesting of &, 0. With ML™ we
denote the class of all ML-formulae of modal depth at most n, and with ML) we denote its
subclass restricted to signature o. The size || of a formula ¢ is the length of ¢ represented
as a string. This choice of the simplest possible measure of size does not matter for most of
our results. We will briefly discuss alternative notions of size in the concluding Section 8.

63:3

STACS 2025

63:4

Modal Separation of Fixpoint Formulae

Both ML and puML are interpreted in pointed Kripke structures. More formally, a
model M is a quadruple M = (M, vy, —,val) consisting of a set M called its universe, a
distinguished point v; € M called the root, an accessibility relation — C M x M, and a
valuation val : M — P(Prop).

The semantics of uML can be defined in multiple equivalent ways. The one most convenient
for us is through parity games (see [32] for an introduction). Given a model M and a formula
© € uML we define a semantic game G(M, ¢) played between players Jve and Vdam. The
positions are M x SubFor(¢). The moves depend on the topmost connective. From a position
of the shape (v,9 V ¢') or (v, AY’) it is allowed to move to either (v,%) or (v,v’). From
(v,09) and (v,0¢) the allowed moves lead to all (w,) such that v — w. In position
(v,7) or (v,—7) the game stops and Jve wins iff v satisfies the formula component 7 or —7,
respectively. From (v, px.1) and (v, px.1) the game moves to (v,), and from (v, x) to (v, 1))
where 1) is the unique superformula of x beginning with px or vx. Jve owns positions whose
formula component has V or < as the topmost connective and Ydam owns all other positions.
Jve wins an infinite play 7 if the outermost subformula seen infinitely often in 7 begins with
v. We say that M, v satisfies ¢ and write M,v |= ¢ if Fve wins the game G(M, ¢) from
position (v, ¢). Since M is by definition pointed, we abbreviate M, vy = ¢ with M = .

The same symbol denotes entailment: ¢ =t means that every model of ¢ is a model of
1. In the case only models from some fixed class C are considered we talk about satisfiability
and entailment over C. Let £ be a subset of uML such as ML or ML]. If two models M
and N satisfy the same formulae of £ then we call them L-equivalent and write M =, N.

In the paper we will study models of bounded and unbounded outdegree. The outdegree
of a point w € M in a model M = (M, vr,—,val) is the number of successors of w in the
underlying directed graph Gy = (M, —). We say that M has finite outdegree if every point
has finite outdegree and bounded outdegree if there is a finite uniform upper bound d on the
outdegree of its points. In the latter case, we will call M d-ary, and binary or ternary if
d=2ord=3. If d=1, then we call M a word. A d-ary model is full if each of its nodes is
either a leaf (i.e. has no children) or has precisely d children. A model M is a tree if G is a
(directed) tree with root v;. We denote with T¢ the class of all d-ary tree models. Both ML
and pML are invariant under bisimulation, and every (d-ary) model is bisimilar to a (d-ary)
tree. Hence, we do not loose generality by only looking at tree models.

A prefix of a tree is a subset of its universe closed under taking ancestors. When no
confusion arises we identify a prefix N C M with the induced subtree A/ of M that has N
as its universe. The depth of a point is the distance from the root. The prefix of depth n
(or just n-prefiz) is the set of all points at depth at most n and is denoted by M|, (and the
corresponding subtree by M).

Bisimulations

We define bisimulations and bisimilarity for trees, assuming for convenience that bisimulations
only link points at the same depth. Let M, M’ be trees and Z C M x M’ a relation between
M and M’ that relates only points of the same depth. Then, Z is a bisimulation between M
and M’ if it links the roots vy Zv}, and for every wZw'’ the following conditions are satisfied:
(atom) val(w) = val'(w’),

(forth) for every v € M with w — v there is a v € M’ with w’ — v’ and vZv’, and
(back) for every v’ € M’ with w’ — v’ there is a v € M with w — v and vZv'.

A functional bisimulation (also known as bounded morphism) is a function whose graph is a
bisimulation. If Z is a functional bisimulation from M to M’ then we write Z : M 23 M’ and
call M’ a bisimulation quotient of M. The bisimilarity quotient of M is a quotient M’ of M

J.C. Jung and J. Kotodziejski

such that if Z’ : M’ — M" then M’ = M". Tt follows from analogous results for arbitrary
models that every tree M € T? has a unique (up to isomorphism) bisimilarity quotient
M’ € T¢ and that two trees are bisimilar iff their bisimilarity quotients are isomorphic.

Further, for every n € N and every subset ¢ C Prop of the signature we consider a
restricted variant of bisimulations called (o, n)-bisimulations. In a (o, n)-bisimulation the
atom condition is only checked with respect to o and the back and forth conditions only for
points at depth smaller than n. Formally, a relation Z C M x M’ is a (o, n)-bisimulation
if it is a bisimulation between the n-prefixes of the o-reducts of M, M’. We call a (o, n)-
bisimulation between M, M’ a (o, n)-isomorphism if it is bijective on the n-prefixes of
M, M. We write M 7 M’ if there exists a (o, n)-bisimulation between M and M’ and
M =2 M’ if there is a (o, n)-isomorphism between them. Crucially, over every class C of
models and for every finite o the equivalences =y and £ coincide, for every n.

Automata

We exploit the well-known connection of uML and automata that read tree models. A
nondeterministic parity tree automaton (NPTA) is a tuple A = (Q, X, g1, 0, rank) where @ is
a finite set of states, ¢; € @ is the initial state, ¥ = P(o) for some finite set o C Prop, rank
assigns each state a priority, and J is a transition function of type:

5:Qx ¥ = P,

where Q=% denotes the set of all tuples over @ of length at most d. A run of A on a tree
M is an assignment p : M — @ sending the root of the tree to ¢; and consistent with
d in the sense that (p(v1),...,p(vk)) € 6(p(v),val(v) N o) for every point v with children
V1, ..., V. On occasion when considering trees of unbounded outdegree we will use automata
with transition function of type § : Q x ¥ — P(P(Q)). Then, consistency of p with §
means that {p(v') | v" € V} € d(p(v),val(v) N o) for every v with a set V' of children. In
either case, we call the run p accepting if for every infinite path vy, vy ... in M the sequence
rank(p(vp)), rank(p(vy)), . . . satisfies the parity condition. We write M = A in case A has an
accepting run on M. An automaton that is identical to A except that the original initial
state is replaced with ¢ is denoted A[gs <+ g]. The size of an automaton A is the number of
its states and is denoted by |A|.

An NPTA A is equivalent to a formula ¢ € uML over a class C of trees when M = ¢ iff
M E A for every tree M € C. We rely on the following classical result (see for example the
discussion in [31] and the well-presented Dealternation Theorem 5.7 in [7]):

» Theorem 2. For every uML-formula ¢ and class C of trees, we can construct an NPTA
with exponentially many states equivalent to ¢ over C. The construction takes exponential
time when C C T? for some d, and doubly exponential time in the unrestricted case.

3 Foundations of Separability

We start with recalling the notion of separability and discuss some of its basic properties.

» Definition 3. Assume a subset L of all uML formulae. Given p,¢’ € uML, an L-separator
of v, ¢’ is a formula ¥ € L with ¢ = and ¢ = ~¢'. If additionally sig(v)) C o for some
signature o, ¥ is called an L -separator.

The L-separability problem is to determine, given formulae ¢, ¢’ € uML and a signature o, if
they admit an L,-separator ¢. L-definability is the special case of L-separability in which

63:5

STACS 2025

63:6

Modal Separation of Fixpoint Formulae

¢ = =, since an L-separator of ¢, -y is equivalent to ¢. All notions can be relativized to a
class C of models by considering entailment over that class. We investigate ML-separability
and ML-definability over different classes of models. The reader may have expected the
problems to be defined without restrictions on o, but in fact such versions of the problems
are special instances of our problems with o = sig(y) Usig(¢’). Conversely, all lower bounds
already hold for such special instances.

We start with observing that, by the tree model property and the finite model property
of uML, v is an ML,-separator of ¢, ¢’ (over all models) iff ¢ is an ML,-separator of ¢, ¢’
over trees iff ¢ is an ML,-separator of ¢, ¢’ over finite models. Thus, separability coincides
over all these classes. Moreover, with the help of the uML-formula 0., = vz.Ox expressing
the existence of an infinite path originating in the root, ML-separability over finite trees
reduces to ML-separability over all models. More formally:

» Lemma 4. Let p, ¢’ € uML and » € ML. Then v is an ML, -separator of p, ¢’ over finite
trees iff 1 is an ML, -separator of @ A —0se, @’ A —~0us. This is also true inside T¢, for d € N.

This lemma allows us to transfer all upper bounds obtained in the paper also to the restrictions
of the classes to finite models. The lower bounds do not follow from this lemma, but analyzing
the proofs yields that they actually work as well. Thus, in the rest of the paper we focus on
the classes of all models and T?, for d € N.

The starting point for the technical developments in the paper are model-theoretic char-
acterizations for separability. Similar to what has been done in the context of interpolation,
see for example [28], they are given in terms of joint consistency, which we introduce next.
Let R be a binary relation on some class of models, such as (o, n)-isomorphism 27 or
ML -equivalence =mLz. We call two formulae ¢, ¢’ joint consistent up to R (in short joint
R-consistent) if there are models M = ¢ and M’ = ¢’ with R(M, M’). For technical
reasons we will sometimes also talk about joint consistency of automata A, A" in place of
formulae ¢, ¢’. Joint R-consistency over a class C of models is defined by only looking at
models from C. Clearly, if R C R and C’' C C then joint R’-consistency over C’ implies

joint R-consistency over C. We use the following standard equivalence:
¢, " are not ML -separable over C <= ¢, ¢’ are joint £]-consistent over C. (Base)

for every ¢, ¢’ € uML, n € N, finite o, and class C. The implication from right to left is
immediate. The opposite one follows from the observation that for every n € N and finite o
there are only finitely many equivalence classes of <7, and each such class is fully described
with a single modal formula.

Let us illustrate how Equivalence (Base) is used to solve ML-separability. Let ¢1 and @2 be
pML-formulae expressing the respective properties P; and Py from Example 1. Let M be an
infinite path in which every point satisfies a, and let M,, be a finite path of length n in which
every point satisfies a. Then, for each n the models M, M,, witness joint £"-consistency of
©1, p2. By Equivalence (Base) this means that o1, o are not ML"-separable for any n, and
thus not ML-separable at all.

Definability is a special case of separability. Since the tools used for solving definability
are a starting point for our work, we recall them now.

Modal Definability: A Recap

In his seminal paper [24] Otto showed that ML-definability of pML-formulae is EXPTIME-
complete over all models and over T? for every d > 2.

J.C. Jung and J. Kotodziejski

» Theorem 5. [2/, Main Theorem and Proposition 5] Over the class of all models, as well
as over T for every d > 2, ML-definability of uML-formulae is EXPTIME-complete.

We start by recalling and rephrasing Otto’s construction and fixing a small mistake in the
original proof. The lower bound follows by an immediate reduction from satisfiability of
puML-formulae. We look at the upper bound. The first step is the following lemma, which is
the heart of [24, Lemma 2].

» Lemma 6. For every ¢ € uML and n,d € N the following are equivalent:

1. @, —p are joint ©"-consistent over T?.

2. p,— are joint =" -consistent over TY.

The lemma is true, but its proof in [24] is mistaken. The problem there is that the construction
duplicates subtrees and hence may turn d-ary models into ones with outdegree greater than d.
We present an easy alternative proof.

