Bisimulation-Invariant Logics: Beyond Finite (and Infinite)

Jędrzej Kołodziejski

24 V 2024 Warszawa

Powered by BeamerikZ

• programs: some states, how they change

- programs: some states, how they change
- epistemic states of an agent: knowledge & beliefs, how they evolve

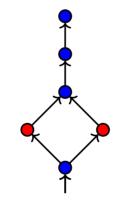
- **programs**: some states, how they change
- epistemic states of an agent: knowledge & beliefs, how they evolve
- time (and space), **possibility** and necessity, **proofs**, moral **duties**,...

- **programs**: some states, how they change
- epistemic states of an agent: knowledge & beliefs, how they evolve
- time (and space), **possibility** and necessity, **proofs**, moral **duties**,...

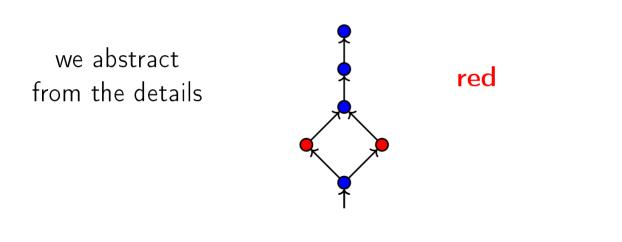
we abstract from the details

- programs: some states, how they change
- epistemic states of an agent: knowledge & beliefs, how they evolve
- time (and space), **possibility** and necessity, **proofs**, moral **duties**,...

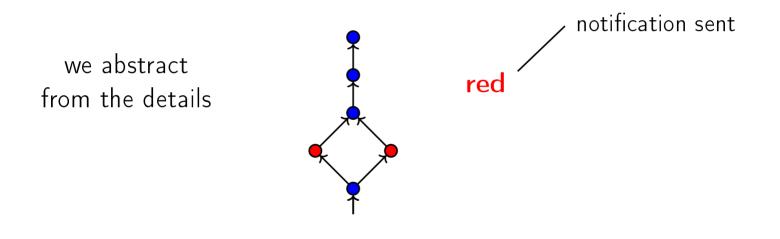
we abstract from the details



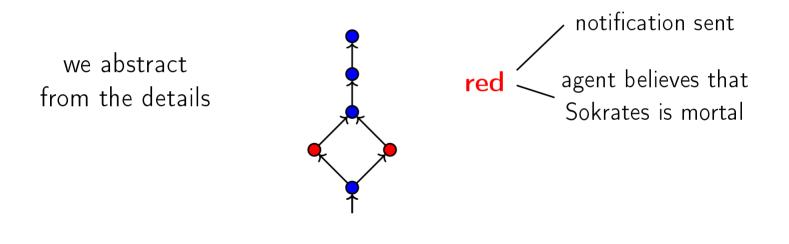
- programs: some states, how they change
- epistemic states of an agent: knowledge & beliefs, how they evolve
- time (and space), **possibility** and necessity, **proofs**, moral **duties**,...



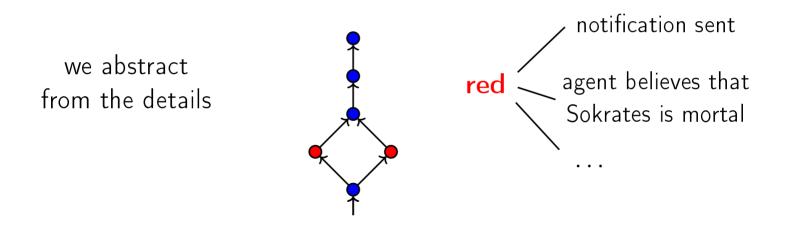
- programs: some states, how they change
- epistemic states of an agent: knowledge & beliefs, how they evolve
- time (and space), **possibility** and necessity, **proofs**, moral **duties**,...



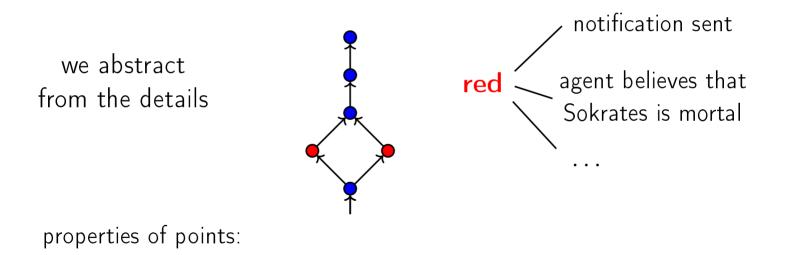
- programs: some states, how they change
- epistemic states of an agent: knowledge & beliefs, how they evolve
- time (and space), **possibility** and necessity, **proofs**, moral **duties**,...



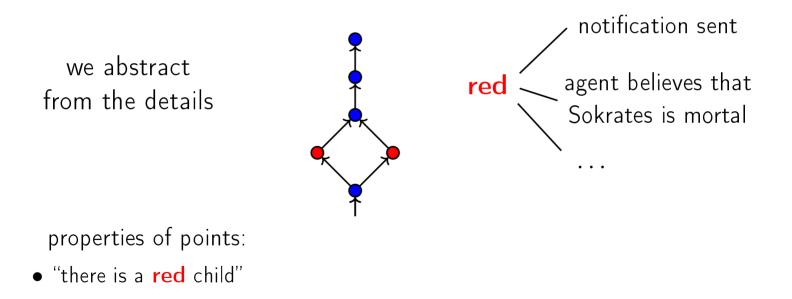
- programs: some states, how they change
- epistemic states of an agent: knowledge & beliefs, how they evolve
- time (and space), **possibility** and necessity, **proofs**, moral **duties**,...



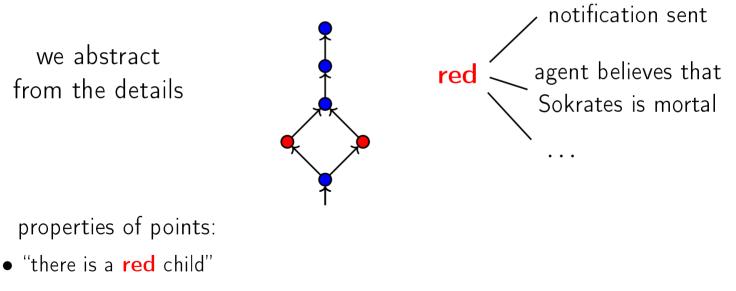
- programs: some states, how they change
- epistemic states of an agent: knowledge & beliefs, how they evolve
- time (and space), **possibility** and necessity, **proofs**, moral **duties**,...



