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Abstract

This dissertation is about logics that are invariant under bisimulation.
The �rst part investigates classical model-theoretic questions in the modal

context. These include categoricity (�when does a set of sentences have a
unique model?�), compactness (�does satis�ability of a set of sentences fol-
low from satis�ability of its �nite pieces?�) and small model property (�how
big model is needed to satisfy a set of sentences?�). The questions are asked
for modal logic over several classes of models: all models, transitive models,
two-way models and ordinal models. Simple characterizations expressed in
terms of �niteness are given.

The second part introduces and investigates the countdown µ-calculus,
an extension of the classical modal �xpoint logic with countdown operators.
The new operators resemble the standard �xpoint operators. However, in-
stead of referring to �xpoints they refer to the ordinal approximations of
these �xpoints. The resulting logic expresses (un)boundedness properties
such as �there exist arbitrarily long paths staring at a given point� that are
inexpressible in the standard calculus. The classical correspondence with
parity games and automata extends to suitably de�ned countdown games
and automata. The connection is used to answer expressivity and decidabil-
ity questions.
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Streszczenie

Przedmiot niniejszej rozprawy stanowi¡ logiki niezmiennicze na bisymu-
lacje.

Cz¦±¢ pierwsza po±wi¦cona jest klasycznym problemom teoriomodelowym
przeniesionym na grunt modalny. Do zagadnnie« tych nale»¡: kategoryczno±¢
(�kiedy dany zbiór zda« posiada unikatowy model?�), zwarto±¢ (�czy speªnial-
no±¢ zbioru zda« wynika ze speªnialno±ci jego sko«czonych fragmentów?�) i
wªasno±¢ maªego modelu (�jak du»y model jest konieczny, by speªni¢ dany
zbiór zda«?�). Pytania te stawiane s¡ dla logiki modalnej nad ró»nymi
klasami modeli: modelami dowolnymi, przechodnimi, dwukierunkowymi oraz
porz¡dkowymi. Udowodnione zostaj¡ proste charakteryzacje wyra»one w
terminach sko«czono±ci.

Cz¦±¢ druga wprowadza i bada odliczaj¡cy rachunek µ � rozszerzenie
klasycznego modalnego rachunku punktów staªych o operatory odliczaj¡ce.
Operatory te przypominaj¡ standardowe operatory staªopunktowe � zami-
ast jednak odnosi¢ si¦ do punktów staªych, odnosz¡ si¦ do porz¡dkowych
aproksymacji tych»e. Otrzymana w ten sposób logika wyra»a wªasno±ci
(nie)ograniczono±ci niewyra»alne w standardowym rachunku takie jak �ist-
niej¡ dowolnie dªugie ±cie»ki rozpoczynaj¡ce si¦ w danym punkcie�. Wprowad-
zone zostaj¡ gry i automaty odliczaj¡ce � uogólniaj¡ce gry i automaty parzys-
to±ci. Klasyczna odpowiednio±¢ logiki, gier i automatów zostaje uogólniona
do poziomu ich odliczaj¡cych rozszerze«. Uogólniona odpowiednio±¢ jest
nast¦pnie wykorzystana do badania siªy wyrazu logiki oraz zwi¡zanych z ni¡
problemów decyzyjnych.
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Chapter 1

Introduction

Bisimulations. A notion central to this dissertation is that of a bisimu-
lation. Bisimulations, as well as some related basic concepts, are formally
introduced at the beginning of Subsection 2.1.1 of Chapter 2. Before we
dive into the technical details, however, let us have a look at the motivating
intuition and take a moment to appreciate the signi�cance and beauty of the
notion ([28] overviews the role of this fundamental concept in various �elds
and may serve as a more extensive introduction).

Analysis of various kinds of phenomena requires di�erent tools and ap-
proaches. What is common is that before any investigations a decision must
be made: what part of the information we take as relevant and what is ig-
nored as accidental. If we are given a graph, the order in which its vertices
appear is usually irrelevant. Similarly, we do not care about the speci�c
names of functions in a program, the way a reasoning agent stores remem-
bered facts, or the orientation of a depicted triangle. The reason for this is
that the structure of all the listed entities does not depend on such details.
Their various instances are isomorphic. Identi�cation of isomorphic objects
is uncontroversial to the point that it is often assumed without mentioning
it explicitly.

Isomorphism, however, is an inherently external notion. Consider the
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following directed graphs with nodes colored either red or blue:

· · ·

Any two of the above graphs are clearly non-isomorphic: the structure
is di�erent. However, to see the structural di�erence we need to look from
the outside. On the other hand, in many contexts an internal perspective of
an observer inhabiting the graphs is more appropriate than such an external
one.

Imagine that the points of the graphs represent states of di�erent pro-
grams controlling a spaceship. The red states are the ones in which the
engine is on and the arrows depict possible changes of the state. Assume
this is all we observe: we can only look at the engine or change the state to
a next one. In such case every two states depicted in the same row exhibit
the same behavior, in the sense that they cannot be distinguished by any
present or future observations.

Similarly, assume that the points represent epistemic states of an agent,
arrows depict their possible evolution and blue states are the ones in which
(s)he believes that Socrates is mortal. Again, if in a point we can only see its
color or move to a successor point then the observable behavior is identical
for every two points depicted in the same row.

Such colored graphs, called modal models, describe an impressive number
of seemingly unrelated phenomena. Notable examples other than programs
and epistemic reasoning include: reasoning about possibility and necessity
(hence the name modal), time and space, provability, but also non-well-
founded set theory, or even moral duties (see [34] for an overview). What is
common to all these di�erent cases is that the properties of interest, such as
�the engine can be always turned o��, depend only on the behavior and not
the full structure of a model.

A bisimulation captures such behavioral equivalence, similarly to how
an isomorphism captures the structural one. As with an isomorphism, it is
independent from the particular interpretation of modal models and allows
us to abstract from it. The key idea here, formally introduced in De�ni-
tion 2.1.4, resembles that of a congruence. Apart from having the same
color, equivalent points m and m′ must satisfy the so-called back and forth
conditions: for every edge originating in either of the points there is an edge
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originating in the other one such that the targets of the two edges are again
equivalent. The analogy to congruence is in fact deep and although we do
not use category theory in this dissertation, it is worth to mention that
in the category-theoretic framework bisimulations arise as a notion dual to
homomorphisms between algebras [26].

Bisimulations successfully formalize the intuition about behavior and pro-
vide an elegant framework of both practical and theoretical signi�cance. Al-
though alternative formalizations are sometimes considered, bisimulation is
the most popular and usually the most natural one (see [35] and [29] for a
discussion). In all the listed examples of possible interpretations, the rele-
vant properties of points in modal models are invariant under bisimulation:
if two points are linked by a bisimulation then either both or none of them
has a given property.

Logics. A natural approach to investigating various phenomena is to de-
scribe them using logic. The design of a good logic is often a nontrivial
task because of the inevitable tradeo�: the more expressive power a logic
has, the harder it is to reason about its formulae. Bisimulations provide
an attractive solution, as they allow to �lter out troublesome part of the
information without loosing its essential aspects. This explains the great
success of bisimulation-invariant logics, i.e. logics interpreted in points of
modal models that only de�ne properties invariant under bisimulation.

Among a great number of such logics two fundamental ones are modal
logic ML and modal µ-calculus µ-ML. ML extends propositional logic with
modal operators 3 and 2 working as restricted quanti�ers. A formula 3ϕ
interpreted in a point m means that m has a child satisfying ϕ. Dually, 2ϕ
means that all m's children satisfy ϕ. The µ-calculus further extends ML
with �xpoints.

Formulae of ML and µ-ML are constructed inductively in a way that
guarantees bisimulation-invariance by design. However, they can be also ob-
tained as semantically de�ned fragments of known logics. This is expressed
by the two celebrated results: the van Benthem Theorem [33, Theorem 1.9]
and the Janin-Walukiewicz Theorem [20, Theorem 11]. The �rst one iden-
ti�es ML with the bisimulation-invariant fragment of the �rst-order logic
FO, the fragment of FO consisting of precisely these formulae that de�ne
bisimulation-invariant properties. The latter theorem says that µ-ML is the
same as the bisimulation-invariant fragment of monadic second-order logic
MSO.