Proof. Only the implication 1 = 2 is nontrivial. To prove it assume d-ary M = o, N = -
with M €7 A/ and assume towards contradiction that ¢, = are not ="-consistent over T<.
We have M = M7 = M’ where M? is the o-reduct of M, and M’ € T? is the bisimilarity
quotient of its n-prefix ./\/l‘f’n. By the assumption that ¢, ¢ are not joint =7-consistent,
M = ¢ implies M7 E ¢. By invariance of ¢ under <, this in turn implies M’ = ¢. We
construct N’ |= - symmetrically. By definition, M <" AN means that M7 and ./\/I‘Z are
bisimilar, which is equivalent to saying that their bisimilarity quotients M’ and N’ are
isomorphic, and hence (o, n)-isomorphic. Thus, M’, N7 witness joint =7~

over T¢, a contradiction. <

consistency of ¢, —p

Using automata-based techniques we to decide if Item 2 in Lemma 6 holds for all n.

» Proposition 7. For every parity automata A, A’ and d € N: A, A’ are joint = -consistent
over T for all n € N iff A, A" are joint =" -consistent over T¢ for m = |A| + |A'| + 1. The
latter condition can be checked in time polynomial in |A| + |A'|.

Proof. (Sketch) Due to well-known relativization techniques we do not loose generality by
only running A, A’ on full d-ary trees with no leaves. Let L be a language of finite full d-ary
trees over o such that M € L iff M is a prefix of a reduct of a model of A. Let L’ be an
analogous language for A’. The tallness of a finite tree is the minimal distance from the root
to a leaf. Observe that A, A’ are 22"-consistent over T¢ iff L N L’ contains a tree of tallness
n. Thus, it suffices to check if L N L’ contains trees of arbitrarily high tallness. To that
end construct an automaton B recognizing L N L’ of size polynomial in |A| + |A’|. An easy
pumping argument shows that the language L N L’ of B contains trees of arbitrarily high
tallness iff it contains a tree of tallness m = |B| + 1. To test the latter condition it is enough
to inductively compute a sequence S1 2 S D ... 2 S|gj41 of subsets of states of B, where 5;
is the set of all states ¢ such that Blgr <= ¢] recognizes a tree of tallness at least i. <

We are ready to solve ML-definability over T¢ in exponential time. Assume pML-formula
. For every n, we know by Equivalence (Base) that ¢ is equivalent over T¢ to some 1) € ML”
iff , ~p are not joint ="-consistent over T¢. By Lemma 6 this is equivalent to the lack of
joint 2"-consistency of ¢, =@ over T¢. By Theorem 2 we can compute exponentially-sized
automata A, A’ equivalent to ¢ and - over T¢. It follows that ¢ is not ML,-definable
over T? iff A, A’ are joint ="-consistent over T? for every n. The last condition is decided
using Proposition 7. The runtime of our algorithm is polynomial in |A| 4+ |A’|, and thus
exponential in |p|. This proves the part of Theorem 5 about T¢. The remaining part
concerning unrestricted models is a special case of Theorem 9, which we will prove next.

63:7

STACS 2025

63:8

Modal Separation of Fixpoint Formulae

Modal Separation: the Unrestricted Case

Over unrestricted models, separability turns out to be only slightly more complicated than
definability. Lemma 6 becomes false if = is replaced with arbitrary ¢’ (which would be the
statement relevant for separability). We have the following lemma, however.

» Lemma 8. For every ¢,¢" € uML and n € N the following are equivalent:
1. p, ¢’ are joint €7 -consistent over all models.

2. p, ¢ are joint =" -consistent over T?, where d = |p| + |¢'|.

Proof. The implication (1)<=(2) is immediate. To prove the other one (1)=-(2) consider an
intermediate property:

o, ¢’ are joint =!-consistent over all models. (1.5)

The implication (1)=-(1.5) can be read off from Otto’s original proof. The remaining one
(1.5)=(2) is a special case of a stronger claim which we prove later: the implication (3)=(4)
of Lemma 27. |

Lemma 8 allows us to solve ML-separability in exponential time.
» Theorem 9. Owver all models, ML-separability of uML-formulae is EXPTIME-complete.

Proof. The proof is almost the same as our proof of Theorem 5. The only difference is that
we consider an arbitrary ¢’ in place of =, and hence use Lemma 8 in place of Lemma 6. <«

Apart from deciding separability we also construct separators when they exists. Given a
subset £ of uML formulae, ¢ € pML, and ¢ € £, we call ¢ an L-uniform consequence of ¢ if
¥ |= 0 for every 6 € L such that ¢ |= 6. The notion relativizes to a fixed class C of models
by only considering entailment over that class. Observe that if o, ¢’ are L-separable and 1
is an L-uniform consequence of ¢ then v is an L-separator for ¢, ¢’. The same is true over
any class C.

Note that it follows from the proof of Theorem 9 that if ¢, ¢’ are ML-separable then
they admit a separator of modal depth n at most exponential in |p| + |¢/|. It follows
that constructing an ML,-separator for ¢, ¢’ boils down to constructing an ML -uniform
consequence of ¢. A naive construction which always works is to take the disjunction of all
ML -types consistent with ¢ over C. Here, by an ML] -type we mean a maximal consistent
subset of ML”. Since up to equivalence there are only finitely many formulae in ML, each
ML -type can be represented as a single ML -formula and the mentioned disjunction % is
well-defined. This construction is non-elementary in n over all models and doubly exponential
in n over models of bounded outdegree.

We present an efficient construction of ML) -uniform consequences. The construction
works over unrestricted models, over T! and over T? but not over T for d > 3. Since in the
following Section 4 we will provide a more efficient construction for T!, now we only look at
the unrestricted and binary case. For convenience, we construct ML) -uniform consequences
of automata instead of formulae, with definition adapted in an obvious way.

» Proposition 10. Let C be the class of all models or T?. Assume an NPTA A over C, a
signature o and n € N. An ML -uniform consequence of A over C can be constructed in
time |A|PIAD if C is the class of all models and in time 20014D if C = T2.

J.C. Jung and J. Kotodziejski

Proof. Let A be an NPTA. Let B = (Q, %, g1, J, rank) be an automaton of the same size
recognizing o-reducts of models of A. A formula ¢ is an ML) -uniform consequence of A over
C iff it is an ML"-uniform consequence of B over C. Thus, it suffices to construct the latter.

We construct v, ; for every ¢ € @ and n € N by induction on n € N. For the base case
we put:

ho,q = \/{ce Y | there is N € C with N = Blgs < ¢] and N |= ¢}

For the induction step define:

Unt1,q = \/ \/ cA v{wn,p | p €S}

ceX S€d(q,c)

where V& is an abbreviation for A,cgs OO A OV jcq 0. Assume C is either the class of all
models or T2. The construction preserves the following invariant:

M E 4 = there exists N' € C with NV |= Blgr <= ¢] and M <" N (1)

for every structure M € C. Hence, 1y, 4, is an ML} -uniform consequence of A over C. It is
routine to check that in either case the formula has the right size.

The proof of (1) proceeds by induction, with slightly different arguments in the cases of
binary and of unrestricted models. The details of this proof are found in Appendix A.1. It is
worth to point out, however, that the implication = from left to right would not be valid
over T with d > 3. >

Given the exponential construction of automata from Theorem 2 and the exponential
upper bound on modal depth n of separators, Proposition 10 yields an efficient construction
of separators.

» Theorem 11. If o, ¢’ are ML, -separable, then one can compute an ML, -separator in time
doubly exponential in |¢| + |¢].

It is not difficult to show that, in the presence of at least two accessibility relations <1, <o,
the construction is optimal: one can express in ML that the model embeds a full binary
tree of depth 2™ and in which each inner node has both a ¢1- and a $g-successor. Using
standard techniques, one can show that any modal formula expressing this property is of
doubly exponential size [13]. Whether having two accessibility relations is necessary for this
lower bound is an interesting question which we leave open.

It is interesting to note that the separators we compute are not the logically strongest
separators and, in fact, strongest separators do not even have to exist.

» Example 12. Consider ¢ = 0, from before and ¢ = O For every n € N, the modal
formula O™ T separates ¢ from ¢, and O™ T = O™ T whenever m > n.

The remaining open cases are the problems of ML-separability (and separator construction)
over T¢ for d > 1. We investigate the cases of unary (d = 1), binary (d = 2), and higher
maximal outdegree (d > 3) in turn. We emphasize that the outdegree d is not a part of the
input but rather a property of the considered class of models.

4 Unary Case

We first investigate ML-separability over T!, that is, models that are essentially words. Note
that satisfiability of uML over words is PSPACE-complete (an upper bound follows, e.g., via
the translation to automata and the lower bound is inherited from LTL [30, Theorem 4.1])
which suggests that also definability and separability could be easier. Indeed, we show:

63:9

STACS 2025

63:10

Modal Separation of Fixpoint Formulae

» Theorem 13. ML-definability and ML-separability of uML-formulae is PSPACE-complete
over T*.

Proof. The lower bound is by a reduction from satisfiability, and applies to definability.
Given formulae ¢, ¢’ € uML and a subset of the signature o, consider the set of finite
words L = {W € P(o)* | W is a o-reduct of a prefix V' of some model U of ¢}. Let L’ be
a similar language defined for ¢’. Two unary models are bisimilar iff they are identical.
Hence, by Equivalence (Base) the formulae ¢, ¢’ € uML are not ML,-separable over T* iff
LN L' is infinite. It is standard to define a finite automaton A recognizing L N L’ and check
if its language is infinite (which is equivalent to checking if L N L’ contains input longer than
|A|). To do it in polynomial space, we nondeterministically guess the long input, letter by
letter, and only remember the current state and a binary counter measuring the length of
the input guessed so far. |

We conclude this section with proving that ML,-separators can be constructed in ex-
ponential time and are thus of at most exponential size. Note that this is optimal, since
over T!, uML is exponentially more succinct than ML. Indeed, it is standard to implement
an exponential counter using a polynomially sized uML-formula.

» Theorem 14. If ¢, € pML are ML,-separable over T', then one can compute an
ML, -separator in time exponential in |p| + |¢].

As argued in the previous section, it suffices to construct an ML"-uniform consequence of
the NPTA equivalent to ¢, which we do next.

» Proposition 15. Let A be an NPTA over T' with £ states, n € N, and o a signature. An
ML -uniform consequence of A over T' can be constructed in time polynomial in n, o, and £.

Proof. As argued in the previous section, it suffices to construct an ML™-uniform consequence
of the NPTA B which recognizes precisely the o-reducts of models of A. Let B have states Q.
By construction of B, we have |Q| = ¢. As an auxiliary step, we define for every p, ¢ € @ and

m < n a formula 97", € ML} such that for every M e T*:

M =4y, <= there is a run of B from p to g over the m-prefix of M. (2)

The 1), are defined inductively with the base cases (m < 1) read off from B, and using
divide and conguer in the inductive step (m > 1), to keep the formulae small. More formally,

we define ¢ for m > 1 and all p, ¢ € Q by taking:

m o __ lm/2] m/2 [m/2]
Pq \/ (wpq/ /\OL /W)q’q)
7€Q

It is routine to verify that ¢ satisfies (2) and is of size [¢7| € O(|Q| - m?). Based on the

»g» one can define a formula 1), that describes all possible prefixes of length < n of models
of B, and thus is the sought ML,-uniform consequence of B. One can think of 1, as the
disjunction of formulae 1y, , for go the initial state of B, but the full construction is slightly

more involved since models accepted by B might be also shorter than n. |

5 Binary Case

We next handle the binary case T2. The key observation here is that, between full binary
trees, bisimilarity entails isomorphism.

J.C. Jung and J. Kotodziejski

» Proposition 16. Assume full binary trees M, M’ € T2. If M and M’ are o-bisimilar
then they are o-isomorphic.