- programs: some states, how they change
- epistemic states of an agent: knowledge & beliefs, how they evolve
- time (and space), **possibility** and necessity, **proofs**, moral **duties**,...

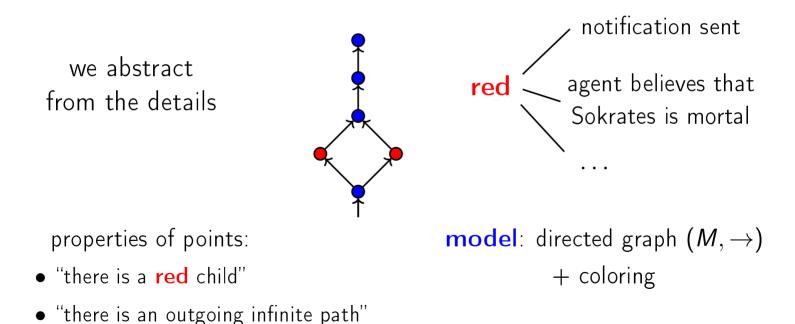


- programs: some states, how they change
- epistemic states of an agent: knowledge & beliefs, how they evolve
- time (and space), **possibility** and necessity, **proofs**, moral **duties**,...

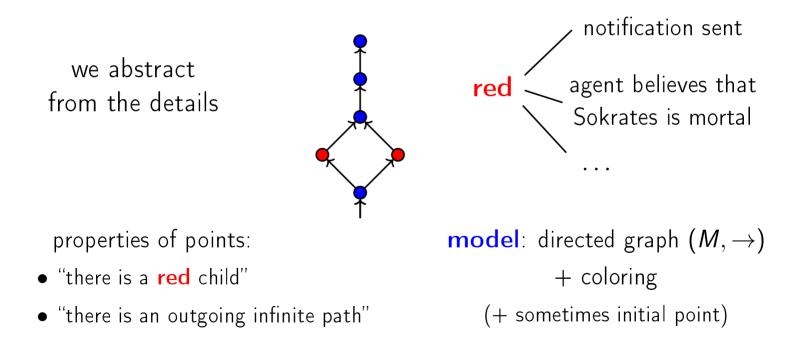


• "there is an outgoing infinite path"

- programs: some states, how they change
- epistemic states of an agent: knowledge & beliefs, how they evolve
- time (and space), **possibility** and necessity, **proofs**, moral **duties**,...



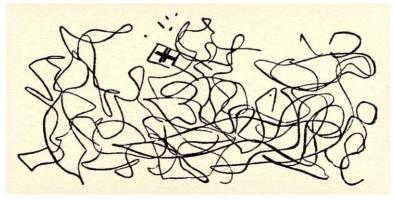
- programs: some states, how they change
- epistemic states of an agent: knowledge & beliefs, how they evolve
- time (and space), **possibility** and necessity, **proofs**, moral **duties**,...