This demonstrates the usefulness of bisimulations. The full logics FO
and MSO are rather complicated. For instance, the satis�ability problem
(given a formula of the logic, does it have a model?) is undecidable for both.
However, if we consider their bisimulation-invariant fragments ML and µ-ML
then the question becomes decidable in both cases (as follows from [20]).

Games. Bisimulation-invariant logics ML and µ-ML and bisimulations them-
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selves are easy to work with and theoretically pleasant. What contributes to
that is the tight connection with games. The games we consider are always
two-player zero-sum games, meaning that they are played between two play-
ers ∃ve and ∀dam, and precisely one of them wins. Games characterize the
existence of bisimulations between models and the semantics of formulae.
They o�er a more dynamic point of view on both. Toggling between the
the static, compositional perspective and the dynamic, game-theoretic one
is often extremely helpful.

Automata. The connection between logic and games is mediated by au-
tomata. Given a model, an automaton induces a game and depending on
its winner the model is either accepted or rejected. The interrelation with
logic goes both ways. On the one hand, a formula ϕ can be viewed as an
automaton Aϕ equivalent to ϕ , meaning that Aϕ accepts a point in a model
i� ϕ is true there. On the other hand, an arbitrary abstract automaton A
can be described by an equivalent formula ϕA. Hence, logical formulae can
be viewed as a special normal form of automata.

Games provide a useful perspective on logic but the converse is also true.
The threefold connection between logic, games and automata is completed
by de�nability. Classes of games corresponding to a given logic can be fully
described in the logic itself, in the sense that there is always a formula that
de�nes the class of all games in which ∃ve wins.

The contribution of this dissertation is naturally divided into two themes.
Both extend known results about bisimulation-invariant logic in a way that
can be roughly summed up as going beyond some form of �niteness. On
top of that, we introduce a new notational framework for games, which
contributes to the organization of present and possibly future proofs.

Model Theory for ML. First, we ask classical model-theoretic questions
in the context of modal logic. Model theory for ML has been widely investi-
gated to the point that it is virtually impossible to come up with a complete
summary of all the results. The focus, however, was mostly put on model
theory for single formulae. The theory for entire sets of formulae, although
present, is less developed. While a �nite set of formulae is equivalent to
their conjunction and so the theory is the same, in�nite sets behave quite
di�erently. The �nite model property could serve as an example. Every sat-
is�able ML formula has a �nite model, but this is not true for arbitrary sets
of formulae.

We scout this underexplored area in the landscape of modal logic. In
particular, we investigate when a given set of modal formulae has a unique
model. Such uniqueness property, known as categoricity, is usually under-
stood up to isomorphism. However, in the context of ML bisimulation is
arguably more natural than the isomorphism. This motivates the study of
bisimulational categoricity, the property of having a unique model up to
bisimulation. We investigate several variants of the question, when either all
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models, or only the ones from some �xed classes are considered. Simple char-
acterizations phrased in terms of �nite branching are found. We then discuss
limitations of our method and turn to a fairly di�erent class of models. For
this last class, we establish characterizations of bisimulational categoricity
and compactness as well as some results concerning the size of the models.

Countdown Logic. Second, we extend the modal �xpoint logic µ-ML. The
classical µ-ML is already in�nitary in some sense. It is capable of describing
properties such as the existence (or lack) of in�nite paths and the corre-
sponding semantic games may contain in�nite plays. However, µ-ML has its
limitations. For instance, (un)boundedness properties such as �there exist
arbitrarily long paths� are not expressible. This follows from the �nite model
property of µ-ML, because the conjunction �there are arbitrarily long paths
but no in�nite one� can be satis�ed but only in in�nite models.

Such (un)boundedness properties form a landmark in the quest for broad-
ening our theoretic understanding. But apart from the more conceptual
motivation, they are also important for interpretations. Whether every ex-
ecution of a program terminates is often critical. However, the di�erence
between a program with a bound on the maximal lengths of executions and
one without such a bound is substantial, especially if one needs to allocate
assets in advance.

A logic that was designed speci�cally to capture (un)boundedness is
MSO + U [8]. It extends MSO with a special nonstandard quanti�er U in-
terpreted as �there exist arbitrarily big �nite sets such that...�. Although
complicated in general, MSO is well-behaved over some restricted classes of
(�nite or in�nite) models such as words or binary trees. Over these classes
MSO is equivalent to automata and thanks to this has decidable satis�abil-
ity, and the same was hoped for MSO + U when it was introduced. Unfortu-
nately, this is not the case. Unlike MSO, MSO + U over trees or even in�nite
words has high topological complexity in a certain sense and consequently no
simple game nor automata model may correspond to the logic [18, Theorem
5.1]. It eventually turned out that not only the classical proof techniques fail
in the case of MSO + U, but its satis�ability problem is actually undecidable,
even over in�nite words [6, Theorem 1.1]. This discovery led to an end of the
research project around MSO + U in its original form, although some similar
simpler logics (such as WMSO + U in which second-order quanti�ers range
over �nite sets) were successfully solved afterwards [3, Theorem 3 and 5], [7,
Theorem 1].

Nonetheless, the question about a logic properly extending MSO but
sharing its desirable properties remained open. Further research showed
that, roughly, every nontrivial extension of the syntax of MSO leads to a
logic containing MSO + U and hence misses the goal [10, Theorem 1.3]. On
the other hand, the good properties of MSO over words and trees stem from
the somewhat miraculous equivalence between MSO and automata, which
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in turn correspond to µ-ML. This suggests a di�erent approach: extend the
syntax of µ-ML instead of that of MSO. We propose and investigate such an
extension: the countdown modal µ-calculus µ<∞-ML.

Recall that according to the Knaster-Tarski Theorem 2.1.1, the least and
greatest �xpoint LFP.F and GFP.F of any monotone map F : A → A over
a complete lattice A always exist. Moreover, they are given as the limits of
the sequences of their inductively de�ned approximations:

fαµ =
∨
β<α

f(fβµ )

and:
fαν =

∧
β<α

f(fβν )

with α ranging over ordinal numbers. The semantics of a logical formula
ϕ can be seen as a map F on the powerset of the model. Under some
assumptions on ϕ the map is monotone and so it has �xpoints LFP.F and
GFP.F . The classical µ-ML is obtained by enriching ML with operators µ and
ν interpreted as these �xpoints. Our countdown calculus µ<∞-ML extends
µ-ML with additional countdown operators µα and να for every ordinal α.
Every such µα is similar to the classical µ except that it is interpreted as the
α-th approximation Fαµ of LFP.F instead of LFP.F itself. The semantics of
να is analogous.

This countdown logic µ<∞-ML contains µ-ML by de�nition but is much
more expressive. It can describe prototypical examples of (un)boundedness
properties such as the existence of arbitrarily long paths in a model or arbi-
trarily long blocks of the same letter in an in�nite word. Most importantly,
however, we are able to de�ne countdown games which lead to countdown
automata. These extend the classical ones in a way such that the threefold
logic-games-automata connection lifts to the new setting. Interestingly, the
transgression of the �nite-in�nite dichotomy of µ-ML is accompanied by the
loss of some of its �nitary aspects. Countdown logic does not have the �-
nite model property, countdown games are not memory-�nite and countdown
automata have in�nitely many possible con�gurations. On the other hand,
these are often almost �nite in the sense that the internal symmetries allow
for �nite descriptions.

Some complications arise, however. First, the threefold correspondence
requires a vectorial rather than a scalar calculus. Usually the two are equiva-
lent thanks to the so-called Beki¢ principle. However, no analogous principle
exists for countdown operators and the vectorial logic turns out to be strictly
more expressive than its scalar fragment. Another di�erence is that, unlike
in the standard setting, the automata model is inherently alternating and
no nondeterministic model may exist. This is arguably a good sign, as the
existence of a nondeterministic model would imply that the logic contains
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MSO + U, and this is provably not the case for µ<∞-ML due to its low topo-
logical complexity. But the lack of a nondeterministic model prevents us
from directly adapting nice classical techniques. In particular, the model
checking problem (�given a modelM and a formula ϕ, doesM satisfy ϕ?�)
is decidable, but satis�ability is solved only for some fragments and left as a
conjecture for the full logic. Still, games and automata are crucial for estab-
lishing our decidability results as well as some model-theoretic properties of
the logic.