Proof. By definition a o-bisimulation between two models is a bisimulation between their
reducts to o, and o-isomorphism is such a bisimulation which is additionally bijective. It
therefore suffices to show that if M, M’ are full binary trees and Z is a bisimulation between
them then there is a bijective bisimulation Z’ C Z. We pick such Z’ inductively starting
with the pair of roots (v, v}). The key observation is that if v has children v1,ve and w has
children wy,wq and vZw then either (i) viZw; and vaZws or (ii) v1Zwe and veZw; (the
cases are not exclusive). The details can be found in Appendix C.1. |

Proposition 16 can be used to prove the Craig interpolation property of ML over T? and
implies the following separability-variant of Lemma 6 over T2.

» Lemma 17. For every p,¢’ € uML and n € N the following are equivalent:
1. o, ¢" are joint ©"-consistent over T2.
2. ¢, ¢ are joint ="-consistent over T2.

Proof. We show only the nontrivial implication 1 = 2. Assume binary M = ¢, M’ E ¢’
with M 2% M’. Let N = ¢ and N7 |= ¢’ be full binary trees obtained from M and M’ by
duplicating subtrees. By Proposition 16, N" =7 A" which proves 2. <

Similarly to the definability case, Lemma 17 combined with Equivalence (Base) and Proposi-
tion 7 immediately give an exponential procedure for separability. Since the lower bound is
inherited from definability, we get the following result.

» Theorem 18. ML-separability and ML-definability of uML-formulae is EXPTIME-complete
over TZ2.

With the same argument as for Theorem 11 we use Proposition 10 to conclude:

» Theorem 19. If ©, ¢ are ML, -separable over T2, then one can compute an ML, -separator
in time doubly exponential in || + |¢'|.

6 Ternary and Beyond

In this section we address the case of models with outdegree bounded by a number d > 3.
We illustrate that this case behaves differently as it lacks the Craig interpolation property.

» Example 20. Consider ML-formulae ¢ = G (aAb)AC(aA—D) and ¢ = O(mane) AS(maA—c).
Clearly, ¢ |= —¢’ over T2. Observe that models M, M’ in Figure 1 witness that ¢, ' are
joint £y4y-consistent and thus joint ﬁf{la}—consistent for every n € N. By Equivalence (Base)
there is no ML4)-separator, which is nothing else than a Craig interpolant. |

Motivated by the lack of the Craig interpolation property, we study the ML-interpolant
eristence problem: given ¢, € ML and signature o, decide whether there is an ML,-
separator of ¢, ~¢’, that is, ¥ € ML, with ¢ =9 | ¢'. Craig ML-interpolant existence is
the special case in which o = sig(p) Nsig(¢’). Observe that ML-interpolant existence is the
special case of ML-separability of yuML-formulae in which the input to the separability is
restricted to ML-formulae. We show that already ML-interpolant existence over T? is harder
than ML-separability of pML-formulae over arbitrary models.

» Theorem 21. For d > 3, ML-interpolant existence over T% is CONEXPTIME-complete.
Hardness already applies to Craig ML-interpolant existence over T?.

63:11

STACS 2025

63:12

Modal Separation of Fixpoint Formulae

M M

o /
— -~ \IUI

A S

a,b - a,—b -T0 Ta,c e, e a

Figure 1 Witness of joint consistency: dashed lines and colors indicate the {a}-bisimulation.

Proof. The upper bound is easy to establish based on the observation that ¢, —¢’ of modal
depth at most m do not admit an ML,-separator over T¢ iff they are joint £™-consistent
over T¢. The witness M, M’ of joint £™-consistency of ¢, =’ can assumed to be of depth
m. Such models are of exponential size (they have at most d™ points) and can thus be
guessed by a non-deterministic exponential time bounded Turing machine.

The lower bound is more intriguing and relies on an extension of Example 20. Reconsider-
ing the example it is important to note that in every witness M, M’ of joint <, y-consistency
of ¢, ¢, there are two successors of vy that are bisimilar to the same successor of v;. We
extend the idea and enforce exponentially many bisimilar points. More precisely, consider

families (¢;)ien, (¥})ien of modal formulae inductively defined as follows:
o=y =T
Yiy1 = <>(a A b,) A\ <>(a A —\bi) A D(a — ('(/)z A (bl — /\j<7,' Djbi) A (—\bz — /\
i =O(maAe) ANO(ma A—e) AO(aAYy)

Dj—\bi)))

j<i

Clearly, the size of 1);, 1} is polynomial in i. Moreover, by induction on i, it is readily verified
that for every i € N, for every M, M’ € T? with M = ¢;, M = ¢!, and every ({a},)-
bisimulation S witnessing M ﬁj;a} M/’ there are points wo, ..., wsy:_; in depth ¢ in M and a
point @ in depth ¢ in M’ such that (w;, W) € S for all j and such that distinct w;, wy, can be
distinguished by some proposition in by, ..., b;—1. Intuitively, this means that ;, . enforce
in joint ﬁi{a}—consistent models M, M’ that M contains 2° points wy, . .., wyi_; which are all
linked to the same point @ in M’. We exploit this link to synchronize information between
the w;, following a strategy that has recently been used to show CONEXPTIME-hardness for
interpolant existence in some description logics [1].

We reduce a NExpTIME-complete tiling problem [14]: Given a set A of tile types and
horizontal and vertical compatibility relations H,V C A x A, and some n € N in unary,
decide whether one can tile the 2™ x 2™ torus with tiles from A complying with H, V. Given
A, H,V,n, we define formulae ,, = ¥2, A O%"Xp, @, = P4, A 0>, of modal depth m and
with common signature o = sig(y,,) Nsig(y],) such that

A, H,V,n has a solution < ¢, ¢, are joint £]'-consistent.

To explain the idea, let M, M’ witness joint £7'-consistency of ¢,,, ¢,,. The gadget formulae
o, b, enforce 22" points wy, . .., wo2n 1 in depth 2n in M which are all linked via the
bisimulation to a single point @ in M’. These
of the torus. The intended solution of the tiling problem is represented via propositions

22" points shall represent the 2" x 2" cells

pqg € o, for each d € A. To synchronize them we proceed as follows. Using the 2n
propositions by, ..., bs,—1 (which are not in ¢), we can associate coordinates (x;,y;) €

{0,...,2" =1} x {0,...,2™ — 1} to each point w; in the torus. To understand the purpose of
Xn» X, suppose for a moment that the outdegree of the points @ and the w; is at most 227

J.C. Jung and J. Kotodziejski

(instead of 3). Then we could proceed by enforcing (via x,) below each w; with coordinates
(w;,y;) three successors v}, v?,v? such that
1

v}, vZ, v3 have coordinates (x;,;), (z,y; + 1), and (z; + 1,y;), respectively;

the coordinates of the v! are made visible using propositions in o;

v}, v2, 03 satisfy pa,, pa,,pa, for di,ds,ds € A such that (di,d2) € V and (dy,d3) € H.
These three successors stipulate bisimilar successors of w. Since each point in the torus is
stipulated three times as successor of some w; and since the outdegree of w is restricted to
22" the three copies of the same point satisfy the same proposition pg. By the last item
above, the selected propositions comply with V, H and thus represent a solution to the tiling
problem. Now, since the outdegree below @ is at most 3 (and not 22" as assumed), the

Xn» X, have to be a bit more complicated, but the idea remains the same. |

We show next that the situation for the full separability problem is even worse.

» Theorem 22. For every d > 3, ML-separability of pML-formulae over T¢ is 2-EXPTIME-
complete.

Thus, over T¢ for d > 3, ML-separability is provably harder than ML-definability, c.f.
Theorem 5. Both the upper and the lower bound of Theorem 22 are non-trivial; we provide
proof sketches in the following two subsections. Before doing that let us conclude this part
with separator construction.

» Theorem 23. If ¢, are ML,-separable over T¢, d > 3, then one can compute an
ML, -separator in time triply ezponential in |o| + |¢'|.

Proof. (Sketch) It follows from the upper bound proof of Theorem 22 that, if ¢, ¢’ admit
an ML,-separator, then they admit one of modal depth bounded doubly exponentially in
|o] + |¢’|- Observe that over the signature of ¢ and ¢’ there are only triple exponentially
many trees of fixed outdegree d and double exponential depth, and that each such tree is
characterized by a modal formula of triply exponential size. The sought separator is then
the disjunction of all such formulae consistent with ¢. <

6.1 Lower Bound for Theorem 22

We reduce the word problem of exponentially space bounded alternating Turing machines
(ATMs), which is known to be 2-EXPTIME-complete [8]. Informally, the states of such
ATMs are partitioned into universal states Qv and existential states Q3. Configurations of
ATMs are defined as usual, but computations are not sequences of configurations but trees of
configurations such that an existential configuration has exactly one successor labeled with a
universal configuration and a universal configuration has exactly two successors labeled with
existential configurations. A computation tree for an input w is a tree whose root is labeled
with the initial configuration and such that successor nodes contain successor configurations.
w is accepted if there is a computation tree in which each path is infinite (this acceptance
condition is slightly non-standard, but eases the proof).

The reduction relies on the same gadget formulae (1;)ien, (¢})ien as used in the proof
of Theorem 21 and additionally uses ideas for showing 2-ExPTiME-hardness for recently
studied interpolant existence problems for description logics [1]. For a given ATM 2 and
input w of length n, we construct formulae ¢, = ¥, A O™, @), = ¥, A x’ such that

©n, @), are joint £7'-consistent for every m € N iff 2l accepts w.

63:13

STACS 2025

63:14

Modal Separation of Fixpoint Formulae

universal conf. T T e T e e>0—e e - .4,./

o g on N
p
Wi o—>@ .- 8- .. 6—>8 existential conf. universal conf.
2" — g
N N /O M
\\~\ 0O——>® -~ 0" " @—>0——>0 .0 " 0—>@
M e P .

- — = O+ .-

Figure 2 Computation tree of 2 below some w; (drawn horizontally for space constraints).

This suffices by Equivalence (Base). The signature o will consist of a, z, and propositions c,
for every possible cell content « of 2, that is, « € T U (Q x I'). Additionally, ¢,, and ¢!, will
use auxiliary propositions, e.g., to encode counters. The only purpose of X’ is to mention the
propositions in ¢; the main work is done by ©,, ¥/, x.

To explain the idea, let us consider witnesses M, M’ for joint £7"-consistency of ¢y, @,

!
no

for sufficiently large m. By the properties of v,/ , we find 2™ points wy, ..., wsn_1 in
depth n in M which are bisimilar to a single point @ in depth n in M’. Recall that in
every w;, we have access to its index ¢ via a counter using propositions b, ..., b,. Now, x is
a pML-formula with the following properties, see also Figure 2 for illustration.

x enforces the “skeleton” of a computation tree for 2, in which each configuration is

modeled by a path of length 2" (using an exponential counter), and in which universal

and existential configurations alternate.

x also enforces that each point of the skeleton is labeled with some cell content via

o-propositions ¢y, but without any synchronization except the initial configuration.

x makes sure that below w; the positions 2™ —1 of successor configurations are coordinated.
The key point is that this enforces (due to bisimilarity) a computation tree below @ in which,
due to the last item above, all positions of configurations are coordinated.

We remark that the hardness also holds when o is not part of the input: one can reduce

separability of ¢, ¢’ by ML,-formulae to separability of ¢, ¢’ by (arbitrary) ML-formulae.

6.2 Upper Bound for Theorem 22

We show that over models of outdegree at most d, ML-separability of fixpoint formulae can
be solved in doubly exponential time. Let us start with establishing a technical but useful
fact. For every language of d-ary trees L C T¢ denote the language:

bisQuot(L) = {M € T | there is N € L and a functional bisimulation Z : N 28 M}

of bisimulation quotients of trees from L.