finer: more information

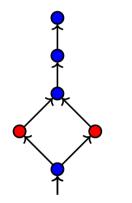
finer more information

coarser: easier to understand

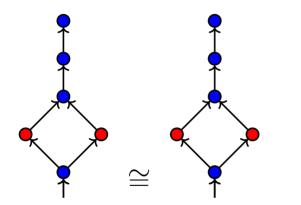


isomorphism: the same structure

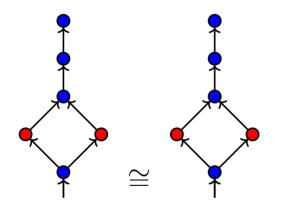
isomorphism: the same structure



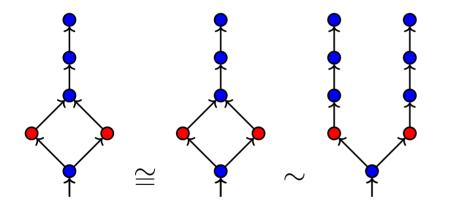
isomorphism: the same structure



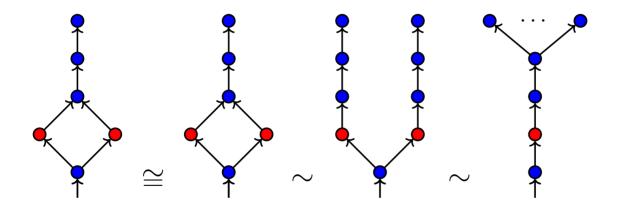
isomorphism: the same structure



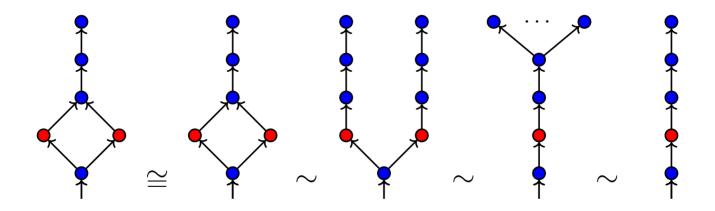
isomorphism: the same structure



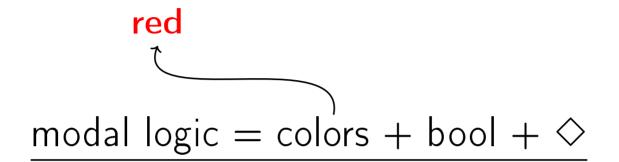
isomorphism: the same structure

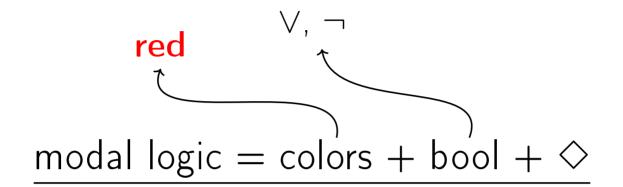


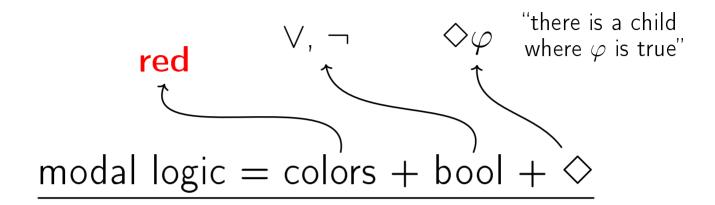
isomorphism: the same structure

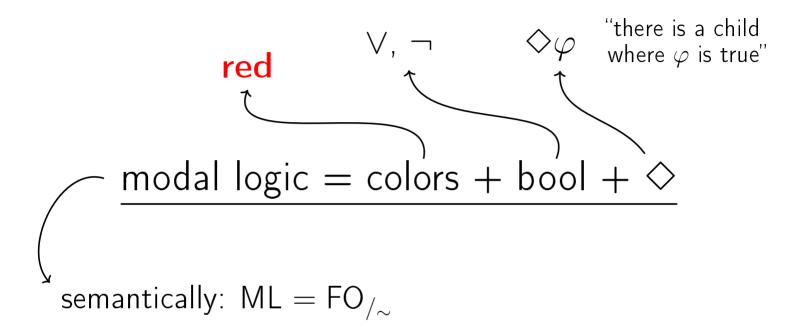


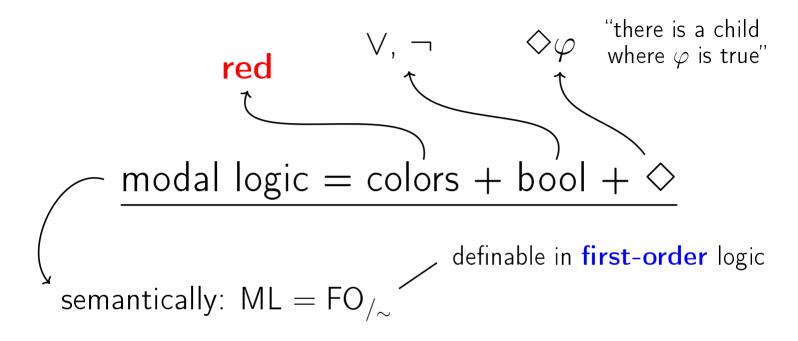
modal logic = colors + bool + \diamond

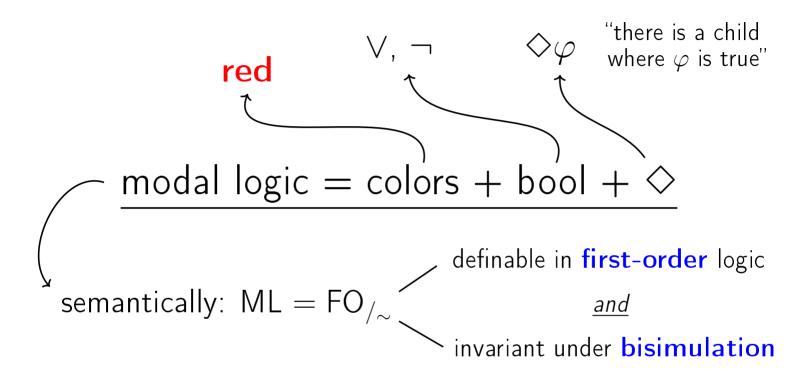


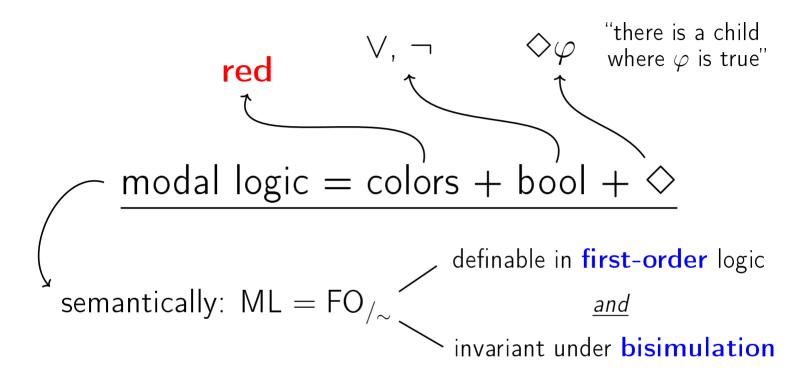












"<u>there is a **red** child</u>" expressible, by ML-formula **red**



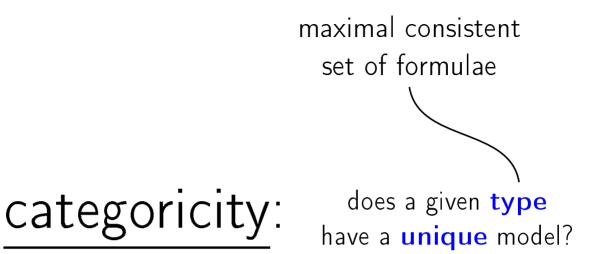
"<u>there is a **red** child</u>" expressible, by ML-formula **ored**

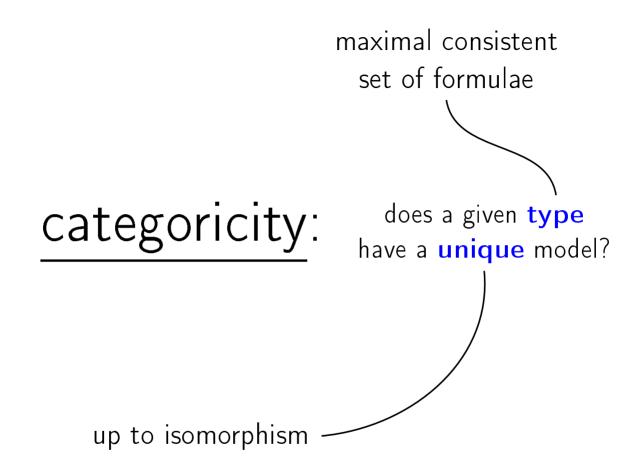
"there is an outgoing infinite path" not local, so not expressible

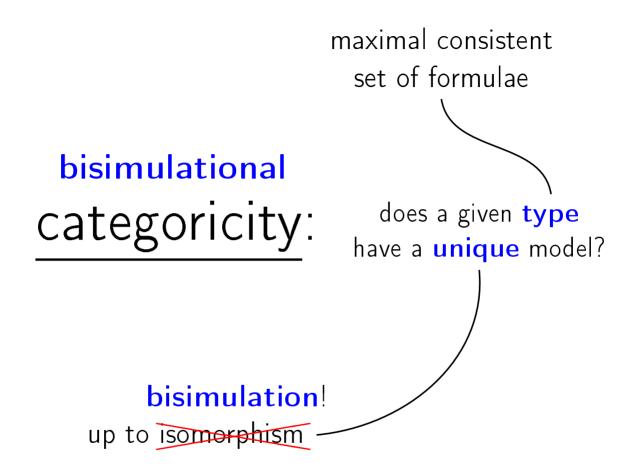
categoricity:

categoricity:

does a given **type** have a **unique** model?



