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Logic: a systematic way to talk about things

• programs: some states, how they change

• epistemic states of an agent: knowledge & beliefs, how they evolve

• time (and space), possibility and necessity, proofs, moral duties,...

we abstract
from the details

red

noti�cation sent

agent believes that

Sokrates is mortal

· · ·

properties of points:

• �there is a red child�

• �there is an outgoing in�nite path�

model: directed graph (M ,→)

+ coloring

(+ sometimes initial point)
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Choice of granularity

�ner: more information

coarser: easier to understand

isomorphism: the same structure

∼=

bisimulation: the same behavior

∼
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Model theory for (sets of!) modal formulae

modal logic = colors + bool + 3

red
∨, ¬ 3φ �there is a child

where φ is true�

semantically: ML = FO/∼

de�nable in �rst-order logic

and

invariant under bisimulation

�there is a red child� expressible, by ML-formula 3red

�there is an outgoing in�nite path� not local, so not expressible
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Example

all points are blue,

all points have children|=
··
·

∼

Non-Example

· · · · · ·

· · ·

satisfy the same modal formulae, but are not bisimilar!
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For every modal type t ⊆ ML:

t has a unique model up to ∼.

⇐⇒
t has a model where every
point has �nite outdegree.
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Variants of the problem:

• sometimes we only want to consider models with some speci�c properties...

• ...which are not expressible in ML. If we are modelling the �ow of time

then it makes sense to assume that

the edge relation → is transitive.

• One can just include such properties in the de�nition of a model.

• This makes sense only if ML is still well-behaved after that.

For every modal type t ⊆ ML:

t has a unique transitive
model up to ∼.

⇐⇒
t has a �nite transitive model

For every modal type t ⊆ ML:

t has a unique two-way
model up to ∼.

⇐⇒
t has a two-way model where every
point has �nite in- and outdegree.
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A di�erent case: ordinal models

the edge relation → is a

well-founded linear order >

0123

· · ·
ω

· · ·

(up to isomorphism: ordinal number)

For every modal type t ⊆ ML:

t has a unique ordinal
model up to ∼.

⇐⇒
t has a �nite ordinal model

Compactness:

If every �nite subset of t ⊆ ML has an

ordinal model then so does the entire t.

Short Model Property:

If t ⊆ ML has an ordinal model then

it has one of length ≤ ω|colors| + 1.
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A classical approach to in�nitary behavior: �xpoints

▶ 3S induces an operation F : P(M) → P(M):

S
F7→ {m | ∃m→n n ∈ S}S
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points in S

S
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points with a child in S

▶ This F is monotone: S ⊆ S ′ =⇒ F (S) ⊆ F (S ′)

▶ ...and so F has the greatest and the least �xpoint!
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µ-calculus = modal logic + �xpoints

▶ This logic captures:

�niteness/in�niteness of things

▶ but does not capture:

boundedness/unboundedness of things!

▶ Expressible:

▶ �there is a red child� ✓
▶ �there is an outgoing in�nite path� ✓
▶ �there are arbitrarily long �nite paths� ✗



µ-calculus = modal logic + �xpoints

▶ This logic captures:

�niteness/in�niteness of things

▶ but does not capture:

boundedness/unboundedness of things!

▶ Expressible:

▶ �there is a red child� ✓
▶ �there is an outgoing in�nite path� ✓
▶ �there are arbitrarily long �nite paths� ✗



µ-calculus = modal logic + �xpoints

▶ This logic captures:

�niteness/in�niteness of things

▶ but does not capture:

boundedness/unboundedness of things!

▶ Expressible:

▶ �there is a red child� ✓
▶ �there is an outgoing in�nite path� ✓
▶ �there are arbitrarily long �nite paths� ✗



µ-calculus = modal logic + �xpoints

▶ This logic captures:

�niteness/in�niteness of things

▶ but does not capture:

boundedness/unboundedness of things!