Enhanced Bookkeeping. Apart from the more concrete results mentioned
above, we introduce a new notational framework for games. It allows us to
separate the coinductive heart of many intuitively similar proofs and replace
repetitive vague claims with a reference to a formal statement. As such, it
contributes to a better organization of the known and possibly also future
proofs.

Organization of the Document. The dissertation is organized into �ve
chapters. After this introduction 1, we set basic notions in Chapter 2. We
then present the results related to model theory for ML in Chapter 3 and in
Chapter 4 we introduce and investigate the countdown µ-calculus µ<∞-ML.
The last Chapter 5 contains a brief summary with a focus on possible further
investigations. A signi�cant part of the presented results was published by
the author in [22] and [23]. Apart from that, the content of the document is
new and was never published.
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Chapter 2

Basic Notions

In this chapter we introduce basic notions used throughout the disser-
tation. This is mostly notation-setting, although the choices we made here
facilitate further presentation and emphasize similarities between classical
and new concepts. The only exception is Section 2.2 about games where we
diverge from the usual terminology in two ways. Both are relevant mostly
for Chapter 4, as games are nearly absent from the other Chapter 3.

First, we call the basic information unit of a game its con�guration rather
than a position (as it is usually called). Consequently, we talk about �con�g-
urational� rather than �positional� strategies etc. A con�guration of a game
may contain a position, but possibly also some extras such as counter values.
The distinction helps us to better understand the connection between the
usual parity games and countdown games introduced in Chapter 4.

Second, we introduce a novel notational framework for games. It allows
us to avoid huge part of the usual hand-waving, both in the known and the
new proofs. Since pedantic proofs are often good to have but painful to read,
in order to keep the text reader-friendly we usually present the formal rea-
soning in parallel with its underlying intuition. Our new framework is based
on the notion of a partial game where some moves lead to a draw meaning
that the game ends but no player wins. Partial games generalize the games
characterizing semantics of formulae, where the victory may depend on an
external coloring of the model. A draw corresponds to reaching a con�gu-
ration whose status is not fully determined in the sense that it depends on
such an external coloring. However, the de�nition of a partial game is purely
game-theoretic and abstracts from logic or automata.

2.1 Models

A signature is a set Symb whose elements, called relational symbols and
functional symbols, come equipped with arities given by ar : Symb → ω. A
model M for signature Symb consists of a universe M being a non-empty
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set, together with an interpretation RM ⊆Mar(R) for every relational symbol
R ∈ Symb and fM : Mar(f) → M for every functional symbol f ∈ Symb.
We will skip the superscript whenever the model is clear from the context,
denote models byM and N and their elements, called points, by m and n.
We will often abuse notation and identify model with its universe, writing
m ∈M instead of m ∈M .

Binary Relations and Orderings. Assume a binary relation R. When-
ever mRn, we call n an R-successor or R-child of m and m an R-predecessor
or R-parent of n. We use standard terminology regarding properties of binary
relations such as transitive relation, re�exive relation etc. The only possibly
confusing property is well-foundedness: relation R is said to be well-founded
if there is no in�nite chain of elements m1Rm2R... (with possible repetitions,
so for example there is no m for which mRm). We call a single point m
well-founded with respect to R (or just well-founded in case R is clear from
the context) if there is no in�nite chain originating in that m.

Throughout the thesis we will often use the notion of partial orders,
i.e. binary relations � that are re�exive, antisymmetric and transitive. An
ordering � is linear if any two elements m and m′ are comparable (meaning
that either m � m′ or m � m′) and well-founded if there is no in�nite
descending chain m1 � m2 � ... (with m ≺ m′ meaning m � m′ and m 6= m′).
It should be emphasized that well-foundedness of � as an ordering is the
same as well-foundedness of the relation � rather than � seen as a relation.

Lattices and Fixpoints. An important example of orderings are ordinal
numbers or ordinals. The class of all ordinals will be denoted by Ord and the
class of ordinals extended with a single additional element ∞, greater than
all the ordinals, by Ord∞. Recall that every well-founded linear ordering is
isomorphic with an ordinal. We use the set-theoretic convention where the
universe of every ordinal equals the set of all smaller ordinals. We use stan-
dard notation for ordinal arithmetic with +1, + and × denoting successor,
addition and multiplication, respectively.

A complete lattice is a partial ordering (A,�) such that for every B ⊆ A,
the supremum and in�mum of B, denoted

∨
B and

∧
B, respectively, both

exist. Note that if we instantiate B = A, then
∨
A and

∧
A are the greatest

and the least elements of A, respectively. We denote these elements as >
and ⊥. The powerset P(X) of any set X ordered by set inclusion, or the
unit interval [0, 1] with its usual ordering are examples of complete lattices.
A function f : Ak → A is monotone if:

a1 � b1 ∧ ... ∧ ak � bk implies f(a1, ...ak) � f(b1, ..., bk).

For instance, monotonicity of an operation f : P(X) → P(X) means that
S ⊆ S′ implies f(S) ⊆ f(S′). A classical result due to Knaster and Tarski
[32] states that monotone operations in a complete lattice have both the
least and the greatest �xpoint.

9



Theorem 2.1.1 (Knaster-Tarski). Assume that f : A → A is a monotone
operation on a complete lattice (A,�). Then f has the greatest and the least
�xpoint, denoted GFP.f and LFP.f , respectively. Moreover,

� LFP.f is the limit of the increasing sequence:

fαµ =
∨
β<α

f(fβµ )

� GFP.f is the limit of the decreasing sequence:

fαν =
∧
β<α

f(fβν )

where α ∈ Ord. Hence, we denote f∞µ = LFP.f and f∞ν = GFP.f .

Well-foundedness and Depth. An important instance of a �xpoint is the
set MWF of all well-founded points in a �xed structure (M,R). Consider the
monotone operation F2 : P(M)→ P(M):

F2(H) = {m ∈M | ∀mRn n ∈ H}

mapping each H to the set of points whose all R-children belong to H. The
least �xpoint of F2 equals to the set of well-founded points:

LFP.F2 = MWF. (2.1)

We skip the easy proof and only illustrate the equality with an example.

Example 2.1.2. Consider the following model (M,R) with a single binary
relation R depicted by arrows and red nodes representing the subsets F2

0
µ ⊆

F2
1
µ ⊆ ... ⊆ F2

α
µ ⊆ ... ⊆M :

· · ·

·
·
·

F2
0
µ = ∅

· · ·

·
·
·

F2
1
µ = F2(∅)

· · ·
· · ·

·
·
·

F2
ω
µ =

⋃
α<ω F2

α
µ

· · ·

·
·
·

F2
ω+1
µ = F2(F2

ω
µ)

10



The computation starts with F2
0
µ =

∨
∅ = ∅. For every α < ω, the set

F2
α+1
µ = F2(F2

α
µ) contains points from which there is no path longer than

α + 1 (with the origin of a path contributing to its length). In the �rst
limit step we get the set Fωµ =

⋃
α<ω F2

α
µ of all points for which there exist

a �nite bound on the lengths of paths originating there. Finally, the set
F2

ω+1
µ = F2(F2

ω
µ) = LFP.F2 containing all the well-founded points is the

�xpoint because F2(F2
ω+1
µ ) = F2

ω+1
µ . A di�erent model could require a

di�erent number of steps to reach LFP.F2 but it always coincides with the
set of well-founded points.

The �xpoint characterization gives rise to an ordinal-valued measure of
well-foundedness expressed by the partial function:

depth : M → Ord

mapping each well-founded m to the least α such that m ∈ F2
α
µ. The

depth(m) need not be �nite, but when it is it equals to the maximal length
of paths starting in m.