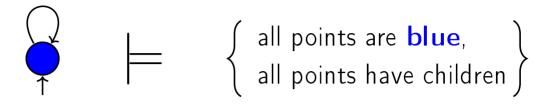


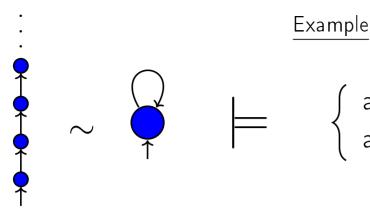


Example

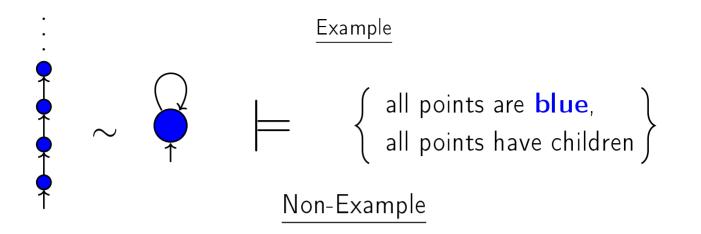
Example

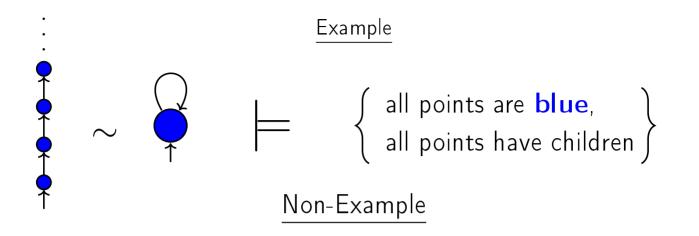
{ all points are blue, all points have children } Example

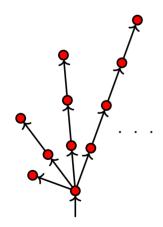


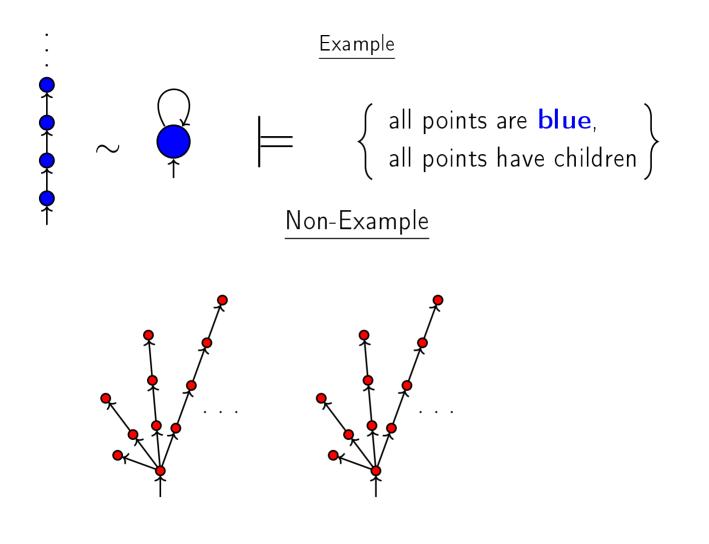


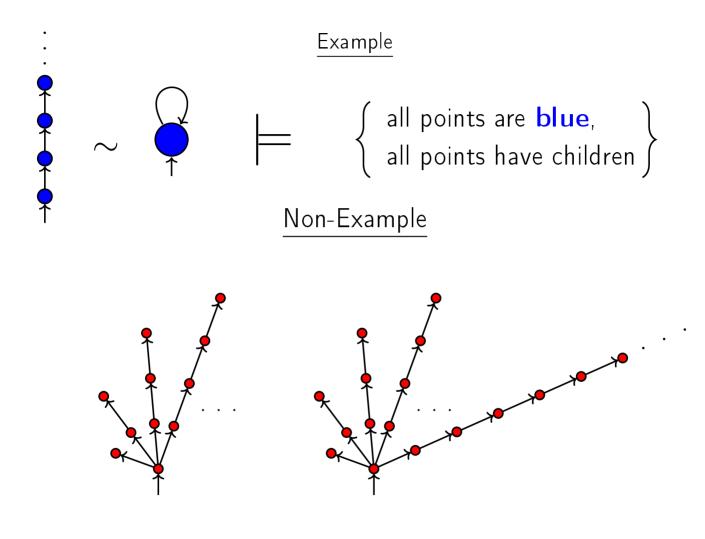
 $= \begin{cases} all points are$ **blue** $, \\ all points have children \end{cases}$

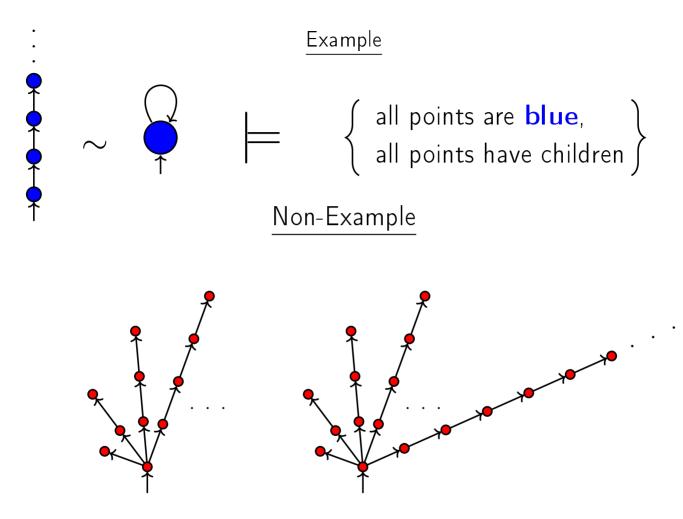








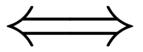




satisfy the same modal formulae, but are not bisimilar!

t has a unique model up to \sim .

t has a unique model up to \sim .



t has a model where every point has finite outdegree.

• sometimes we only want to consider models with some **specific properties**...

- sometimes we only want to consider models with some **specific properties**...
- ...which are not expressible in ML.

- sometimes we only want to consider models with some **specific properties**...
- ...which are not expressible in ML.