» Proposition 24. For every NPTA A, an NPTA B recognizing bisQuot(L(A)) can be
computed in time exponential in the size of A.

Proof. Fix an NPTA A = (Q, X, q1, 9, rank). For every M € T?, we characterize existence

of d-ary N' = A with N/ b M with the following parity game Gpisquot (M, A). The game
has the set M x @ as positions. The pair (vr, qr) consisting of the root v; of M and ¢y is
the initial position. From a position (v, ¢) first Ive chooses S € §(g,val(c)) and a surjective
map h: S — {v1,...,u5} where {v1,...,v;} is the set of children of v. Then Ydam responds
with a choice of p € S and the next round starts in position (h(p),p). The game is a parity

J.C. Jung and J. Kotodziejski

game: the ranks are inherited from A in the sense that the rank of (v, ¢q) equals rank(g). In
Appendix D.2 we prove:

Ive wins Gpisquot (M, A) <= M € bisQuot(L(A)) (3)

for every M € T9. Using (3) we prove Proposition 24. It suffices to construct an automaton
B which accepts M iff Ive wins Gpisquot(M,.A). To that end, using standard techniques
we encode Jve’s positional strategies for Gpisquot (M, A) as colorings of M with P(Q x Q)
and construct, in time exponential in |@Q|, an automaton BT recognizing models labelled
with such winning positional strategies. We then obtain B recognizing bisQuot(L£(A)) by
projecting out the additional colors P(Q x Q) from BT, <

With the help of Proposition 24 we prove Theorem 22. Fix d, uML-formulae ¢ and ¢’ and
signature o. By Equivalence (Base), it suffices to check if ¢ and ¢’ are jointly ©%-consistent
over T? for every n. However, unlike with definability or in the binary case, we cannot
conclude joint =7-consistency from joint <-consistency. Instead, we use Proposition 24 to
directly decide joint ©7-consistency for all n. For a language L C T, define the language:

QPL(L) = {N € T? | there is M € L, finite prefix Mg of M and Z : Mo 25 A’}

of finite d-ary trees which are bisimulation quotients of finite prefixes of models from L. By
Proposition 24 and the closure properties of parity automata, for every A one can construct
in exponential time an automaton B recognizing QPL(L(.A)).

We prove the upper bound from Theorem 22. Using Theorem 2 compute automata
A, A’ accepting o-reducts of models of ¢, ¢’. Compute B, B’ recognizing QPL(L(A)) and
QPL(L(A”)). Recall that any two trees are bisimilar iff they have isomorphic bisimulation
quotients. It follows that ¢, ¢’ admit a ML”-separator over T% iff A, A’ are joint «"-consistent
iff B, B’ are joint =" consistent. By Proposition 7, the latter condition holds for all n € N iff
it holds for n = |B| + |B’| + 1 and this can be tested in time polynomial in |B| + |B’|. Since
A, A’ are exponential, and B, B’ are doubly exponential in the size of ¢, ¢, this gives the
upper bound from Theorem 22.

7 Case Study: Graded Modalities

In this section we apply our techniques and results to the case with graded modal operators.
Formally, we extend uML with formulae of the shape <. ¢ and O 41, where ~ € {<, >}
and the grade g € N is a natural number. Intuitively, ¢>g% is true in a point w if w
has at least g successors satisfying 1) and dually, O<g4% is true in w if all but at most g
successors satisfy 1 [11, 25]. We denote with grML and gruML the extension of ML and pML,
respectively, with such graded modalities. Clearly, for any d € N, T¢ is gruML-definable by
the formula 64 = vz.(C<4T A Ox), which is an additional motivation to study grML and
gruML.

Indeed, using the results and techniques from the previous section one can easily prove
that ML-separability of gruML-formulae (defined as expected) is 2-ExpPTIME-complete.

» Theorem 25. ML-separability of gruML-formulae is 2-EXPTIME-complete.

Proof. For the lower bound, we reduce ML-separability of uML-formulae over T? in spirit
similar to Lemma 4. Since the former problem is 2-EXpPTiME-hard by Theorem 22, the
latter is as well. Recall the formula 03 defining T3. Then, for any yuML-formulae ¢, ¢’ and

63:15

STACS 2025

63:16

Modal Separation of Fixpoint Formulae

Y € ML, we have that 1 is an ML,-separator of ¢, ¢’ over T? iff 1 is an ML,-separator of
© A Bg, (,D/ A0y.

Towards the upper bound, suppose ¢, ¢’ € gruML. Using standard arguments, one can
show that ¢, ¢’ are ML-separable over all models iff they are ML-separable over T¢, where
d=g x (J¢| + |¢'|) and g is the greatest grade occurring in ¢, ¢’. We then construct NPTA
A, A’ equivalent to @, ¢’ over d-ary trees via (an analogue for gruML of) Theorem 2 and
proceed with A, A" as described in the upper bound proof of Theorem 22. <

Interestingly, the problem becomes easier if we allow grades in the separating formula.
» Theorem 26. grML-separability of gruML-formulae is EXPTIME-complete.

The lower bound follows by the usual reduction from satisfiability. We thus focus on
the upper bound. Similarly to the non-graded case, we establish first a model-theoretic
characterization, based on the appropriate notion of bisimilarity that characterizes the
expressive power of grML [10]. A relation Z between models is a graded bisimulation if it
satisfies (atom) and graded variants of the (back) and (forth) conditions of bisimulations.
The graded (forth) condition says that if vZw then for every k € N and pairwise different
children vy, ..., vg of v, there are pairwise different children wq, ..., wy of w satisfying v; Zw;
for all i < k. The graded (back) condition is symmetric. It is a g-graded bisimulation if
the graded (forth) and (back) conditions need to be satisfied only for k¥ < g. We denote
with M 4,4 M’ (resp., M <2, M’) the fact that there is a graded bisimulation (resp., a
g-graded bisimulation) between M and M’ that relates their roots. Variants with bounded
depth n and/or given signature o are defined and denoted as expected.

» Lemma 27. For every p, @' € gruML with mazimal grade gmqz, signature o, and n € N,
the following are equivalent:

1. o, ¢’ are not grML. -separable (over all models).

2. p,¢" are joint 2y 4 ,-consistent (over all models).

3. ¢, ¢ are joint =2 -consistent (over all models).

4. o, ¢ are joint =" -consistent over T? for d = gmaz % (|| + |¢']).

Using Lemma 27, one can solve grML-separability of gruML formulae in exponential time,
following the approach described in Section 3. More precisely, given ¢, ', we construct
NPTA A, A" equivalent to ¢, ¢’ over d-ary trees, d as in Lemma 27, and decide whether
A, A’ are joint ="-consistent over T¢ for all n via Proposition 7.

Let us provide some details on the proof of the central Lemma 27.

Proof. We show the implications 1 = 2 = 3 = 4 = 1 in turn. The implication 4 = 1 is
immediate.

For 1 = 2, suppose ¢, ¢’ are not grML-separable. Hence, for every g € N there is a pair
of models M, = ¢ and Mj |= ¢ with My =7 | M]. One can encode with an FO-sentence
6 that two models M and M’ are depth-n trees, M is a prefix of some M, E ¢ and M’
of some M/, |= ¢'. If Z is a fresh binary symbol, then it is also possible to encode with an
(infinite) set T of FO-sentences that Z is a graded bisimulation between M and M’. Every
finite fragment of {#} U T only mentions finitely many grades and hence by assumption
is satisfiable. Thus, by compactness of FO, the entire {#} UT is satisfiable. This gives us
Mg 4, M with extensions M ¢ and M/, = ¢".

For 2 = 3, fix witnesses M, M’ of joint £} 4 -consistency, that is, M =g ; M’ and
there are extensions M, M/, of M, M’ with M |= ¢ and M/, |= ¢'. By the Lowenheim-
Skolem property of FO we may assume that both models are at most countable. It remains
to apply the known fact that countable trees N" and N7 satisfy N 2g,q N’ iff N and N’ are

J.C. Jung and J. Kotodziejski

isomorphic. For the sake of completeness, we add a brief justification of this latter statement.

Assume w € N and w’ € N with respective children wy, ws, ... = w and w}, w}, ... = w’ such
that w 2grq w’'. For every £g.q-equivalence class X of w the corresponding equivalence class
{w} | Jj<k. w; ©gra w;} = X' has the same cardinality as X. This is immediate for finite
X, and for infinite X it follows because in countable models every two infinite subsets have
the same cardinality. This allows us to inductively pick a bijective subrelation Z of 24q
between N and N’ which is still a graded bisimulation.

For 3 = 4, fix witnesses M, M’ of joint =7-consistency, that is, M =" M’ and there are
extensions My, M’ of M, M" with M |= ¢ and M| = ¢’. We trim M and M/, so that
the outdegree becomes at most d. Without loosing generality we assume that the prefixes of
M, and M, are not only isomorphic but identical. The semantics of every ¢ € uML in
a model N is captured by a parity game whose positions are N x SubFor(v)). We extend
the definition of the game to uMLgrq. The set of positions N x SubFor(%) and the winning
condition are defined as in the classical case, and so are the moves for all the positions with
topmost connective other than the graded modalities. In the classical game, from (v, $8)
Jve chooses a child v’ of v and the next position is (v,). In (v, O>40), first Ive chooses a
subset vy, ..., v, of size k of children of v, then Vdam chooses one of these children v; and
the next round starts at (v;,6). Dually, in (v, O<zf) first 3ve picks a subset vq, ..., v5 of at
most k v’s children, then Vdam responds with a choice of some v’ not in vy, ..., v and the
next position is (v/,). It is tedious but straightforward to check that Jve wins the game
from v, iff 1) is true at v, as in the classical case. Note that if we take a submodel Ny of
N which contains at least the root and all O-witnesses (that is, points chosen by a winning
strategy ¢ in for positions of shape (v, O>x6)) then (the restriction of) ¢ to Nj is a winning
strategy for G(No,).

Let ¢ and ¢’ be positional winning strategies for Ive in the semantic games G(M,) and
GM!_,¢"). We take submodel Mg |= ¢ of M as follows. In the n-prefix we take the root
and all O-witnesses for both ¢ and ¢’. In the rest of the model we only take O-witnesses for

¢. A submodel M, of M/ is defined symmetrically. It follows that My |= ¢ and M = ¢'.

Recall that g is the maximal grade appearing in ¢ and ¢’. Since the respective sets
of positions of G(M,¢) and G(M/,,¢") are My x SubFor(y) and M/ x SubFor(y'), for
every point v there are at most g x || O-witnesses chosen by ¢ from a position which has
v on the first coordinate. Consequently, the outdegree of My and M, is not greater than
d =g x (J¢| +|¢']). This proves Lemma 27. |

8 Conclusion

We have presented an in-depth study of modal separation of uML-formulae over different
classes of structures. For us, the most interesting results are the differences that are obtained
over classes of bounded outdegree for different bounds d =1, d = 2, d > 3. Without much
effort our results on trees of bounded outdegrees can be transferred to infinite words and to
ranked trees, via reductions similar to Lemma 4.

Throughout the paper we used the simplest possible measure of formula size: the length
of a formula written as a string. Alternative more succinct measures, such as the number of
non-isomorphic subformulae (DAG-size), are also interesting. Thus, a natural question is
to what extent our results depend on the choice of size measure. In principle, using a more
succinct measure makes the problems of definability and separability harder. However, all our
decision procedures, with an exception of Theorem 21, are automata-based. Consequently,
these procedures carry over with unchanged complexity to any size measure for which the

63:17

STACS 2025

63:18

Modal Separation of Fixpoint Formulae

translation from logic to nondeterministic automata has the same complexity as in Theorem 2.
In the remaining case of Theorem 21 a sufficient assumption is that the modal depth of a
formula is at most polynomial in its size. Both the mentioned assumptions are arguably
modest.