For example, the nesting of operators from a �xed set O in a logical
formula ϕ can be de�ned as the maximal depth of points in (M,R), where
M is the set of all subformulae of ϕ beginning with an operator from O and
ψRψ′ i� ψ′ is a subformula of ψ (the nesting is 0 if there are no operations
from O and 1 if they appear but are not nested).

2.1.1 Modal Models

We call a signature modal if it consists only of unary relational symbols
Prop and binary relational symbols { a→ | a ∈ Act}, where Prop and Act are
two sets called atomic propositions and actions, respectively. We call the
relations

a→ accessibility relations and refer to
a→ as an a-edge. A Kripke

model is a model for a modal signature. A color of a point in a Kripke
model is the set of all atomic propositions it satis�es. In depictions of modal
models we will often use actual colors (e.g. blue or red) to represent colors
of points. Signatures and models are monomodal if there is only one action
a ∈ Act, in which case we skip the index and write → in place of

a→. In
either case, these symbols should not be confused with implication which is
always denoted by =⇒ . Hence, �m→ n =⇒ n→ m� is a statement about
monomodal →: �if there is an edge from m to n then there is an opposite
one from n to m�.

A pointed model is a Kripke modelM together with a chosen root m ∈
M . Following the traditions of modal logic, we denote such pointed model
by M,m with no parentheses. The main focus of this thesis are logics and
phenomena that are, in a broad sense, modal. Therefore, we will always
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assume that models and signatures are modal, unless it is explicitly stated
otherwise.

Remark 2.1.3. The models we consider are both edge- and vertex-labelled.
Usually, these two ways of coloring are equivalent in the sense that model-
theoretic and computational questions about models with colors exclusively
on edges or exclusively on vertices (and sometimes with no colors at all) are
inter-reducible via straightforward coding. Although this is often true in our
investigations, in some cases the situation is more subtle (see e.g. Conjec-
ture 4.9.2). Moreover, some notions are more naturally presented in a mixed
setting (as in Chapter 3, where it is arguably natural to see the colors of edges
as �xed and the ones on vertices as a parameter). Therefore, we choose such
richer, although sometimes redundant, notion of a Kripke model.

It is worth to mention that this notion can be further extended to the
category-theoretic concept of a coalgebra. Coalgebras neatly generalize var-
ious types of structures such as Kripke models, (in)�nite words, weighted
graphs and many others. We do not assume familiarity with category theory
and hence refrain ourselves from using coalgebras (an excellent introduction
can be found in [26] or [19]). However, a huge part of what we present
generalizes to that framework. We will comment on that in the concluding
Chapter 5.

A key notion in this thesis is that of a bisimulation.

De�nition 2.1.4. A a relation Z ⊆ M ×M ′ between two (not necessarily
distinct) modelsM andM′ is called a bisimulation if for every mZm′, the
following three conditions are satis�ed:

� (base) m and m′ have the same color

(that is: m ∈ τM ⇐⇒ m′ ∈ τM′ for every τ ∈ Prop);

� (forth) for every a ∈ Act: whenever m
a→
M

n, there exists n′ such that

m′
a→
M′

n′ and nZn′;

� (back) for every a ∈ Act: whenever m′
a→
M′

n′, there exists n such that

m
a→
M

n and nZn′.

Z is a bisimulation between pointed models M,m and M′,m′ (denoted
(M,m)Z(M′,m′)) if it is a bisimulation betweenM andM′ such that mZm′.

Bisimulations are closed under unions, and so the greatest bisimulation
relation between given models, called bisimilarity and denoted -, always
exists.
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Example 2.1.5. Recall the monomodal example from the introduction.
Roots, all depicted at the bottom, are indicated by arrows with no sources:

· · ·

Any two of the above models are bisimilar. This is witnessed by the
bisimulation relation Z that links two points i� they are at the same level.

Bisimilarity ignores a lot of information yet it preserves many important
properties. For example, if points m and m′ are bisimilar then m is well-
founded i� so is m′. Moreover, in the case both are well-founded they have the
same depth depth(m) = depth(m′). Let us recall three classical constructions
that transform models into di�erent but bisimilar ones.

Proposition 2.1.6 (generated submodels). Given a pointed model M,m,
the model generated by m, denoted M〈m〉, is the submodel of M consisting
of points reachable from m by a �nite path. Then, the graph of the inclusion
map ι : M〈m〉 →M is a bisimulation.

Proposition 2.1.7 (tree unravellings). For a pointed modelM,m, its tree
unravellingMT ,m is the tree of all paths inM starting at m. That is, MT

is the set of all the paths m1a1m2a2...mk ∈ (M ∪ Act)+ such that m1 = m

and mi
ai→
M

mi+1 for every i < k. We interpret atomic propositions and
accessibility relations as follows. For every π, π′ ∈MT :

� for all a ∈ Act:

π
a→
MT

π′ i� π′ = πan

with n ∈M ;

� for all τ ∈ Prop:

π ∈ τMT
i� π ends with n such that n ∈ τM.

It follows that the graph of the function last : MT → M mapping each path
π ∈MT to its last point is a bisimulation.

Proposition 2.1.8 (quotients). Assume a model M and a bisimulation
Z ⊆ M ×M which happens to be an equivalence relation. Then, the model
structure on the set of all equivalence classes of Z:

13



� for all a ∈ Act:

[m]/Z
a→
M/Z [n]/Z i� m

a→
M

n;

� for all τ ∈ Prop:

[m]/Z ∈ τ
M/Z i� m ∈ τM

is well-de�ned (i.e. does not depend on the choices of m and n). Moreover,

the graph of the projection map m
πZ7−→ [m]/Z is a bisimulation. We call that

model the quotient ofM by Z and denote itM/Z .

2.2 Games

Throughout the thesis we will often consider games, always meaning
perfect-information games played between two players ∃ve and ∀dam (also
denoted ∃ and ∀). Such a game G consists of a set Conf of con�gurations and
a relation Mov ⊆ Conf×Conf together with partitions Conf∃tConf∀ = Conf
and Win∃ t Win∀ = Confω of con�gurations and their in�nite sequences,
respectively. A play is a (�nite or in�nite) sequence of con�gurations γ1γ2...
such that each consecutive γi and γi+1 are linked by Mov. After a �nite
play π = γ1...γk, the player P for which γk ∈ ConfP , called the owner of
γk, has to extend the play by choosing γk+1 with γkMovγk+1. Either at
some point the game reaches a con�guration where one of the players is
stuck, meaning that (s)he has no legal choice, or it continues forever. In the
�rst case the player who got stuck looses, and in the later P wins i� the
resulting in�nite play γ1γ2γ3... belongs to WinP (thus, we call the partition
Win∃ t Win∀ the winning condition of the game). We say that the game
moves deterministically from γ ∈ Conf if there is precisely one legal move
from γ (in which case the ownership of γ does not matter). Usually, we will
assume that the games are initialized in a �xed con�guration γ. We denote
the game G initialized at γ by G, γ.

A strategy for player P is a function σ : Conf∗ConfP → Conf that tells
the player how to play. A play π is consistent with strategy σ if whenever
γ1...γkγk+1 is a pre�x of π and γk ∈ ConfP , then γk+1 = σ(γ1...γk). We call
such plays σ-plays and say that σ is winning from con�guration γ if every
σ-play starting at γ is won by P . Player wins the initialized game G, γ if
(s)he has a strategy winning from γ.

A phase of a game is a set of its �nite plays that is convex with respect
to the pre�x ordering, meaning that if π1 is a pre�x of π2, π2 is a pre�x of
π3 and both π1 and π3 belong to the set then so does π2. Given a phase B
and a play π ∈ B, we denote by Bπ the subset of B consisting of all the plays
having π as a pre�x.
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Bisimilarity Game. An important example of a game is the bisimilarity
game G-(M,M′) for modelsM andM′, de�ned as follows. Players move
two pebbles placed in points ofM andM′, round by round. At the beginning
of each round, we check if the points where the pebbles are placed satisfy the
base condition from De�nition 2.1.4, i.e. they have the same color. If this
is not the case then ∃ve looses immediately. Otherwise, ∀dam checks either
the back or the forth condition: �rst he chooses an action a ∈ Act and moves
one pebble along a chosen a-edge and then ∃ve has to respond by moving
the other pebble along an a-edge. In case of an in�nite play, ∃ve wins.