If we are modelling the *flow of time* then it makes sense to assume that the edge relation \rightarrow is transitive.

- sometimes we only want to consider models with some **specific properties**...
- ...which are not expressible in ML.

If we are modelling the *flow of time* then it makes sense to assume that the edge relation \rightarrow is transitive.

• One can just include such properties in the definition of a model.

- sometimes we only want to consider models with some **specific properties**...
- ...which are not expressible in ML.

If we are modelling the *flow of time* then it makes sense to assume that the edge relation \rightarrow is transitive.

- One can just include such properties in the definition of a model.
- This makes sense only if ML is still well-behaved after that.

- sometimes we only want to consider models with some **specific properties**...
- ...which are not expressible in ML.

If we are modelling the *flow of time* then it makes sense to assume that the edge relation \rightarrow is transitive.

- One can just include such properties in the definition of a model.
- This makes sense only if ML is still well-behaved after that.

For every modal type $t \subseteq ML$:

- sometimes we only want to consider models with some **specific properties**...
- ...which are not expressible in ML.

If we are modelling the *flow of time* then it makes sense to assume that the edge relation \rightarrow is transitive.

- One can just include such properties in the definition of a model.
- This makes sense only if ML is still well-behaved after that.

For every modal type $t \subseteq ML$:

t has a unique transitive model up to \sim .

- sometimes we only want to consider models with some **specific properties**...
- ...which are not expressible in ML.

If we are modelling the *flow of time* then it makes sense to assume that the edge relation \rightarrow is transitive.

- One can just include such properties in the definition of a model.
- This makes sense only if ML is still well-behaved after that.

For every modal type $t \subseteq ML$:

t has a unique transitive model up to \sim .

t has a finite **transitive** model

- sometimes we only want to consider models with some **specific properties**...
- ...which are not expressible in ML.

If we are modelling the *flow of time* then it makes sense to assume that the edge relation \rightarrow is transitive.

- One can just include such properties in the definition of a model.
- This makes sense only if ML is still well-behaved after that.

For every modal type $t \subseteq ML$:

For every modal type $t \subseteq ML$:

t has a unique transitive model up to \sim .

t has a finite **transitive** model

- sometimes we only want to consider models with some **specific properties**...
- ...which are not expressible in ML.

If we are modelling the *flow of time* then it makes sense to assume that the edge relation \rightarrow is transitive.

- One can just include such properties in the definition of a model.
- This makes sense only if ML is still well-behaved after that.

For every modal type $t \subseteq ML$:

t has a unique transitive model up to \sim .

t has a finite **transitive** model

For every modal type $t \subseteq ML$:

t has a unique two-way model up to \sim .

- sometimes we only want to consider models with some **specific properties**...
- ...which are not expressible in ML.

If we are modelling the *flow of time* then it makes sense to assume that the edge relation \rightarrow is transitive.

- One can just include such properties in the definition of a model.
- This makes sense only if ML is still well-behaved after that.

For every modal type $t \subseteq ML$:

t has a unique transitive model up to \sim .

t has a finite transitive model

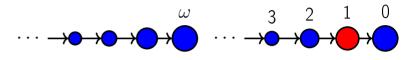
For every modal type $t \subseteq ML$:

t has a unique two-way model up to \sim .

t has a **two-way** model where every point has finite in- and outdegree.

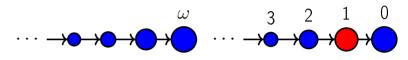
the edge relation \rightarrow is a well-founded linear order >

the edge relation \rightarrow is a well-founded linear order >



(up to isomorphism: ordinal number)

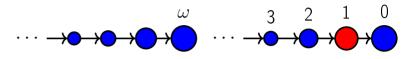
the edge relation \rightarrow is a well-founded linear order >



(up to isomorphism: ordinal number)

t has a unique ordinal model up to \sim .

the edge relation \rightarrow is a well-founded linear order >



(up to isomorphism: ordinal number)

t has a unique ordinal model up to \sim .

t has a finite ordinal model

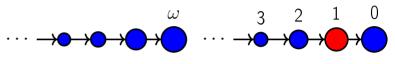
the edge relation \rightarrow is a well-founded linear order >

(up to isomorphism: ordinal number)

t has a unique ordinal model up to \sim .

t has a finite ordinal model

the edge relation \rightarrow is a well-founded linear order >



(up to isomorphism: ordinal number)

A different case: ordinal models

Compactness:

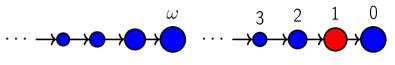
If every finite subset of $t \subseteq ML$ has an ordinal model then so does the entire **t**.

For every modal type $t \subseteq ML$:

t has a unique ordinal model up to \sim .

t has a finite ordinal model

the edge relation \rightarrow is a well-founded linear order >



(up to isomorphism: ordinal number)

A different case: ordinal models

Compactness:

If every finite subset of $t \subseteq ML$ has an ordinal model then so does the entire **t**.

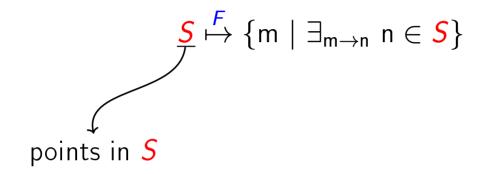
Short Model Property:

If $t \subseteq$ ML has an ordinal model then it has one of length $\leq \omega^{|colors|} + 1$.

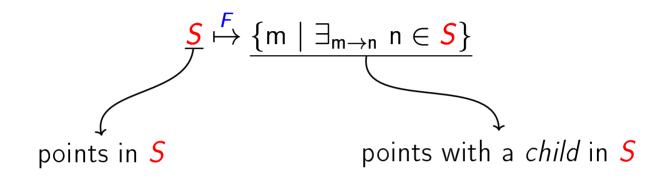
▶ \diamond *S* induces an operation *F* : $\mathcal{P}(M) \rightarrow \mathcal{P}(M)$:

$$\overset{F}{\mathsf{S}} \overset{F}{\mapsto} \{ \mathsf{m} \mid \exists_{\mathsf{m} \to \mathsf{n}} \mathsf{n} \in \overset{\mathbf{S}}{\mathsf{S}} \}$$