A place where the choice of size measure matters a little more is the construction of modal
definitions and separators. In the cases of unrestricted, unary (T'), and high outdegree
models (T? for d > 3) the constructed formulae have DAG-size essentially the same as size:
doubly, singly, and triply exponential, respectively. Interestingly, however, in the binary case
T? our formulae have only singly exponential DAG-size, which is easily seen to be optimal
and contrasts with their doubly exponential size. This demonstrates that the lower bounds
for size of modal definitions over T2 cannot work for DAG-size. The same lower bound
construction fails for DAG-size over unrestricted models, although there the exact DAG-size
complexity of optimal separators remains unknown.

We mention some interesting open problems. First, the relative succinctness of uML over
ML is to the best of our knowledge open in the setting with only one accessibility relation.
Second, as we have mentioned in Section 3, the separators we compute are not necessarily
the logically strongest ones. The logically strongest separators of o, ¢’ are precisely the
ML-uniform consequences of ¢ (if they exist) and are a natural object of study. Clearly,
modal definability of ¢ is a sufficient condition, but not a necessary one. Let ¢ = ¢ A =04
and ¢ = 9 for some ¢p € ML. Then ¢ is not equivalent to a modal formula, but v is
a strongest separator. In the context of gruML, open questions are ML-definability (and
separability) and pML-definability (and separability) of gruML-formulae. We conjecture
them to be easier than 2-EXPTIME. Finally, let us mention that definability of uML-formulae
by safety formulae has been studied in [22]. It would be natural to investigate separability
there as well.

—— References

1 Alessandro Artale, Jean Christoph Jung, Andrea Mazzullo, Ana Ozaki, and Frank Wolter.
Living without Beth and Craig: Definitions and interpolants in description and modal logics
with nominals and role inclusions. ACM Trans. Comput. Log., 24(4):34:1-34:51, 2023. doi:
10.1145/3597301.

2 Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. An Introduction to Description

Logic. Cambridge University Press, 2017.

3 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.

4 Fabio Bellissima. On the lattice of extensions of the modal logics KAltn. Arch. Math. Log.,
27(2):107-114, 1988. doi:10.1007/BF01620760.

5 Michael Benedikt, Balder ten Cate, Thomas Colcombet, and Michael Vanden Boom. The
complexity of boundedness for guarded logics. In 30th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS, pages 293-304. IEEE Computer Society, 2015. doi:
10.1109/LICS.2015.36.

6 Achim Blumensath, Martin Otto, and Mark Weyer. Decidability results for the boundedness
problem. Log. Methods Comput. Sci., 10(3), 2014. doi:10.2168/LMCS-10(3:2)2014.

7 Mikolaj Bojanczyk and Wojciech Czerwinski. Automata Toolbox. University of Warsaw, 2018.
URL: https://www.mimuw.edu.pl/~bojan/papers/toolbox.pdf.

8 Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation. J. ACM, 28(1):114—
133, 1981. doi:10.1145/322234.322243.

9 Sang Cho and Dung T. Huynh. Finite-automaton aperiodicity is PSpace-complete. Theor.
Comput. Sci., 88(1):99-116, 1991. doi:10.1016/0304-3975(91)90075-D.

10 Maarten de Rijke. A note on graded modal logic. Stud Logica, 64(2):271-283, 2000. doi:
10.1023/A:1005245900406.

https://doi.org/10.1145/3597301
https://doi.org/10.1145/3597301
https://doi.org/10.1007/BF01620760
https://doi.org/10.1109/LICS.2015.36
https://doi.org/10.1109/LICS.2015.36
https://doi.org/10.2168/LMCS-10(3:2)2014
https://www.mimuw.edu.pl/~bojan/papers/toolbox.pdf
https://doi.org/10.1145/322234.322243
https://doi.org/10.1016/0304-3975(91)90075-D
https://doi.org/10.1023/A:1005245900406
https://doi.org/10.1023/A:1005245900406

J.C. Jung and J. Kotodziejski

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Kit Fine. In so many possible worlds. Notre Dame J. Formal Log., 13(4):516-520, 1972.

doi:10.1305/NDJFL/1093890715.

Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular programs.

J. Comput. Syst. Sci., 18(2):194-211, 1979. doi:10.1016/0022-0000(79)90046-1.
Tim French, Wiebe van der Hoek, Petar Iliev, and Barteld P. Kooi. On the succinctness of

some modal logics. Artif. Intell., 197:56-85, 2013. doi:https://doi.org/10.1016/j.artint.

2013.02.003.

Martin Firer. The computational complexity of the unconstrained limited domino problem
(with implications for logical decision problems). In Logic and Machines: Decision Problems and
Complezity, Proceedings of the Symposium "Rekursive Kombinatorik", volume 171 of Lecture

Notes in Computer Science, pages 312-319. Springer, 1983. doi:10.1007/3-540-13331-3_48.

Dov M. Gabbay. Craig’s interpolation theorem for modal logics. In Conference in Mathematical
Logic — London 70, pages 111-127, Berlin, Heidelberg, 1972. Springer Berlin Heidelberg.
Gerd G. Hillebrand, Paris C. Kanellakis, Harry G. Mairson, and Moshe Y. Vardi. Undecidable
boundedness problems for datalog programs. J. Log. Program., 25(2):163-190, 1995. doi:
10.1016/0743-1066(95)00051-K.

Jean Christoph Jung and Jedrzej Kotodziejski. Modal separability of fixpoint formulae. In
Proceedings of the 37th International Workshop on Description Logics (DL 2024), volume
3739 of CEUR Workshop Proceedings. CEUR-WS.org, 2024. URL: https://ceur-ws.org/
Vol-3739/paper-5.pdf.

Jean Christoph Jung and Frank Wolter. Living without Beth and Craig: Definitions and
interpolants in the guarded and two-variable fragments. In Proceedings of Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pages 1-14. IEEE, 2021. doi:10.1109/
LICS52264.2021.9470585.

Eryk Kopczynski. Invisible pushdown languages. In Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pages 867-872. ACM, 2016. doi:10.1145/
2933575.2933579.

Dexter Kozen. Results on the propositional mu-calculus. Theor. Comput. Sci., 27:333-354,
1983. d0i:10.1016/0304-3975(82)90125-6.

Louwe Kuijer, Tony Tan, Frank Wolter, and Michael Zakharyaschev. Separating counting
from non-counting in fragments of two-variable first-order logic (extended abstract). In Proc.
of DL 2024, 2024.

Karoliina Lehtinen and Sandra Quickert. Deciding the first levels of the modal mu alternation
hierarchy by formula construction. In Proceedings of Annual Conference on Computer Science
Logic CSL, volume 41 of LIPIcs, pages 457-471. Schloss Dagstuhl - Leibniz-Zentrum fir
Informatik, 2015. doi:10.4230/LIPICS.CSL.2015.457.

Christof Loéding and Christopher Spinrath. Decision problems for subclasses of rational
relations over finite and infinite words. Discrete Mathematics & Theoretical Computer Science,
Vol. 21 no. 3, Jan 2019. doi:10.23638/DMTCS-21-3-4.

Martin Otto. Eliminating recursion in the p-calculus. In Proceedings of 16th Annual Symposium
on Theoretical Aspects of Computer Science (STACS), volume 1563 of Lecture Notes in
Computer Science, pages 531-540. Springer, 1999. doi:10.1007/3-540-49116-3_50.

Martin Otto. Graded modal logic and counting bisimulation. CoRR, abs/1910.00039, 2019.

URL: http://arxiv.org/abs/1910.00039, arXiv:1910.00039.

Thomas Place and Marc Zeitoun. Separating regular languages with first-order logic. Log.
Methods Comput. Sci., 12(1), 2016. doi:10.2168/LMCS-12(1:5)2016.

Vaughan R. Pratt. A decidable mu-calculus: Preliminary report. In Proceedings of 22nd Annual
Symposium on Foundations of Computer Science (FOCS), pages 421-427. IEEE Computer
Society, 1981. doi:10.1109/SFCS.1981.4.

Abraham Robinson. A result on consistency and its application to the theory of definition.

Journal of Symbolic Logic, 25(2):174-174, 1960. doi:10.2307/2964240.

63:19

STACS 2025

https://doi.org/10.1305/NDJFL/1093890715
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/https://doi.org/10.1016/j.artint.2013.02.003
https://doi.org/https://doi.org/10.1016/j.artint.2013.02.003
https://doi.org/10.1007/3-540-13331-3_48
https://doi.org/10.1016/0743-1066(95)00051-K
https://doi.org/10.1016/0743-1066(95)00051-K
https://ceur-ws.org/Vol-3739/paper-5.pdf
https://ceur-ws.org/Vol-3739/paper-5.pdf
https://doi.org/10.1109/LICS52264.2021.9470585
https://doi.org/10.1109/LICS52264.2021.9470585
https://doi.org/10.1145/2933575.2933579
https://doi.org/10.1145/2933575.2933579
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.4230/LIPICS.CSL.2015.457
https://doi.org/10.23638/DMTCS-21-3-4
https://doi.org/10.1007/3-540-49116-3_50
http://arxiv.org/abs/1910.00039
http://arxiv.org/abs/1910.00039
https://doi.org/10.2168/LMCS-12(1:5)2016
https://doi.org/10.1109/SFCS.1981.4
https://doi.org/10.2307/2964240

63:20

Modal Separation of Fixpoint Formulae

29

30

31

32

Marcel Paul Schiitzenberger. On finite monoids having only trivial subgroups. Inf. Control.,
8(2):190-194, 1965. doi:10.1016/S0019-9958(65)90108-7.

A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear temporal
logics. J. ACM, 32(3):733-749, 1985. doi:10.1145/3828.3837.

Moshe Y. Vardi. Reasoning about the past with two-way automata. In Proceedings of
International Colloguium Automata, Languages and Programming (ICALP), volume 1443 of
Lecture Notes in Computer Science, pages 628—641. Springer, 1998. doi:10.1007/BFB0055090.
Yde Venema. Lectures on the modal p-calculus, 2020.

https://doi.org/10.1016/S0019-9958(65)90108-7
https://doi.org/10.1145/3828.3837
https://doi.org/10.1007/BFB0055090

J.C. Jung and J. Kotodziejski

A Proofs for Section 3

A.1 Correctness of the Construction of n-uniform Consequences

We prove (1). The base case is immediate so we focus on the inductive case with:

Unirg=\ '\ cAV{tn,|peSt

ceX Sed(q,c)

Fix M, denote the color of the root by ¢ and the set of all children of the root by My. If M
satisfies 1,11 4 then there is {p1,...,p;} = S € d(g, ¢) such that nabla V of & = {4, , | p € S}
is satisfied in the root.

We show that without loss of generality the root v; of M has sufficiently many children to
find a separate witness for each v, , € ®. That is, we want to show that there is a surjective
assignment h : My — ® that maps every v € My to some formula 1, , true in v. With no
restrictions on outdegree this follows from bisimulation-invariance because we can duplicate
children of vy and their subtrees. In the binary case we cannot freely duplicate children so a

different argument is required. We want a different child v, |= ¢, in My for each ¢, , € ®.

The only scenario in which we do not have such unique witnesses is when S has two elements
p1 and py (recall that B is an automaton over binary trees and so it has no transitions to
more than two states) and My has only one element v. Let M’ be a model obtained from

M by duplicating v and its subtree. Clearly, M 2 M’ and so M’ satisfies the nabla of ®.