Formally, we de�ne the set of con�gurations to be:

Conf∃ =M ×M ′ × {base} t M ×M ′ × Act× {back, forth}
Conf∀ =M ×M ′ × {b&f}.

The legal moves are as follows:

1. In (m,m′, base), if m and m′ have di�erent colors then there are no
moves (so ∃ve looses immediately), otherwise the game moves deter-
ministically to (m,m′, b&f).

2. In (m,m′, b&f), ∀dam chooses either:

� (n,m′, a, forth) such that m
a→
M

n or

� (m, n′, a, back) such that m′
a→
M′

n′.

3. In (n,m′, a, forth) or (m, n′, a, back), ∃ve chooses (n, n′, base) such that

m′
a→
M′

n′ or m
a→
M

n, respectively.

If during the play one of the players is stuck, (s)he looses immediately and
otherwise ∃ve wins. It is well known that the above game characterizes
bisimilarity, meaning that for every m ∈M and m′ ∈M ′:

∃ve wins G-(M,M′) from (m,m′, base) ⇐⇒ M,m -M′,m′. (2.2)

A standard proof can be found e.g. in [37].Later in this chapter, in Exam-
ple 2.2.10, we also derive (2.2) from a more general result.

Depth-k Bisimilarity Game. Another important example of a game, this
time with con�gurations containing a counter value, is the game character-
izing the relation -k of depth-k bisimilarity. This relation, de�ned for every
k < ω, approximates bisimilarity and captures the intuition that models are
bisimilar up to depth k. Instead of de�ning depth-k bisimulations (which is
also possible), we directly de�ne relations of -0⊇-1⊇ ... ⊇-k ... of depth-k
bisimilarity by induction on k < ω:

The relation -0= M × M ′ is the full relation. For every k < ω, the
relation -k+1 links points that satisfy the base condition and the back and
forth conditions with respect to -k. That is, for every m ∈M and m′ ∈M ′,
m -k+1 m′ i�:
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� (base) m and m′ have the same color;

� (forth) for every a ∈ Act: whenever m
a→
M

n, there exists n′ such that

m′
a→
M′

n′ and n -k n′;

� (back) for every a ∈ Act: whenever m′
a→
M′

n′, there exists n such that

m
a→
M

n and n -k n′.

To characterize such -k in terms of a game, we enrich the game G-(M,M′)
with a counter storing a natural number decremented along the play. The
new game G<ω- (M,M′) is almost the same as G-(M,M′) except that an
additional countdown step count, in which the counter will be decremented,
is performed at the beginning of each round. In case the decrement is not
possible because the counter has value 0, ∃ve wins.

That is, we extend the con�gurations of G-(M,M′) with counter values
ranging over ω:

Conf∃ =M ×M ′ × ω × {base} t M ×M ′ × ω × Act× {back, forth}
Conf∀ =M ×M ′ × ω × {b&f} t M ×M ′ × ω × {count}

and add a countdown step count when the counter is decremented:

1. In (m,m′, k, count), if k = 0 then there are no outgoing edges (mean-
ing that ∀dam looses) and otherwise game moves deterministically to
(m,m′, k − 1, base)

2. In (m,m′, k, base), if m and m′ have di�erent colors then there are no
moves (so ∃ve looses immediately), otherwise the game moves deter-
ministically to (m,m′, b&f).

3. In (m,m′, b&f), ∀dam chooses either:

� (n,m′, k, a, forth) such that m
a→
M

n or

� (m, n′, k, a, back) such that m′
a→
M′

n′.

4. In (n,m′, k, a, forth) or (m, n′, k, a, back), ∃ve chooses (n, n′, k, count)

such that m′
a→
M′

n′ or m
a→
M

n, respectively.

Since in each round the counter value decreases, there could be no in�nite
plays and so the above description is already complete. As promised, it
captures depth-k bisimilarity:

∃ve wins G<ω- (M,M′), (m,m′, k, count) ⇐⇒ M,m -kM′,m′. (2.3)
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Proof. We proceed by induction on k < ω. The case with k = 0 is immediate.
Assuming (2.3) is true for some k < ω, we will prove it for k + 1. Observe
that m -k+1 m′ i� both points satisfy (i) the base condition and (ii) the
back and forth conditions with respect to -k, meaning that for every

a→-
successor of one of the points, there exists an

a→-successor of the other point
such that the new points n and n′ are k-step bisimilar. On the other hand,
∃ve wins G<ω- (M,M′), (m,m′, k + 1, count) i� (i) m and m′ have the same

color and (ii) for every ∀dam's choice of an
a→-successor of one point, ∃ve

can respond with an
a→-successor of the other point such that she wins from

(n, n′, k, base) where n and n′ are the new points. The �rst condition (i) is
the same in both cases, whereas the second one (ii) is equivalent thanks to
the induction hypothesis.

Often, we will assume that con�gurations consist of a position v from
some �xed set V called the arena and some extras such as information from
some �nite set, (natural- or ordinal-valued) counters, or a register storing a
real value a ∈ [0, 1]. Technically, one could always de�ne such arena V to be
just the set of all con�gurations. However, the distinction between con�gura-
tions and its underlying positions re�ects di�erent roles of the components of
a con�guration: it emphasizes similarities between various games that we are
going to investigate and highlights �nitary aspects of games with in�nitely
many con�gurations. We will call games where the set of con�gurations is
equal to the arena simple.

For instance, the bisimulation game G-(M,M′) can be naturally seen
as a simple game. On the contrary, we do not want to view the game
G<ω- (M,M′) characterizing depth-k bisimilarity as a simple game. Instead,

we think of con�gurations of G<ω- (M,M′) such as (m,m′, k, base) as con-
sisting of a position (m,m′, base) and a counter value k < ω. The two
components are conceptually di�erent and play di�erent roles. This will be
illustrated in Examples 2.2.10 and 4.1.3 where we derive the respective games
G-(M,M′) and G<ω- (M,M′) from a more general theory.

2.2.1 Parity Winning Condition

Often, as with the bisimilarity game G-(M,M′) where ∃ve wins all the
in�nite plays, the winning condition of a game does not depend on �nite
pre�xes of in�nite plays but only on its limit properties. Given a winning
condition Win∃ tWin∀, we say that the condition is pre�x-independent if for
every in�nite play πρ with a �nite pre�x π, πρ ∈Win∃ i� ρ ∈Win∃.

A pre�x-independent winning condition of great signi�cance in logic and
computer science is the parity condition. It is given by a rank function
rank : Conf → R that maps each con�guration to an element of a �xed �nite
linear order R = R∃ t R∀ divided between players ∃ve and ∀dam. We say
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that player P owns rank r ∈ R if r ∈ RP . In case of an in�nite play, the
owner of the greatest rank r that appeared in�nitely often looses.

The parity condition such that ∃ve looses all in�nite plays is called a
reachability condition and corresponds to R = R∃. Symmetrically, if ∃ve
wins all in�nite plays (which corresponds to R = R∀) we call it a safety
condition. The general parity condition can be thought of as a result of
nesting of these two simple ones. With a reachability condition ∃ve has to
win in �nitely many steps, so in this sense every position is bad for her. With
a parity condition, a visit to a rank r ∈ R∃ is bad for her unless the play
visits a more important rank later.

We call a game pre�x-independent, parity, safety, or reachability i� its
winning condition is of such type. We will often make a convenient assump-
tion that does not decrease generality: the lowest rank of a given game is
never the most important one appearing in�nitely often in a play. We will
denote such lowest rank by 0 and since its ownership is irrelevant for deter-
mining who wins, we will leave it unspeci�ed.

Let us recall a very useful fact: con�gurational determinacy (usually
called positional determinacy in the literature [25]) of parity games. A strat-
egy σ is called con�gurational if in order to determine the next move γk+1 it
only looks at the current con�guration γk instead of the entire play γ1...γk.
That is, if σ(π) = γ and π′ ends with the same con�guration as π then also
σ(π′) = γ. Parity games are con�gurationally determined [25]:

Proposition 2.2.1. Assume a game with a parity condition. If player P
wins the game then (s)he does so with a strategy that is con�gurational.