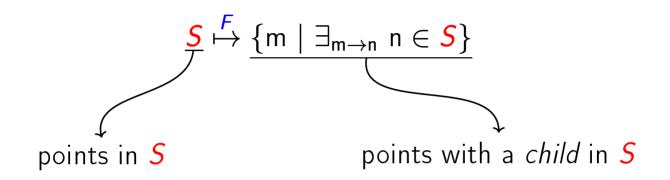
▶ $\diamond S$ induces an operation $F : \mathcal{P}(M) \to \mathcal{P}(M)$:



▶ $\diamond S$ induces an operation $F : \mathcal{P}(M) \to \mathcal{P}(M)$:

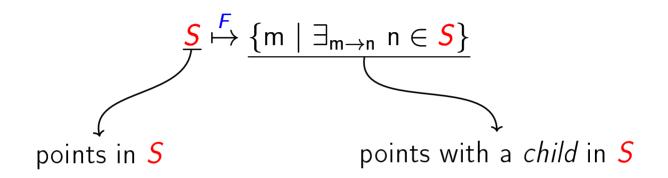


▶ $\diamond S$ induces an operation $F : \mathcal{P}(M) \to \mathcal{P}(M)$:



▶ This *F* is monotone: $S \subseteq S' \implies F(S) \subseteq F(S')$

▶ $\diamond S$ induces an operation $F : \mathcal{P}(M) \to \mathcal{P}(M)$:



▶ This *F* is monotone: $S \subseteq S' \implies F(S) \subseteq F(S')$

▶ ...and so *F* has the greatest and the least fixpoint!

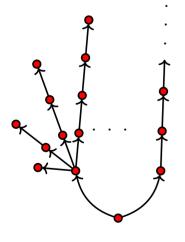
\blacktriangleright we compute fixpoints by (transfinite) iteration of F:

\blacktriangleright we compute fixpoints by (transfinite) iteration of F:

$${\color{black}{S}} \stackrel{{\color{black}{F}}}{\mapsto} \{ {\color{black}{m}} \mid {\color{black}{\exists}}_{{\color{black}{m}}
ightarrow {\color{black}{n}} n \in {\color{black}{S}} \}$$

• we compute fixpoints by (transfinite) iteration of F:

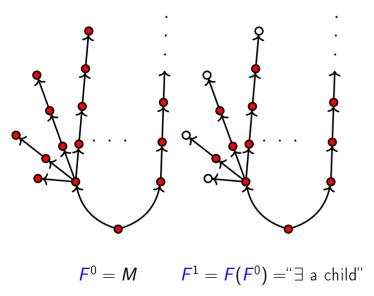
$${\color{black}{S}} \stackrel{{\color{black}{F}}}{\mapsto} \{ {\color{black}{m}} \mid {\color{black}{\exists}}_{{\color{black}{m}}
ightarrow {\color{black}{n}} n \in {\color{black}{S}} \}$$



 $F^{0} = M$

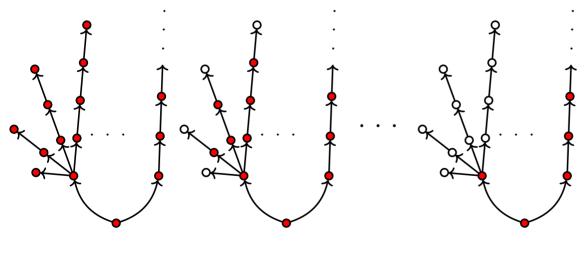
• we compute fixpoints by (transfinite) iteration of F:

$$S \stackrel{F}{\mapsto} \{ m \mid \exists_{m \to n} n \in S \}$$



\blacktriangleright we compute fixpoints by (transfinite) iteration of F:

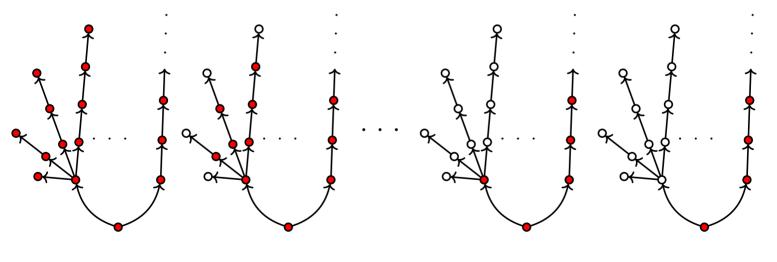
$${\color{black}{S}} \stackrel{{\color{black}{F}}}{\mapsto} \{ {\color{black}{m}} \mid {\color{black}{\exists}}_{{\color{black}{m}}
ightarrow {\color{black}{n}} n \in {\color{black}{S}} \}$$



 $F^0 = M$ $F^1 = F(F^0) = "\exists a child"$ $F^{\omega} = "arbitrarily long paths"$

▶ we compute fixpoints by (transfinite) iteration of *F*:

$$\mathbf{S} \stackrel{\mathbf{F}}{\mapsto} \{ \mathsf{m} \mid \exists_{\mathsf{m} \to \mathsf{n}} \mathsf{n} \in \mathbf{S} \}$$



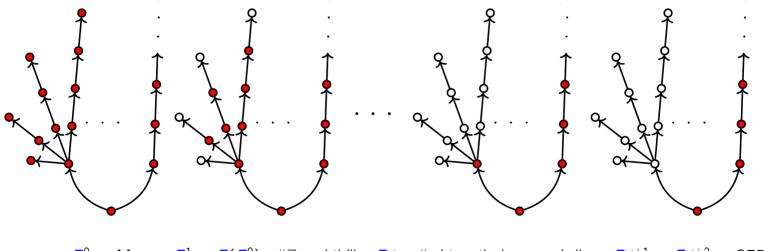
 $F^0 = M$ $F^1 = F(F^0) = "\exists$ a child" $F^{\omega} = "arbitrarily long paths"$

 $\mathbf{F}^{\omega+1} = \mathbf{F}^{\omega+2} = \mathsf{GFP}.\mathbf{F}$

• we compute fixpoints by (transfinite) iteration of F:

$$S \stackrel{F}{\mapsto} \{ m \mid \exists_{m \to n} \ n \in S \}$$

GFP.F = "there is an outgoing infinite path"



 $F^0 = M$ $F^1 = F(F^0) = "\exists$ a child" $F^{\omega} = "arbitrarily long paths" <math>F^{\omega+1} = F^{\omega+1}$

 $F^{\omega+1} = F^{\omega+2} = \mathsf{GFP}.F$

► This logic captures:

► This logic captures:

finiteness/infiniteness of things

► This logic captures:

finiteness/infiniteness of things

▶ but does not capture:

► This logic captures:

finiteness/infiniteness of things

▶ but does not capture:

boundedness/unboundedness of things!