Moreover, it has the desired separate witnesses for ¢, ,, and ¢y, p,-

By induction hypothesis, for each v € My with h(v) = 1y, , there is a model N, = Blgr <
p] n-bisimilar to the subtree of M rooted in v. Define A" as follows: first take the disjoint
union {v} ULI{N, | p € S} of all the A,’s and a fresh point v of color ¢; then for every
N, add an edge from v to the root of V,, and set v as the new root. It is easy to see that
N | Blqr <+ q] and M "1 N as desired.

Conversely, assume M <"+t N and N |= Blgr < g] witnessed by an (n 4 1)-bisimulation
Z and a run p : N — Q. Denote the children of the root of N' by Ny. Since p is a run,
the set S = p[No] of states assigned to Ny belongs to d(q,c). Every v € My is n-bisimilar

to some w € Ny and hence by the induction hypothesis satisfies ¢y, , for p = p(w) € S.

Symmetrically, for every p € S there is w € Ny accepted by Blgr < p]. Since that w is
n-bisimilar to some v € My, by induction hypothesis v satisfies 1, ,. It follows that the root
of M satisfies V{t,, , | p € S} and therefore also 1,11 4.

B Proofs for Section 4
We provide the full construction of the ML -uniform consequence of an NPTA A over T?.

» Proposition 15. Let A be an NPTA over T! with ¢ states, n € N, and o a signature. An
ML2 -uniform consequence of A over T* can be constructed in time polynomial in n, o, and {.

Proof. Let A be an NPTA and n € N and ¢ a signature. Let B = (Q, %, 0, g7, rank) with
Y. =P(o) be an NPTA of the same size that recognizes o-reducts of models of A. A formula
1 is an ML} -uniform consequence of A iff it is an ML"-uniform consequence of B. We first
construct formulae ¢y, € MLy, for m < n and p,q € Q such that for every M € T

() M =1y, iff there is a run of B from p to q on the m-prefix of M.

63:21

STACS 2025

63:22

Modal Separation of Fixpoint Formulae

The definition is by induction on m:

gq: if p # q then L else T

L=\l | cex {q} €dp,o)}

g = \/ (sz,Z,L/QJ A OLm/2j¢£z/2W) forl<m<n
7eQ

It is routine to verify that 7 satisfies (x) and is of size [¢7%| € O(|Q] - m?).

Before we can construct the desired ML, -uniform consequence, we need to introduce some
more notation. Since we are working over T', §(q, c) contains only sets of cardinality at most
1. The case () € §(q, c) is of particular interest because this means that the automaton in
state g reading color ¢ can “accept” even if it has not finished reading the input; in particular,
the automaton can accept finite words as well. Denote with Acc, the set of ¢ € ¥ with
0 € 6(q,c). Further denote with Cont, the set of all ¢ such that Blg; < ¢] accepts a word
starting with ¢. We finish the construction by setting:

wn:\/ n,AO" \/ c v\/ \/ pmoAOmT LA O™ \/ ¢

qeQ ceContg m<n qgeQ c€Accq

It is readily checked that 1, satisfies the required size bounds. To verify that v, = 6 for
every § € ML" with B |= 6, we show the following equivalence for all M € T*:

M= ¥y, — there exists N = B with N' ™ M. (4)

For =, fix M € T! with M |=,,. If M =42 AD™"V o Cont, € for some ¢, then by (),
there is a run of B from the initial state gy to some state ¢ € Q when reading the n-prefix of
M, and the last color in the prefix is c. Since ¢ € Cont,, we can extend the n-prefix of M to
a N e T! accepted by B. If M |= 4" AO™T LA \/CeACCq ¢, for some m < n and q € Q,
then M is a finite tree of depth m that is accepted by the automaton. We can take N' = M
in this case.

For <, let M € T! a tree such that there is some N' | ¢ with N’ &® M. The
former condition implies that A' = B and thus there is an accepting run p of B on N,
and the latter implies that A" and M coincide on their n-prefixes. We distinguish cases.
If the depth of N is greater than n, then the n-prefix of p ending in state ¢ witnesses
MEYF NANDO"V ¢ Cont, - Otherwise, the depth of N is m < n and the run p ending in ¢

<

witnesses that M ™, A0 LAYV

qrq c€Accq c.

C Proofs for Section 5

C.1 Proof of Proposition 16

Assuming full binary M, M’ and a bisimulation Z between them we pick a bijective bisimu-
lation Z’ C Z. To that end, we inductively construct a descending sequence:

Z 272124y 432 ...

of bisimulations such that for each n the restriction of Z,, to the n-prefixes of M and M’
is bijective. The induction base n = 1 is trivial with Z; = Z. For the induction step n + 1
let Z,, C Z be the bisimulation given by the inductive hypothesis. Z,, bijectively maps the

J.C. Jung and J. Kotodziejski 63:23

points vy, ..., v at depth n in M to the respective points ws, ..., wy at depth n in M’. For
each ¢ we have v; Zw;. Hence, either both v; and w; are leaves (i), or both have respective
children v}, v and w!,w?. In the latter case either (ii) v!Zw! and v} Zw! or (iii) v!Zw! and
vl Zw! (the cases (ii) and (iii) are not exclusive). Consider the bijective relation K* C Z

between children of v; and children of w;:

0 if v; and w; are leaves (i),
K* =S {(ol,wh), (], wh)} if (i),

%

{(v},wl), (v7,wh)} otherwise.

The bisimulation Z, 1 is constructed as follows. It is identical to Z,, between points at levels
at most n, to ;< K’ between points at level exactly n + 1, and to Z between points at
strictly greater levels. No points at mismatching levels are linked. It is straightforward to
verify that such 7,11 C Z, is a bisimulation, and that its restriction to the n + 1-prefixes of
M and M’ is bijective.

We conclude the proof by taking the limit Z’ =
bisimulation between M and M’.

neN Z, as the desired bijective

C.2 Craig Interpolation over T? from Proposition 16

TODO in the future.

D Proofs for Section 6

The lower bound proofs for Section 6 rely on the families of formulae (¢;);en, (¥})ien that
were already defined in the main part of the paper.

» Lemma 28. There are families of formulae (1;)ien, (¥})ien such that:

1. The size of the formulae ;,)} is polynomial in i.

2. sig(v;) = {a,bo,...,bi—1} and sig(y)) = {a,c}.

3. For every i € N and arbitrary formulae x,Xx € uML the following holds. For every
MM € T? with M = ; Ax, M = . AX, for every signature T that contains a
but not ¢, by, ...,bi_1, and every (1,£)-bisimulation S witnessing M =t M’ for some
£ > i, there are points wy, ..., wqyi_q in depth i in M and a point W in depth i in M’
such that (wj,w) € S for all j and such that distinct w;,wy, can be distinguished by some
proposition in by, ..., b;_1.

Proof. We take the following formulae inductively defined as in the main part.

Yo=1vp =T
1/)2-4_1 = <>(a A\ bz) AN <>(a A\ ﬁbl) A D(’l[)l A (b1 — /\j<i Djbz) A\ ("bl — /\j<i I:Ijﬁbi))
Vip1 =O(maAce) AO(ma A=c) AO(aA))
Properties 1-3 can be verified by induction on 1. |

D.1 Proof of Theorem 21

The proof of Theorem 21 is based on the following (straightforward) consequence of Equiva-
lence (Base).

STACS 2025

63:24

Modal Separation of Fixpoint Formulae

» Lemma 29. Let ¢, € ML"™ and o be a signature. Then the following are equivalent for
all classes T?:

1. ¢,¢" do not admit an ML, -separator over T?.

2. ¢, are joint £%-consistent over T,

Proof. The implication from the first to the second item is immediate consequence of
Equivalence (Base). For the converse implication, suppose ¢, ¢ are joint £7-consistent and
let M E o, M" E ¢ with M 27 M’ witness this. Since ¢, ¢’ have modal depth at most
m, we can assume without loss of generality that M, M’ have depth at most m. But then,
M, M’ witness joint ”-consistency of ¢, ¢’ for every n > m. By Equivalence (Base) ¢, ¢’
do not admit an ML,-separator. <

» Theorem 21. For d > 3, ML-interpolant existence over T¢ is CONEXPTIME-complete.
Hardness already applies to Craig ML-interpolant existence over T?.

Proof. We start with the upper bound. By Lemma 29, interpolant non-existence can be
decided by a standard “guess-and-check”-procedure:

1. Guess two structures M, M’ € T? of depth at most the maximal modal depth m of ¢, ¢,
2. Verify that M = ¢, M’ |= ¢/, and M <" M.

The runtime of the procedure is exponential: the size of any structure M € T? of depth
m is bounded by d"*. Moreover, model checking in modal logic and bisimulation testing is
possible in polynomial time in the size of the structure and the given formulae.

We next show the lower bound for d = 3, but the proof is analogous for d > 4. We reduce
an appropriate tiling problem. Let A be a finite set of tile types, and V,H C A x A be
vertical and horizontal compatibility relations. Then, a mapping 7 : [n] X [n] — A is called a
torus tiling for A, V, H,n if for all i, j € [n], we have:

(r(3,4),7(i®1,4) € H and

(r(4,7),7(i,j® 1) €V,
where @ denotes addition modulo n. The exponential torus tiling problem is to decide given
A,V, H,n (in unary) whether there exists a torus tiling for A, V, H,2". It is well-known that
the exponential torus tiling problem is NEXPTIME-complete [14].

Let A,V,H,n be an input to the exponential torus tiling problem. We will provide
formulae ¢, ¢!, of modal depth 4n and with common signature o = sig(p,) N sig(¢),) such
that:

©n, @), are joint ©2"_consistent iff there is a torus tiling for A, V, H, 2",

The common signature o will consist of propositions a, b, and one proposition t4, for every
d € A. Both ¢, and ¢), will use auxiliary propositions to encode counters. The formulae
©n, ¢}, are based on the families of formulae (¢;);en, (¢})ien defined in Lemma 28 and will
take the shape:

Pn = ¢2n A DQHXl

¢ =Y, AO"x2
for formulae 1, x2 to be defined below.

Consider models M = 19, and M’ |= 95, with M 22" M’. Let wo, ..., wyen_; be the
points in M and @ be the point in M’ that exist due to Lemma 28. Recall that, by the

lemma, all w; are linked to @ by a (o, 2n)-bisimulation. We associate two numbers x;, y;
with each point w; as follows:

J.C. Jung and J. Kotodziejski

x; is the number encoded by the valuation of by, ...,b,_1 in w;, and

y; is the number encoded by the valuation of b,, ..., b, _1 in w;.
Note that by the properties of wy, . .., ws2n_1, for every pair z,y with 0 < z,y < 2™, there is
some w; with z = x; and y = y;. We denote that point with w(z,y). Hence, the numbers
xi,y; can serve as addresses of the 2" x 2" cells in the intended torus tiling. Intuitively,
we will exploit that all w; are linked to w by a (o, 2n)-bisimulation to synchronize the tile
types in each cell. For what follows, it is convenient to denote with bj, ..., b5, ; the values
of propositions b; in point w;, and with ¢, ...,ch, _; and d, ..., ds,_; the value of the
propositions b; in the encoding of x; ® 1,y; and x;,y; @ 1, respectively. It is not difficult
to write formulae x1, x2 (of polynomial size) in modal logic (possibly using auxiliary non-o
propositions) that express the following Conditions 1 and 2, respectively. Recall that o
contains a, b and propositions t4 for every d € A.
1. There are three paths p1, p2, p3 of length 2n with the following properties:

. each path satisfies a in each point;

. on pi, the j-th point satisfies b iff b5, =1, for 1 < j < 2%

. on py, the j-th point satisfies b iff ¢j_; =1, for 1 < j < 2™

. on p3, the j-th point satisfies b iff d%_; =1, for 1 < j <2™;

. the ends of py,pa, ps are labeled with propositions ¢4, ,t4,, td,, respectively, such that
(dl,dg) € H and (d1,d3) eV.