From now on, unless stated otherwise, in parity games we only consider
con�gurational strategies.

2.2.2 Partial Games and Gamemulations

In this subsection we introduce tools that will allow us to manipulate
games in a precise manner. Although they are implicit in the usual approach
to classical parity games and µ-ML (as found e.g. in [37]), a precise analysis
now will pay o� later when we apply it to more involved games.

Partial Games. Sometimes we will want to decompose games into smaller
fragments. In what follows we will be mostly interested in analyzing ∃ve's
strategies, so for the sake of simpler notation we focus on her, although
analogous notions for ∀dam could be de�ned symmetrically.

Given a game G and a subset S ⊆ Conf of its stopping con�gurations,
the partial game G|S is played the same as G, except that upon moving to a
con�guration in S the play ends with a draw, meaning that no player looses
or wins (note that starting in S does not count as a move to S, so plays
starting there are not necessarily stopped). For a non-loosing strategy σ for
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∃ve in G|S, γ, the set of its exit con�gurations, denoted exit(σ) ⊆ S, consists
of all the con�gurations δ ∈ S such that some σ-play ends in δ.

Exit-better & Exit-equivalent. We think of a non-loosing ∃ve's strategy
σ in G|S, γ as a candidate for a winning strategy in G, γ: ∃ve wins all σ-plays
except for the ones that reach S, in which case (s)he may need to continue
with another strategy. In this light, σ′ is better than σ if exit(σ′) ⊆ exit(σ),
for there are fewer possible scenarios where ∃ve is not guaranteed to win.
Since we want to compare di�erent games, we will be interested in such
comparisons mediated by a relation between con�gurations.

Assume another G′ with con�gurations Conf ′, a subset S ′ ⊆ Conf ′ and a
relation S ⊆ S × S ′. To avoid overloaded notation, unless stated otherwise
we assume that π1[S] = S and π2[S] = S ′ so that the sets S and S ′ are
encoded by S. Given non-loosing strategies σ in G|S, γ and σ′ in G′|S ′, γ′,
we call σ′ exit-better with respect to S than σ, and denote it σ /S σ

′, i�:

exit(σ′) ⊆ S[exit(σ)]

i.e. for every σ′-play stopped at some γ′ there exists a σ-play stopping in γ
with γSγ′.

We also de�ne the relation /S between games: G, γ /S G′, γ′ means that
for every non-loosing σ in G|S, γ there exists a non-loosing σ′ in G′|S ′, γ′ such
that σ /S σ

′. The games G, γ and G′, γ′ are exit-equivalent with respect to S,
denoted G, γ ./S G′, γ′, if G, γ /S G′, γ′ and G′, γ′ /S−1 G, γ. The relation of
being exit-better composes, in the sense that G, γ /SG′, γ′ and G′, γ′/S′G′′, γ′′
implies G, γ /S◦S′ G′′, γ′′ (or, more succinctly, /S ◦ /S′ ⊆ /S◦S′). The same is
true for exit-equivalence.

In case S = ∅, the game G|∅ is the same as G, non-loosing strategies are
actually winning and thus G, γ /∅ G′, γ′ means that if ∃ve wins G, γ then she
also wins G′, γ′. We hence denote /∅ as / and ./∅ as ./.

The following proposition says that in the case of pre�x-independent
games exit-equivalence is compositional.

Proposition 2.2.2. Assume two pre�x-independent games G, γI and G′, γ′I
with pairs of disjoint subsets S+ t S ⊆ Conf and S ′+ t S ′ ⊆ Conf ′ together
with relations S+ ⊆ S+ × S ′+ and S ⊆ S × S ′. If:

G, γI /S+tS G′, γ′I

and for all (γ, γ′) ∈ S+:
G, γ /S G′, γ′,

then also:
G, γI /S G′, γ′I .
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Proof. We need to translate non-loosing ∃ve's strategies in G|S, γI to G′|S ′, γ′I .
Assume a strategy σ for G|S, γI . We construct σ′ for G′|S, γ′I with exit(σ′) ⊆
S[exit(σ)]. The key idea is to decompose σ into smaller parts, translate these
parts to G′ and obtain σ′ by putting these translated pieces together. Both
G|S, γI and G′|S ′, γ′I decompose into two phases: before and after the �rst
move to S+ and S ′+, respectively (if a play never enters con�guration from
S+ or S ′+, the �rst phase may continue forever without moving to the second
one). The new strategy σ′ is as follows:

1. Since the �rst phase of G|S, γI ends with a move to S+, it can be
identi�ed with G|S+ t S, γI . In this view, the strategy σ0 being σ
restricted to the �rst phase can be thought of as a non-loosing strategy
for G|S+ tS, γI . The assumption G, γI /S+tS G, γ′I implies existence of
a non-loosing strategy σ′0 for G′|S ′+ t S ′, γ′I with:

exit(σ′0) ⊆ (S+ t S)[exit(σ0)].

∃ve plays according to such σ′0 until a visit to S ′+ t S ′. If this never
happens she wins. Otherwise, disjointness of domains and codomains
of S+ and S imply:

exit(σ′0) ∩ S ′+ ⊆ S+[exit(σ0)] and exit(σ′0) ∩ S ′ ⊆ S[exit(σ0)].

Thus, if the play reaches γ′ ∈ S ′ then γSγ′ for some γ ∈ S[exit(σ0)] ⊆
S[exit(σ)] and we are done.

2. The only remaining case is when after a play π′ the game G′|S ′ moves
to γ′ ∈ S ′+. Pre�x-independence of G′ means that the history π′ is irrel-
evant for winning the remaining game and it su�ces if we provide ∃ve
with a non-loosing strategy σγ′ in G′|S ′, γ′ with exit(σγ′) ⊆ S[exit(σ)].

Since γ′ ∈ exit(σ′0) ∩ S ′+, we know that γ′ ∈ S+[exit(σ0)]. This means
that γS+γ

′ for some γ ∈ S+ reachable from γI by a σ0-play π (which,
by de�nition of σ0, is also a σ-play). Hence, the strategy σγ de�ned
for every play ρ as:

σγ(ρ) = σ(πρ)

is a non-loosing strategy for G|S, γ (which follows from pre�x-independence
of G) with exit(σγ) ⊆ exit(σ). Then, the assumption G, γ/SG′, γ′ allows
to translate σγ to our desired σ′γ = σγ′ in G′|S ′, γ′. Since the bigger X
the bigger S[X]:

exit(σ′γ) ⊆ S[exit(σγ)] ⊆ S[exit(σ)]

which completes the proof.
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Gamemulations & Bisimulations. The connection between games and
bisimilarity is twofold. We have already seen how bisimilarity can be cap-
tured in terms of a game, as expressed by (2.2). Let us now have a look at
a complementary perspective: invariance of games under bisimilarity.

Any game can be seen as a monomodal modelM = (M,→M, τM∃ , τM∀ )
with the set of all con�gurations Conf = M as its points, the only accessibility
relation interpreted as Mov =→M and ownership of con�gurations encoded
by two atomic propositions τ∃ and τ∀. We will show how a bisimulation
between two games G, γ and G′, γ′ allows for a translation of strategies in
one game to strategies in the other one. Under additional assumptions on
the bisimulation, the translation of a winning strategy yields a strategy that
is also winning.

For a more �ne-grained analysis, we start with a notion weaker than
bisimilarity that is not necessarily symmetric and only provides a one-way
translation of strategies.

De�nition 2.2.3. A a relation G ⊆ Conf × Conf ′ between sets of con�gu-
rations of two (not necessarily distinct) games G and G′ is called a gamem-
ulation from G to G′ if (i) it preserves the winning condition, meaning that
for in�nite plays π and π′, πGπ′ (pointwise) implies that π and π′ have the
same winner; (ii) for every γGγ′, the following three conditions are satis�ed:

� (base) γ and γ′ have the same owner;

� (forth) whenever γ ∈ Conf∃ and γMovδ, there exists δ′ ∈ Conf ′ such that
γ′Movδ′ and δGδ′;

� (back) whenever γ′ ∈ Conf ′∀ and γ
′Movδ′, there exists δ ∈ Conf such that

γMovδ and δGδ′.