► This logic captures:

finiteness/infiniteness of things

▶ but does not capture:

boundedness / **unboundedness** of things!

► Expressible:

► This logic captures:

finiteness/infiniteness of things

▶ but does not capture:

boundedness/unboundedness of things!

- ► Expressible:
 - ► "there is a red child" ✓

► This logic captures:

finiteness/infiniteness of things

▶ but does not capture:

boundedness / **unboundedness** of things!

- ► Expressible:
 - ► "there is a red child"
 - "there is an outgoing infinite path"

► This logic captures:

finiteness/infiniteness of things

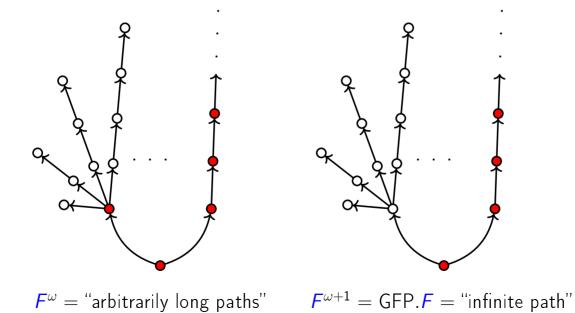
▶ but does not capture:

boundedness / **unboundedness** of things!

- ► Expressible:
 - ► "there is a red child"
 - "there is an outgoing infinite path"
 - "there are arbitrarily long finite paths"

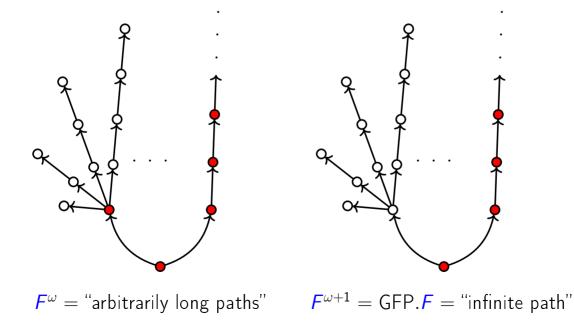
Extend the μ -calculus:

Extend the μ -calculus:



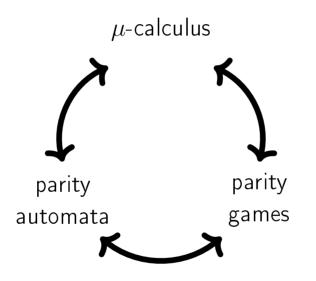
Extend the μ -calculus:

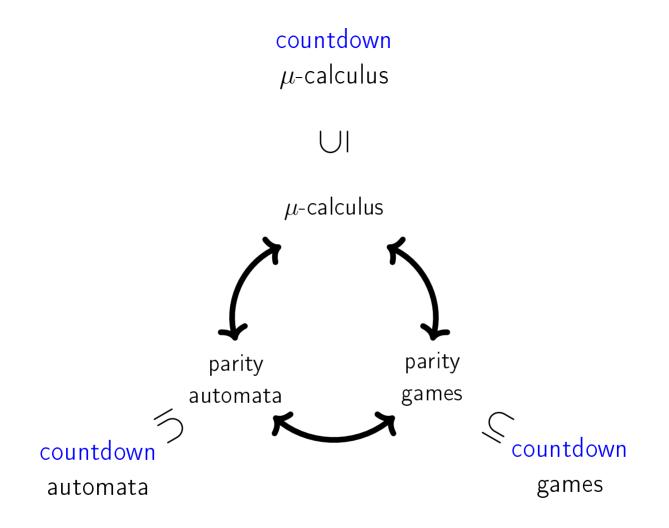
countdown μ -calculus

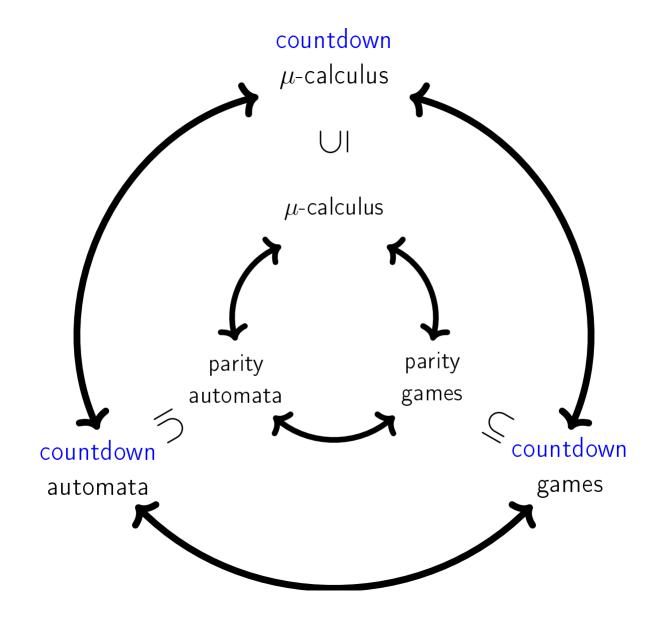


The source of good properties of μ -ML:

The source of good properties of μ -ML:







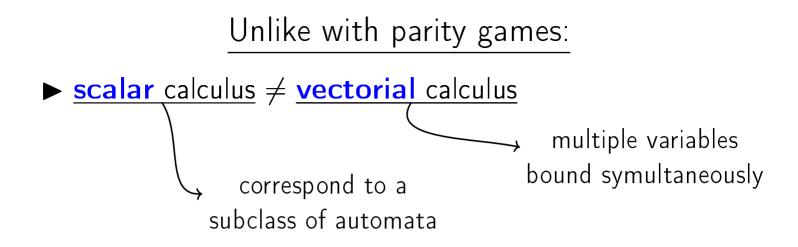
COMPLICATIONS!!!