▶ Expressible:

▶ �there is a red child� ✓
▶ �there is an outgoing in�nite path� ✓
▶ �there are arbitrarily long �nite paths� ✗



µ-calculus = modal logic + �xpoints

▶ This logic captures:

�niteness/in�niteness of things

▶ but does not capture:

boundedness/unboundedness of things!

▶ Expressible:

▶ �there is a red child� ✓
▶ �there is an outgoing in�nite path� ✓
▶ �there are arbitrarily long �nite paths� ✗



µ-calculus = modal logic + �xpoints

▶ This logic captures:

�niteness/in�niteness of things

▶ but does not capture:

boundedness/unboundedness of things!

▶ Expressible:

▶ �there is a red child� ✓
▶ �there is an outgoing in�nite path� ✓
▶ �there are arbitrarily long �nite paths� ✗



µ-calculus = modal logic + �xpoints

▶ This logic captures:

�niteness/in�niteness of things

▶ but does not capture:

boundedness/unboundedness of things!

▶ Expressible:

▶ �there is a red child� ✓

▶ �there is an outgoing in�nite path� ✓
▶ �there are arbitrarily long �nite paths� ✗



µ-calculus = modal logic + �xpoints

▶ This logic captures:

�niteness/in�niteness of things

▶ but does not capture:

boundedness/unboundedness of things!

▶ Expressible:

▶ �there is a red child� ✓
▶ �there is an outgoing in�nite path� ✓

▶ �there are arbitrarily long �nite paths� ✗



µ-calculus = modal logic + �xpoints

▶ This logic captures:

�niteness/in�niteness of things

▶ but does not capture:

boundedness/unboundedness of things!

▶ Expressible:

▶ �there is a red child� ✓
▶ �there is an outgoing in�nite path� ✓
▶ �there are arbitrarily long �nite paths� ✗



Extend the µ-calculus:

· · ·

·
·
·

F ω = �arbitrarily long paths�

· · ·

·
·
·

F ω+1 = GFP.F = �in�nite path�

modal logic + �xpoint approximations

=
countdown µ-calculus



Extend the µ-calculus:

· · ·

·
·
·

F ω = �arbitrarily long paths�

· · ·

·
·
·

F ω+1 = GFP.F = �in�nite path�

modal logic + �xpoint approximations

=
countdown µ-calculus



Extend the µ-calculus:

· · ·

·
·
·

F ω = �arbitrarily long paths�

· · ·

·
·
·

F ω+1 = GFP.F = �in�nite path�

modal logic + �xpoint approximations

=
countdown µ-calculus



The source of good properties of µ-ML:

parity

games
parity

automata

µ-calculus

countdown

games
countdown

automata

countdown

µ-calculus

⊆⊆

⊆



The source of good properties of µ-ML:

parity

games
parity

automata

µ-calculus

countdown

games
countdown

automata

countdown

µ-calculus

⊆⊆

⊆



The source of good properties of µ-ML:

parity

games
parity

automata

µ-calculus

countdown

games
countdown

automata

countdown

µ-calculus

⊆⊆

⊆



The source of good properties of µ-ML:

parity

games
parity

automata

µ-calculus

countdown

games
countdown

automata

countdown

µ-calculus

⊆⊆

⊆



COMPLICATIONS!!!

Unlike with parity games:

▶ scalar calculus ̸= vectorial calculus▶ scalar calculus ̸= vectorial calculus

multiple variables

bound symultaneously

▶ scalar calculus ̸= vectorial calculus

correspond to a

subclass of automata

▶ players may need unbounded memory to win

▶ due to this, automata are more complicated:

alternating automata,

no nondeterministic model
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▶ Conjecture: satis�ability decidable.

▶ open in general

▶ solved in special cases:

▶ positive countdown (no approximations of GFP)

▶ Büchi fragment over in�nite words

▶ Model-checking decidable.
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push ¬ to atoms

▶ guarded normal form the corresponding

game progresses
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