R is a gamemulation from G, γ to G′, γ′, denoted (G, γ)G(G′, γ′), if it is a
gamemulation from G to G′ such that γGγ′. In case G = G′ and G is an
order, we call it a gamemulation order.

The above de�nition is crafted speci�cally to enable translations of ∃ve's
strategies.

Proposition 2.2.4. Assume games (G, γ)G(G′, γ′) linked by a gamemulation
G. For every ∃ve's strategy σ in G, γ she has a σ′ in G′, γ′ with the property
that:

I for every σ′-play π′ (�nite or in�nite),

I there exists a σ-play π with πGπ′.

In particular, for every S ⊆ G we have σ /S σ
′ and since σ is arbitrary it

follows that (G, γ) /S (G′, γ′).
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Proof. The strategy σ′ is constructed by induction on the length of plays,
preserving the condition from the formulation of the proposition as an invari-
ant. Assume that after a play π′ the game has arrived at a con�guration γ′.
By the induction hypothesis, there exists π such that πGπ′. In particular, π
ends with γ that has the same owner as γ′. There are two cases:

� If γ and γ′ belong to ∃ve, she looks at σ(π) = δ. The forth condition
implies existence of a legal move from γ′ to δ′ in G′ and so we put
σ′(π′) = δ′. Since δGδ′, the invariant is preserved, for the σ-play πδ
corresponds to the σ′-play π′δ′.

� Symmetrically, if ∀dam owns both γ and γ′ then the back condition
implies that for every move to δ′ in G′ there is a legal (and hence
extending π to a σ-play πδ) move to δ with δGδ′.

It follows from the construction of σ′ that it has the desired property with
respect to �nite plays. The case with in�nite ones follows from the observa-
tion that (i) an in�nite play π′ is consistent with σ′ i� all its �nite pre�xes
π′1, π

′
2, ... are σ

′-plays and (ii) given the corresponding σ-plays π1, π2, ... from
the invariant, πi is a pre�x of πj whenever i < j.

Note that any relation G ⊆ Conf×Conf ′ between con�gurations of games
G and G′ that preserves the winning condition is a bisimulation i� both G
and its inverse G−1 are gamemulations. As a corollary we get that games
are invariant under bisimulations preserving the winning condition.

We call a subset S ⊆ Conf of con�gurations of a (possibly partial) game
G victory-dominating if the winner of any in�nite play π visiting S in�nitely
often depends only on the subsequence π ∩ S consisting of all π's elements
from S. Given another G′ with S ′ ⊆ Conf ′ we call a relation S ⊆ S × S ′
victory-dominating if S and S ′ are victory-dominating and whenever plays
π and π′ visit con�gurations from S and S ′ in�nitely often: (π∩S)S(π′∩S ′)
(pointwise) implies that π and π′ have the same winner. That is, if the i-th
con�guration from S in π is linked by S to the i-th con�guration from S ′ in
π′, for all i < ω, then π and π′ have the same winner.

A typical example of this is with parity games. If r is the most important
rank in G and all the elements of S have rank r then S is victory-dominating.
Hence, given another G′ with analogous r′ and S ′, if r and r′ have the same
owner then every S ⊆ S ×S ′ is victory-dominating. In case of partial games
it su�ces that such r and r′ are the most important among con�gurations
of G and G′ other than the stopping ones, because no stopping con�guration
can appear in an in�nite play. In the context of (partial) parity games we
will often use this observation without explicitly mentioning it.

We now introduce an important lemma that allows to deduce equivalence
of parity games from equivalence of its pieces.
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Lemma 2.2.5 (Decomposition Lemma). Consider parity games G and G′
with disjoint subsets S+ t S ⊆ Conf and S ′+ t S ′ ⊆ Conf ′ and relations
S+ ⊆ S+ × S ′+ and S ⊆ S × S ′. Assume that S+ is victory-dominating
between G|S and G′|S ′. If:

G, γ /S+tS G′, γ′

for all (γ, γ′) ∈ S+ then also:

G, γ /S G′, γ′.

for all (γ, γ′) ∈ S+.

Remark 2.2.6. We will usually us an immediate symmetric corollary of the
above lemma where ./ replaces / in both expressions and refer to it as the
Decomposition Lemma.

Proof. As in the proof of Proposition 2.2.2, given a non-loosing σ in G|S, γ we
need to translate it to σ′ in G′|S ′, γ′ so that exit(σ′) ⊆ S[exit(σ)]. Again, we
decompose the game G|S into phases, look at the pieces of σ in these phases
and translate each such piece to a corresponding phase of G′|S ′. Then, the
translated pieces of strategies compose into our desired σ′ in G′|S ′. The
di�erence from the previous proof is that instead of splitting the game G|S
into two phases we split it into in�nitely many ones, each consisting of plays
between consecutive visits to S+; similarly with G′|S ′ and S ′+.

Since G is a parity game, we assume that σ is con�gurational. Thus,
whenever the game arrives at some δ ∈ S+ the behavior of σ depends only
on δ and not the entire history of the play. It follows that σ can be presented
as a set of strategies: for each δ ∈ S+ a strategy σδ in G|S tS+, δ telling ∃ve
how to play from δ until the next visit to S+. Then, the moves dictated by
σ are precisely the ones given by σδ whenever δ is the last seen con�guration
from S+.

The assumption G, δ /S+tS G′, δ′ enables a translation σδ 7→ σδ′ for every
(δ, δ′) ∈ S+ such that σδ′ is non-loosing in G′|S ′ t S ′+, δ′ and exit(σδ′) ⊆
(S t S+)[exit(σδ)]. Hence, ∃ve may play in G′|S ′ by using σδ′ whenever
the last seen con�guration from S ′+ was δ′. Denote such strategy by σ′. It
satis�es:

I For every σ′-play π′ there exists a σ-play π with (π ∩ S+) S+ (π′ ∩ S ′+).

The above can be checked by induction on the number of visits to S ′+ and
easily implies that σ′ is indeed a legal, winning strategy in G′|S ′ with all the
required properties.

Instead of presenting the technical details of the above reasoning, which
are in similar spirit to the proofs of Propositions 2.2.2 and 2.2.4, we will use
the latter as a blackbox. Given the discussion above, we may view G|S, γ as
a sequence of alternating choices γ1σ1γ2σ2...: starting with γ1 = γ, from γi:
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1. ∃ve picks a positional σi in G|S+ t S, γi and then

2. ∀dam chooses γi+1 ∈ exit(σi); if γi+1 ∈ S the game stops there, other-
wise γi+1 ∈ S+ and it continues from γi+1.

Denote such game by Ĝ|S. Formally, Ĝ has con�gurations:

Ĉonf∃ = S+ t S and Ĉonf∀ =
⋃
δ∈S+

Sδ

and moves:

M̂ov = {(δ, σ) | δ ∈ S+, σ ∈ Sδ} ∪ {(σ, δ) | δ ∈ exit(σ)}

where:
Sδ = {σ | σ is a non-loosing strategy in G|S+ t S, δ}.

Towards the winning condition note that every in�nite (and hence not con-
taining elements of S) play π̂ in Ĝ can be extended to (at least one) π in G
satisfying π ∩ S+ = π̂. Moreover, the winner of π depends only on π̂. We
therefore de�ne:

Ŵin∃ = {π̂ | ∃ve wins some (equivalently: all) π in G with π ∩ S+ = π̂}

and Ŵin∀ as its complement. The de�nition of Ĝ is tailored so that the games
G|S and Ĝ|S are equivalent:

G, γ ./Id(S) Ĝ, γ.