O Q. n T 9

2. There is a (ternary) tree of depth 2n with the following properties:

a. each node has three successors: one not satisfying a, one satisfying a and b, and one
satisfying a and not b;
b. in the leaves of this tree, we require that at most one proposition t4 is true.

This finishes the definition of the formulae ¢,,, ¢!, and we can proceed with showing the
correctness of the reduction.

Claim. 19, A O?"x; und ¥}, A O?"x3 are joint £ consistent iff there is a torus tiling for
AH, V2™,

To prove the claim, suppose first that o, A O%y; und 5, A O*xe are joint =2n-
consistent, witnessed by models M, M’. Let also be wy, ..., ws2n_1 and w be the points
that exist in M, M’ due to Lemma 28.

We define a torus tiling 7 as follows. Let z,y be any cell, that is, 0 < z,y < 2™.
Conditions 1b—1d enforce that, three paths are stipulated: one (via 1b) in point w(z,y),
one (via 1lc) in point w(x & 1,y), and one (via 1d) in point w(z,y © 1), where, similar to
@, © denotes subtraction modulo 2. Each of these paths is labeled, using b € o with (the
encoding of) x,y along its elements. Due to Conditions la and 2a, these three paths (in M)
can only be bisimilar to the path (in M’) in the tree stipulated below @ that is labeled with
(the encoding of) z,y. In particular, the ends of the paths are bisimilar to the same leaf
in the tree. Since, by Condition 2b, every leaf in the tree satisfies at most one t4, and, by
Condition 1le, the end of each path satisfies at least one t4, all ends are labeled with the same
tq- We set 7(x,y) = d. Synchronization is then achieved by Condition le. Indeed, consider
(z,y) and (z ® 1,y). Then Condition le ensures that the end of the paths for (x,y) and
(z @ 1,y) stipulated in w(z,y) are labeled with t4,ts such that (d,d’) € H. The argument
for vertical compatibility is symmetric.

In the other direction, it is not difficult to construct joint £2"-consistent models from a
given torus tiling for A, H, V, 2™, <

63:25

STACS 2025

63:26

Modal Separation of Fixpoint Formulae

D.2 Upper Bound Proof of Theorem 22

We show adequacy (3) of the game Gpisquot (M, A) defined in the main part.

We first prove the implication “=-" from left to right. Assume a winning strategy ¢ for
Grisquot (M, A). We construct N € T = A and Z : N 5 M. The universe N consists of all
finite ¢-plays. There is an edge m — 7’ from 7 to 7’ if 7’ extends 7 with one move of Ive
followed by a response of Ydam. This means that the outdegree of m equals the size of the
transition S chosen by (¢ as a response to 7. In particular, N is d-ary. Define Z : N — M
such that Z(7) is the point component from the last configuration in 7. We complete the
definition of A/ by putting val" () = val™(Z(x)) for all 7 € N.

We claim that the function Z is a bisimulation. The atom case follows immediately from
the definition of val". To prove the back and forth assume 7 € N. Denote Z(m) = v, let
V1, ..., V) be the children of v and h : S — {vy, ..., v} be the move chosen by (as a response
to .

To show the forth condition assume m — 7’. Existence of the edge m — 7’ implies that
7’ is of shape w(h(p),p) for some p € S. Let v/ = h(p). Since v — v’ and Z(n’) = v’ this
completes the argument of the forth condition. Towards the back condition assume v — v’
for some v’. Since v’ is a child of v and h is surjective, there is p € S such that h(p) = v'.
Then 7/ = w(v’,p) is a ¢-play such that Z(7') = v' and v — v’. Hence, v’ witnesses the back
condition.

It remains to construct an accepting run p : N — Q. For each 7 € N we define p(7) as
the state component of the last configuration in 7. This p is consistent with §. To show this
assume 7 with children 7y, ..., 7. Denote m; = w(v;, p;) for each i < k and let (v, q) be the
last configuration in 7. There is S € §(g, val™(v)) such that S = {py, ..., pr}. Since p(r) = ¢,
p(m;) = p; for every i < k and val () = val™(v), the transition S is legal in 7. To see that
p is accepting assume an infinite path 1,7, ... in A and for each i let (v;,q;) be the last
configuration of m; (so in particular p(m;) = ¢;). We need to show that the sequence ¢1¢s...
of states satisfies the parity condition. This is true because each 7; is a (-play and therefore

so is their infinite limit (v, q1)(ve, ¢2)... = m. This completes the proof of the implication
“=7 in (3).
Let us prove the other implication “<” in (3). Assume N € T? such that N = A and

Z N M, and let p : N — @ be an accepting run witnessing N' = A. We construct

a winning strategy ¢ for Jve in Gpisquot(M,.A). The constructed strategy preserves as
an invariant that for every (-play m = (v1,q1)...(v;, q;) there is a path wy...w; in N with
Z(w;) = v; and p(w;) = ¢; for each ¢ < [. The invariant holds in the initial position (vy, qr).
To define moves dictated by ¢ assume a play © = (v1,41)...(v;, q) and a path wy...w; from
the invariant. Let vf, ...v;, be the children of v;. We define an 3ve’s move h : § — {v1, ..., v}, }
dictated by (as a response to .

Let S be the transition chosen by p in w;. By assumption no state of A appears more
than once in a single transition S of §. This means that p is bijective between the set of
children of w; and S: for each p € S there exists a unique child w? of w; such that p(wP) = p.
We set h(p) = Z(wP) for every p € S. By the atom condition w; and v; have the same color
so to show that this A is a legal move for Jve it suffices to show that it is surjective. By the
back condition for every child v of v; there is some child w’ of w; with Z(w’) = v’. Hence,
h(p(w")) = v" which proves surjectivity of h. Moreover, the invariant is preserved: if 7’
extends 7 by Vdam’s response (h(p),p) to h then Z(w?) = h(p) and p(w,) = p and so we
extend W = wy...wy with wiy; = wP.

To see that the strategy (is winning observe that, thanks to the invariant, for every
infinite (-play m = (v1,q1)(v2, g2)... there exists an infinite path W = wyws... in N such that

J.C. Jung and J. Kotodziejski

Z(w;) = v; and p(w;) = g; for all i. Thus, Ive wins 7 because p is accepting. This completes
the proof of (3).

D.3 Lower Bound Proof of Theorem 22

We establish the following lower bound.
» Lemma 30. ML-separability of uML-formulae over T? is 2-EXPTIME-hard.

The proof is a reduction of the word problem for languages recognized by exponentially
space bounded, alternating Turing machines, which we introduce next.

An alternating Turing machine (ATM) is a tuple 2 = (@, 0,T, o, A) where Q = Q38 Qv
is a finite set of states partitioned into existential states Q3 and universal states Qy. Further, ©
is the input alphabet and T is the tape alphabet that contains a blank symbol blank ¢ ©,
qo € Qv is the initial state, and A C Q x ' x Q x I x {L, R} is the transition relation. We
assume without loss of generality that the set A(q,a) := {(¢’,d’, M) | (¢,a,¢',a’, M) € A}
contains exactly zero or two points for every ¢ € Q3 U Qv and a € T'. Moreover, the state ¢’
(in the transition (g, a,q’,a’, M)) must be from Qv if ¢ € Q3 and from Q3 otherwise, that
is, existential and universal states alternate. A configuration of an ATM is a word wqu’

with w,w’ € T* and ¢ € Q. We say that wquw' is existential if ¢ is, and likewise for universal.

Successor configurations are defined in the usual way. Note that every configuration has
exactly zero or two successor configurations. A computation tree of an ATM 2l on input w is
a (possibly infinite) tree whose nodes are labeled with configurations of 2 such that

the root is labeled with the initial configuration gow;

if a node is labeled with an existential configuration wqw’, then it has a single successor

which is labeled with a successor configuration of wquw’;

if a node is labeled with a universal configuration wqw’, then it has two successors which

are labeled with the two successor configurations of wquw’.
An ATM 2 accepts an input w if there is a computation tree of 2 on w in which every
branch is infinite.! It is well-known that there are 2"-space bounded ATMs which recognize
a 2-ExPTIME-hard language [8], where n is the length of the input w.

Let 2 = (Q,0,T, g9, A) be such a 2"-space bounded ATM and w = ag...a,—1 be an
input of length n. We will provide formulae ¢,, ¢!, and signature o such that

©n, ¢l are joint €7 -consistent for every m € N iff 2l accepts w.

This suffices by the Equivalence (Base). The signature o consists of a, z, and propositions c,
for every possible cell content « of 2, that is, « € T U (Q x I'). Additionally, ¢,, and ¢!, will
use auxiliary propositions to encode counters. Both ¢,,, ¢!, will use the family of formulae
i, ¢} defined in Lemma 28. More precisely, the formulae ¢,,, ¢, will be of the form

Pn = wn A DnX
Oh=vn AX

The only purpose of X’ is to mention the propositions in o; the main work is done by v, ¢, x.

To see what y achieves consider models M, M’ witnessing joint €7 consistency of ¢, ¢},
for some sufficiently large m > n. By Lemma 28, there are points wy, ..., wsn_1 in M and

! This is a slight variation of the more standard acceptance condition in terms of accepting and rejecting
states. It is, however, easily seen to be equivalent.

63:27

STACS 2025

63:28

Modal Separation of Fixpoint Formulae

T; universal conf. -~ T 547 0. 000 .. 0. o— >0
4 ’ . . .
Wi o—>0 - 6. 6—>¢ existential conf. universal conf.
Dv 2" — 17

S o 3 bv

~ O—>@ - -0 0—>0—>0 """ 0" °* 06—>@

2" — -

7

R/ S (I N .
-
N

L

- = O - .

Figure 3 Computation tree of 2, repeated.

@ in M’ which are linked by a (o, m — n)-bisimulation. The idea is now that y enforces
below each w; (the encoding of a) computation tree T; of 2 on input w. The structure of
these computation trees can easily be enforced using standard techniques. The challenge will
be to synchronize successor configurations for which we exploit the mentioned bisimilarity
between the w;. We start with detailing the structure of the trees.

Configurations of 2 are encoded by paths of length 2™ in which each points is labeled

with exactly one c,.

Since accepting computations are infinite, it is convenient to enforce that every point

has a successor. Moreover, along the infinite path we maintain a counter that counts

modulo 2™ and thus dissects the path into pieces of length 2™. Let’s call this counter the

C-counter.

According to the structure of computation trees, every other 2™ points, the tree has

outdegree two.
As mentioned before, the challenge is to coordinate successor configurations, and we rely on
the bisimilarity of all w; to do so. More precisely, we maintain an additional counter, the
B-counter, that counts modulo 2™ as well. We reuse variables by, ..., b,_1 for this purpose;
recall that they are initialized to ¢ at w; for all 0 < ¢ < 2", in contrast to the C-counter
which is initialized to 0 at each w;. The idea is then to synchronize in the subtree below w;
consecutive points having C-counter 0. These points have distance 2" and correspond to the
same cell in consecutive configurations of 2. Since all this is done with non-o-propositions,
this coordination is not “visible” across different subtrees below the w;.

We will now provide x more concretely. It is a conjunction xy = xg A O%x1. Here, xo
initializes the C-counter to 0 using propositional variables cg, ..., c,—1 and marks the first
configuration as universal (recall that ¢y € Qv) using proposition py as follows:

Xo = o N ...\"Ch—1 A Dpy.

