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Logic: a systematic way to talk about things

e programs: some states, how they change
e epistemic states of an agent: knowledge & beliefs, how they evolve

e time (and space), possibility and necessity, proofs, moral duties, ...

notification sent

we abstract

agent believes that
from the details red —_ 28
\ Sokrates is mortal
properties of points: model: directed graph (M, —)
e "“there is a red child” + coloring

e ‘there is an outgoing infinite path” (4+ sometimes initial point)
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Model theory for (sets of!) modal formulae

V. = <>gp there is a child

where  is true”

I

modal logic = colors + bool + <

definable in first-order logic

semantically: ML = FO/N/ and

N

invariant under bisimulation

“there is a red child” expressible, by ML-formula <red

“there is an outgoing infinite path” not local, so not expressible
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categoriCity:  doesagven type

have a unique model?

bisimulation!

up to isomerphism
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Example

Q - all points are blue,
D - all points have children

Non-Example

satisfy the same modal formulae, but are not bisimilar!
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< >
\ /

t has a model where every
point has finite outdegree.
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Variants of the problem:

e sometimes we only want to consider models with some specific properties...
e _..which are not expressible in ML, If we are modelling the flow of time

then it makes sense to assume that
the edge relation — is transitive.

e One can just include such properties in the definition of a model.

e This makes sense only if ML is still well-behaved after that.

For every modal type t C ML: For every modal type t C ML:
t has a unique transitive t has a unique two-way
model up to ~. model up to ~.
t has a finite transitive model t has a two-way model where every

point has finite in- and outdegree.
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For every modal type t C ML: the edge relation — is a

. : well-founded linear order >
t has a unique ordinal

model up to ~.

W 3 2 1 0
t has a finite ordinal model (up to isomorphism: ordinal number)

A different case: ordinal models

Compactness: Short Model Property:

If every finite subset of t C ML has an If t € ML has an ordinal model then

ordinal model then so does the entire t. it has one of length < wlcolorsl 1.
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A classical approach to infinitary behavior: fixpoints

» S induces an operation F : P(M) — P(M):

5|£>{m\3m_>nn€5}

T

points in S points with a child in S

» This F is monotone: S CS" = F(S) C F(5)

» ...and so F has the greatest and the least fixpoint!
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» we compute fixpoints by (transfinite) iteration of F:

S5 {m | Inon n € S}

GFP.F = "there is an outgoing infinite path”

FO=M F' = F(F°) =" a child" F“ = "arbitrarily long paths"  Fvt! = F»+2 = GFP.F
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u-calculus = modal logic + fixpoints

» This logic captures:

finiteness/infiniteness of things

» but does not capture:
boundedness/unboundedness of things!

» Expressible:

» “there is a red child”
» “there is an outgoing infinite path”

» ‘there are arbitrarily long finite paths” X



Extend the p-calculus:




Extend the p-calculus:

F¥ = “arbitrarily long paths” F“tl = GFP.F = “infinite path”



Extend the p-calculus:

modal logic 4+ fixpoint approximations

countdown p-calculus

F¥ = “arbitrarily long paths” F“tl = GFP.F = “infinite path”
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Unlike with parity games:

» scalar calculus # vectorial calculus

\, multiple variables

bound symultaneously

correspond to a
subclass of automata

» players may need unbounded memory to win

» due to this, automata are more complicated:

alternating automata,
no nondeterministic model
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Decidability

» Conjecture: satisfiability decidable.
» open in general
» solved in special cases:
» positive countdown (no approximations of GFP)

» Biichi fragment over infinite words

» Model-checking decidable.
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Other facts and results

» strict hierarchy:

greater nesting of new operators

greater expressive power

» normal forms:

/ push — to atoms
» negation normal form

» guarded normal form . the corresponding
game progresses

» low topological complexity

» works over models, words, trees, coalgebras...
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Conclusion: (terribly) oversimplified slogan

| studied the difference between these two pictures.

Thank you!