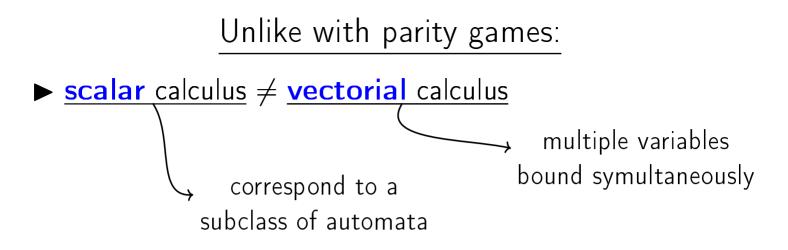
Unlike with parity games:

Unlike with parity games:

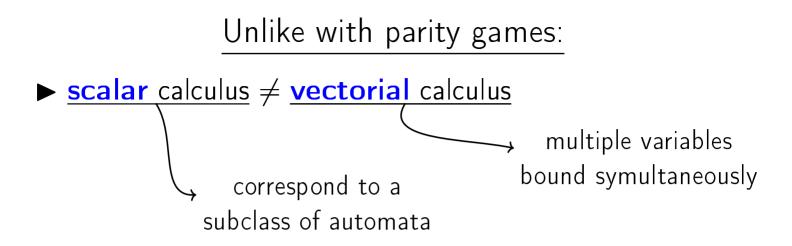
scalar calculus \neq **vectorial** calculus

Unlike with parity games:
► scalar calculus ≠ vectorial calculus multiple variables bound symultaneously





▶ players may need **unbounded memory** to win



- ▶ players may need **unbounded memory** to win
- ► due to this, automata are more complicated:

alternating automata, no nondeterministic model

► Conjecture: **satisfiability** decidable.

- ► Conjecture: **satisfiability** decidable.
 - ▶ open in general

- ► Conjecture: **satisfiability** decidable.
 - ▶ open in general
 - ► solved in special cases:

- ► Conjecture: **satisfiability** decidable.
 - ▶ open in general
 - ► solved in special cases:
 - ▶ positive countdown (no approximations of GFP)

- ► Conjecture: **satisfiability** decidable.
 - ▶ open in general
 - ► solved in special cases:
 - ▶ positive countdown (no approximations of GFP)
 - ► Büchi fragment over infinite words

- ► Conjecture: **satisfiability** decidable.
 - ▶ open in general
 - ► solved in special cases:
 - ▶ positive countdown (no approximations of GFP)
 - ► Büchi fragment over infinite words
- ► Model-checking decidable.

► strict hierarchy:

greater **nesting** of new operators

greater expressive power

► strict hierarchy:

greater **nesting** of new operators

greater expressive **power**

► normal forms:

► strict hierarchy:

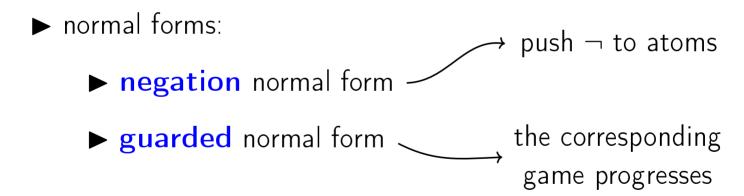
greater **nesting** of new operators

greater expressive power

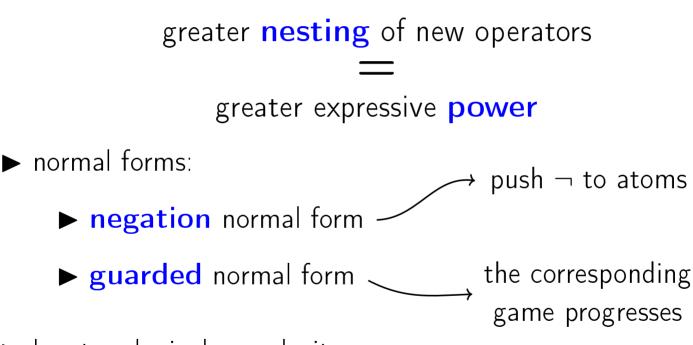
▶ normal forms:
 ▶ negation normal form

► strict hierarchy:

greater expressive power

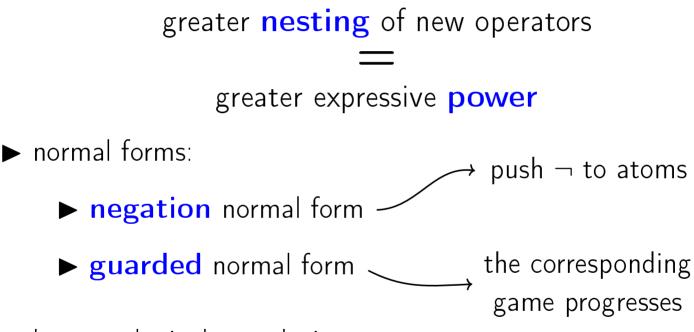


► strict hierarchy:

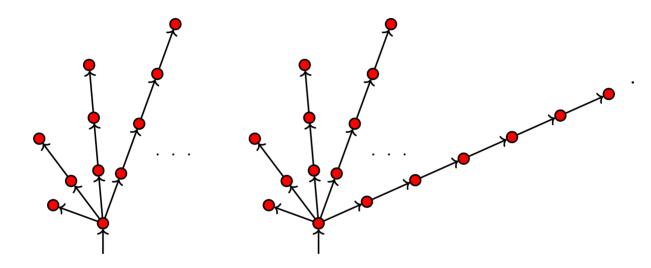


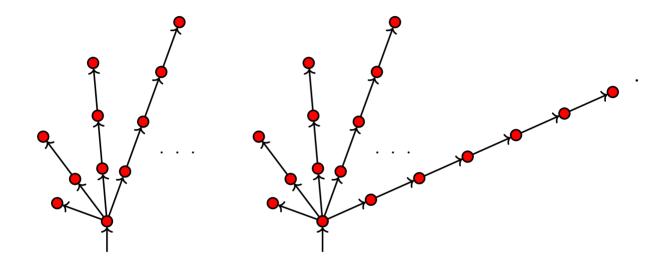
► low topological complexity

► strict hierarchy:

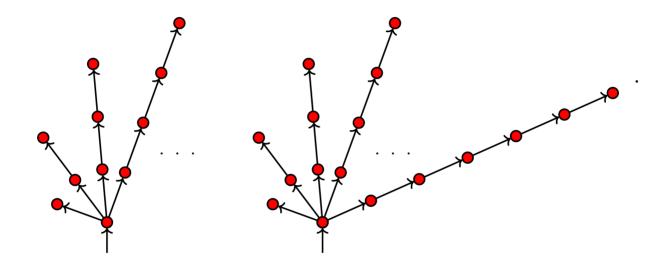


- Iow topological complexity
- ▶ works over models, words, trees, coalgebras...





I studied the difference between these two pictures.



I studied the difference between these two pictures.

Thank you!