Formula y; in turn is a conjunction of several formulae. Note that due to the O* in x
all formulae below are intended to hold in the entire subtree below w;. One conjunct is
responsible for incrementing the counters modulo 2". This is really standard, so we refrain
from detailing it. Another conjunct is ¢T to enforce infinite trees. The most important
conjunct is responsible for the synchronization and enforcing the structure of the computation
tree. The structure of tree T; below w; is depicted in Figure 3. Universal configurations are
marked with proposition py while existential configurations are marked with p&, i € {1,2},
depending on the number of the successor configuration. Points shown as o mark the
beginning of a configuration, that is, where the C-counter is 0.

Below, we will use (C' = i) (or similar expressions) as an abbreviation for the combination
of the propositions cg,...,c,_1 that encode value i. We next enforce the structure of the

J.C. Jung and J. Kotodziejski 63:29

computation tree:

(C<2"=1)Apy = Opy (1)
(C < 2™ —1) Aph — Oph ie{1,2}
(C=2"—1)Apy — D(p V p3)

(C'=2"—1) Aph — Opy ie{1,2}
(C=2"=-1)Apy = Oz A0z

These implications enforce that all points which represent a configuration satisfy one of
pv, P, p? indicating the kind of configuration and, if existential, also a choice of the transition
function. The symbol z € ¥ enforces the branching.

The initial configuration on input w = ag...a,—1 is enforced by

Caora0 N C(Cay A O(Cay A (oo AO(eq,, 1 N OXblank) - - -)),s

where Xpiank enforces label cpjank until the end of the configuration (we omit the details).
To coordinate successor configurations, we associate with M functions f;, i € {1,2}
that map the content of three consecutive cells of a configuration to the content of the
middle cell in the i-the successor configuration (assuming an arbitrary order on the set
A(gq,a), for all g,a). In what follows, we ignore the corner cases that occur at the border
of configurations; they can be treated in a similar way. Clearly, for each possible triple
(a1,a2,a3) € (DU (Q x)3, the ML-formula ©u, ay.05 = Cay A O(Cay A Ocay) is true at an
points v of the computation tree iff v is labeled with c,,, a successors u of v is labeled with
Cas, and a successors t of u is labeled with c,,. In each configuration, we synchronize points
with B-counter 0 by including for every (o1, 09,03) and i € {1,2} the following implications:

(B=2"-DA(C<2"=2)A Pay,az,as NPY = Dq}l (ar,02,03) A Dq;’z(ahamas)

(B=2"-1)A(C <2" —2) A Yay,an,a5 NPy — O4%, (ay,00,008)
At this point, the importance of the superscript in p4 becomes apparent: since different
cells of a configuration are synchronized in different trees Ty the superscript makes sure
that all trees rely on the same choice for existential configurations. Propositions ¢!, are
used as markers (not in o) and are propagated for 2" steps, exploiting the C-counter. The
superscript ¢ € {1,2} determines the successor configuration that the symbol is referring to.
After crossing the end of a configuration, the symbol « is propagated using propositions ¢,
(the superscript is not needed anymore because the branching happens at the end of the
configuration, based on z).

(C<2"—1)Ad, — Od,
(C=2"-1)ApyAgt — O(z — A)
(C=2"-1)ApyAg2 = O(-z = q))

(C=2"—-1)ApsAq, — Od, i€ {1,2}

(B<2"—-1)Aq, — 0Oqg,

(B=2"—-1)Agy — Oda
For those (q,a) with A(g,a) = 0, we add the conjunct

“Cqa-

The following lemma establishes correctness of the reduction.

STACS 2025

63:30

Modal Separation of Fixpoint Formulae

» Lemma 31. The following conditions are equivalent:
1. M accepts w;
2. pn, @, are joint &7 -consistent for every m € N.

Proof. “1 = 2”. If M accepts w, there is a computation tree of 2 on w. We construct two
models M = ¢,, and M’ |= ¢/, such that M <, M’ (which implies joint <]-consistency for
every m). Let M be the infinite tree-shaped model that represents the computation tree of
20 on w as described above, that is, configurations are represented by sequences of 2™ points
and labeled by py, pL, p% depending on whether the configuration is universal or existential,
and in the latter case the superscript indicates which choice has been made for the existential
state. Finally, the first points of the first successor configuration of a universal configuration
is labeled with z. Observe that M interprets only the symbols in ¢ as non-empty. Now, we
obtain models My, k < 2" from M by interpreting non-o-symbols as follows:
the C-counter starts at 0 at the root and counts modulo 2" along each path starting in
the root;
the B-counter starts at k at the root and counts modulo 2™ along each path starting in
the root;
the auxiliary concept names of the shape ¢’ and ¢/, are interpreted in a minimal way so as
to satisfy the implications starting from (7). Note that, by definition of these implications,
there is a unique result.
Now, M’ is defined as follows:

start with a path of length n in which each node satisfies a,

add one successor satisfying —a, —¢ and one successor satisfying —a, ¢ to each node in the

path, and

at the end @ of the path, attach a copy of M.

Next, obtain M from the M as follows:

Start with a full binary tree Mg of depth n,

add one successor satisfying —a to each node in the tree,

interpret propositions by, ...,b,_1 in a way such that the B-counter values of the 2"

leaves wy, . .., wan_1 (of the original binary tree) range from 0 to 2" — 1, and

attach at each leaf wy the tree Mjy,.

It can be verified that the reflexive, transitive, and symmetric closure of

all pairs (u, v) for points u satisfying a in M at level ¢ and points v satisfying a in M’ at

level i,

all pairs (u,v) for points u satisfying —a in M at level ¢ and points v satisfying —a in

M’ at level 4, and

all pairs (v,v’), with v in M and v’ a copy of v in some tree My,
witnesses M e, M’.

“2 = 1”. Suppose @,, ¢!, are joint £7-consistent for every m € N. Since we work
over models of finite outdegree and due to the form of ¢,,] (they do not contain any
“eventualities” O*1p and no other fixpoints), we can construct in a standard way (by ‘skipping
bisimulations’) models M = ¢,, and M’ |= ¢}, such that M <, M'. By Lemma 28, there
are pairwise o-bisimilar points wo, ..., wsn_1. That is, the trees starting at wo, ..., wan_1
are bisimilar. Since these trees are additionally models of xg A 0% it follows that in the tree
below wy, the cell contents of the (2™ — k)-th cell is coordinated, between any two consecutive
configurations. Overall, all cell contents are coordinated and thus all trees below some wy
contain a computation tree of 2 on input w (which is solely represented with o-symbols).
Thus 2 accepts w. |

J.C. Jung and J. Kotodziejski

We show next that ML,-separability reduces to modal separability which is the problem

whether two given ¢, ¢’ € ML have an ML-separator, so without any signature restriction.

This means that the hardness proved in Theorem 22 does not depend on having the signature
available in the input.

» Lemma 32. For any d > 3, there is a polynomial time reduction of ML-separability of
puML-formulae over T¢ to modal separability of uML-formulae over T¢.

Proof. Let d > 3 and ¢, ¢’ € uML and o be a signature. We construct uML-formulae @, @’
such that, over T¢,

@, ¢ are ML,-separable iff &, are ML-separable. (1)

Let 0, = sig(p) \ ¢ and o, = sig(¢’) \ o, respectively, be the sets of all propositions that
occur in @, respectively ¢’, but not in o. Let o be a fresh proposition (o as in “original”);
this means that we extend the set Prop by o. Then,

@ =o0Nh(p,0,)
~/ /
P =0Nh(¢,04)

where h(1, Q) is the formula obtained from 1 by
first replacing each subformula &8 with Go A O(0 — ¢(o A)) and each subformula 06
with O(0 — 0O(0 — 0)),
replacing each subformula of the shape p for p € Q with &(—o A O*p).
Intuitively, in the first step h relativizes 1 to o and “skips” every second level, and the second
step replaces irrelevant propositions by something not modally definable and not visible in
the o-relativization. Clearly, the size of h(yp, Q) is polynomial in the size of its inputs. We
show correctness of the construction (7).

For “«<”, suppose that @, ¢’ are not ML,-separable. By Equivalence (Base), for every
n € N, there are models M,, = ¢, M), |= ¢’ with M,, €7 M!. We construct models
N, E ¢,N. E @ with A,, 2" N as follows. The model N,, is obtained from M,, as
follows:

introduce copies ' for every points u in M,,;

make v’ a successor of u and each successor of u (in M,,) a successor of v’ (in N,,);

make all points and their copies satisfy o;

add an infinite path satisfying —o everywhere to every original point w.

if an original points u satisfied p in M,, for some p € o, then it does not do so anymore

in V,,. Instead, p is made true on the infinite path starting in v at depth 2n + 1.
The model N/, is obtained analogously from M,,. Using the game theoretic semantics of
uML it is not hard to show that:

Claim. N, = h(p,0,) and N, |= h(p,0,/).

Let S be the (o,n)-bisimulation witnessing M,, €% M/ . Based on the fact that, by
construction of NV,,, N}, no proposition from o, Uo, appears in the first 2n levels of N,,, N,
it is not difficult to verify that S’ defined as the union of

SU{(,v) | (u,v) € S}

and all pairs (u/, v’) such that there is an (u,v) € S and v’ and v" both lie in the same distance
at most 2n to u and v on the outgoing path starting in u and v, witnesses N,, £2" N!.

63:31

STACS 2025

63:32 Modal Separation of Fixpoint Formulae

For “=", suppose that $, " are not ML-separable. By Equivalence (Base), for every
n € N, there are models M,, = @, M, = @' with M,, 22" M! . Note that we can assume
without loss of generality that no proposition from o, U o, is satisfied in the first 2n levels
of M, M/ (otherwise just push it down arbitrarily far). We can also assume that from a
point not satisfying o we never a point satisfying o. Indeed, as we relativized our formulae to
0, we can just obtain a new model from M, that makes o in every subtree rooted at a point
not satisfying o and the new model will still be a model of . Finally, we can assume that,
in even levels,? every point satisfying o has at most one successor satisfying o (this can be
easily verified based on the replacement rules for ¢t and Ot). Given an points u satisfying
o0 at an even level, we denote with v’ its unique successor satisfying o (if it exists).

We construct models NV, = ¢, N}, |= ¢’ such that N,, €™ N as follows.

The domain of N, is the smallest set N such that:

N contains the root of M,,, and
if w € N then N contains also all successors of v’ (in M,,) that satisfy o.

For p € o and u € N,,, we have N,,u | p iff M,,,u [p,

For p € 0, and u € N,,, we have N,,,u = p iff M, u = (=0 A O*p),
The model N, is constructed analogously from M!,. Using the game theoretic semantics of
uML it is not hard to show that:
Claim. N, E g and N = ¢'.

Let S be any 2n-bisimulation witnessing M,, £2* M/ . Tt is routine to verify that the
restriction of S to N,, x N}, witnesses N,, 27 N. <

2 The root is on even level 0.

	1 Introduction
	2 Preliminaries
	3 Foundations of Separability
	4 Unary Case
	5 Binary Case
	6 Ternary and Beyond
	6.1 Lower Bound for Theorem 22
	6.2 Upper Bound for Theorem 22

	7 Case Study: Graded Modalities
	8 Conclusion
	A Proofs for Section 3
	A.1 Correctness of the Construction of n-uniform Consequences

	B Proofs for Section 4
	C Proofs for Section 5
	C.1 Proof of Proposition 16
	C.2 Craig Interpolation over T2 from Proposition 16

	D Proofs for Section 6
	D.1 Proof of Theorem 21
	D.2 Upper Bound Proof of Theorem 22
	D.3 Lower Bound Proof of Theorem 22