The game Ĝ′ is de�ned analogously. The assumptions of the lemma imply
that the relation:

S t {(σ, σ′) | exit(σ′) ⊆ (S+ t S)[exit(σ)]}

is a gamemulation from Ĝ to Ĝ′. Since it includes S, Proposition 2.2.4 entails
the middle relation in:

G, γ /Id(S) Ĝ, γ /S Ĝ′, γ′ /Id(S′) G′, γ′

and since Id(S) ◦ S ◦ Id(S ′) = S we get:

G, γ /S G′, γ′

which proves the lemma.
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2.2.3 Games for Fixpoints

Let us recall the game-theoretic characterization of �xpoints. Assume a
set X and a monotone operation f : P(X) → P(X) on its powerset P(X)
seen as a complete lattice ordered by set inclusion.

De�nition 2.2.7. We de�ne the least �xpoint game Gµ(f) and the greatest
�xpoint game Gν(f). Both games are played in two-step rounds as follows:

1. from a position x ∈ X, ∃ve chooses Y ∈ P(X) with x ∈ f(Y ),

2. ∀dam chooses y ∈ Y and the next round starts from y.

Formally, both games have con�gurations:

Conf∃ = X and Conf∀ = P(X)

and moves:

Mov = {(x, Y ) | x ∈ f(Y )} ∪ {(Y, x) | x ∈ Y }.

The only di�erence between µ and ν is in the winning condition: in case of
an in�nite play ∃ve looses in Gµ(f) and wins in Gν(f).

The games characterize �xpoints of f as follows.

Theorem 2.2.8. For every x ∈ X:

1. ∃ve wins Gµ(f) from x i� x ∈ LFP.f .

2. ∃ve wins Gν(f) from x i� x ∈ GFP.f .

Proof. We start with the following proposition:

Proposition 2.2.9. For every ordinal α and element x ∈ X:

x ∈ fαµ ⇐⇒ ∃β<α.∃Y . x ∈ f(Y ) and Y ⊆ fβµ (2.4)

x ∈ fαν ⇐⇒ ∀β<α.∃Y . x ∈ f(Y ) and Y ⊆ fβν (2.5)

Proof. For the �rst equivalence (2.4), recall the de�nition:

fαµ =
⋃
β<α

f(fβµ ).

If x ∈ fαµ , then there exists β < α such that x ∈ f(fβµ ) and hence Y = fβµ
witnesses that the claim is true. Conversely, if x /∈ fαµ then for every β < α

and Y such that x ∈ f(Y ) we have Y 6⊆ fβµ . This is because otherwise

monotonicity would imply x ∈ f(Y ) ⊆ f(fβµ ) ⊆ fαµ which is impossible.
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Towards the second equivalence (2.5), recall that:

fαν =
⋂
β<α

f(fβν ).

When x ∈ fαν then for every β < α we have x ∈ f(fβν ) and hence Y = fβν
witnesses the claim for β. If x /∈ fαν , then there exists β < α with x /∈ f(fβν )

and hence by monotonicity x ∈ f(Y ) implies Y 6⊆ fβν .

Let us prove Theorem 2.2.8. For the �rst item, take α big enough so that
fαµ = fα+1

µ = LFP.f . If x /∈ LFP.f = fα+1
µ then by (2.4) for every β < α+ 1

and a legal move Y for ∃ve we have Y 6⊆ fβµ . In particular, taking β = α
we get that every legal Y contains an element y /∈ fαµ = LFP.f . Thus, ∀dam
can keep picking elements from outside of LFP.f and never get stuck. Since
Gµ(f) is a safety game such strategy guarantees him victory.

Conversely, whenever y ∈ fβµ then (2.4) implies existence of a set Y and

an ordinal β′ < β such that Y is a legal move from y and Y ⊆ fβ
′

µ . If
∃ve chooses such Y , then every response z ∈ Y chosen by ∀dam will belong

to fβ
′

µ . Hence, starting from x ∃ve can keep picking sets Y0 ⊇ Y1 ⊇ ...

with corresponding ordinals α > β0 > β1 > ... such that Yi ⊆ fβiµ . By
well-foundedness of Ord, this must end in �nitely many steps and so ∃ve
wins.

For the second item of the theorem, take α for which fαν = fα+1
ν = GFP.f .

∃ve can win from x ∈ GFP.f if she plays maintaining as an invariant that all
her con�gurations that are visited belong to GFP.f . This is possible because
whenever y ∈ GFP.f = fα+1

ν then (2.5) implies existence of Y ⊆ fαν with
y ∈ f(Y ). Such Y is a legal move for ∃ve from y and all possible ∀dam's
responses belong to fαν = GFP.f .

For the last implication, assume that x /∈ fαν . Whenever y /∈ fβν , (2.5)
implies existence of β′ < β such that for every Y that ∃ve may legally choose

in y, this Y must contain an element z /∈ fβ
′

ν . Thus, starting from x ∀dam
can pick elements y0, y1... with corresponding ordinals α > β0 > β1 > ...
such that yi /∈ fβiν . Again, well-foundedness of Ord implies that such process
must terminate after �nitely many rounds and so ∀dam will win.

Example 2.2.10. Let us demonstrate the somewhat abstract Theorem 2.2.8
in action by showing how the characterization (2.2) of bisimilarity - in terms
of the bisimilarity game G-(M,M′) can be seen as its instance.

In order to apply the characterization, we need to view the notion of
bisimilarity between M and M′ as a �xpoint of some function. Consider
the following operation BIS : P(M ×M ′)→ P(M ×M ′) on binary relations
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between the models:

BIS(Z) = {(m,m′) | ∀τ∈Prop. m ∈ τM ⇐⇒ m′ ∈ τM′ ∧
∀a∈Act.∀

m
a→
M

n
.∃

m′
a→
M′

n′
. nZn′ ∧

∀a∈Act.∀
m′

a→
M

n′
.∃

m
a→
M′

n
. nZn′}.

The three clauses in the above de�nition correspond to the base, forth and
back conditions (with respect to Z) of a bisimulation relation, respectively.
It follows that every relation Z between M and M ′ is a bisimulation i�
Z ⊆ BIS(Z). Since the relation - of bisimilarity is the greatest bisimulation,
it is the greatest such relation and thus it equals to the greatest �xpoint of
BIS:

- = GFP.BIS.

According to Theorem 2.2.8, this means that ∃ve wins the game Gν(BIS)
from (m,m′) i� m - m′. Hence, to obtain (2.2) it su�ces to show that the
games Gν(BIS) and G-(M,M′) have the same winner:

Gν(BIS), (m,m′) ./ G-(M,M′), (m,m′, base) (2.6)

for all m ∈M and m′ ∈M ′. Let us prove this equivalence.

Proof. Both games Gν(BIS) and G-(M,M′) can be thought of as moving
from one pair of points to another in rounds. Unravelling the de�nition of
Gν(BIS) we get that from every (m,m′):

1. ∃ve picks a relation Z ⊆M×M ′ such that (m,m′) ∈ BIS(Z), and then

2. ∀dam chooses (n, n′) ∈ Z from which the next round starts.

On the other hand, in G-(M,M′) from (m,m′, base):

1. equivalence of atomic propositions is checked, then

2. ∀dam chooses m
a→ n or m′

a→ n′ and

3. ∃ve responds with m′
a→ n′ or m

a→ n, respectively, so that the next
position is (n, n′, base).

Denote:
G = Gν(BIS) and G′ = G-(M,M′).

We will translate between ∃ve's strategies in a round of either of the two
games. Roughly, the translated strategy will allow to end the round in the
same con�gurations as the original strategy, up to identifying every (n, n′)
in G with (n, n′, base) in G′.

Formally, we apply the Decomposition Lemma 2.2.5. To that end, we
view both G and G′ as parity games: we assign ranks r and r′, both belonging
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to ∀dam, to all con�gurations. This way, ∀dam looses all in�nite plays and
hence G and G′ are safety games, as desired. Denote sets of con�gurations:

S+ = M ×M ′ and S ′+ = M ×M ′ × {base}

and de�ne the relation:

S+ = {((m,m′), (m,m′, base))| m ∈M,m′ ∈M ′}.

Substituting S = ∅ we conclude from the lemma that to prove (2.6) it su�ces
to show:

G, (m,m′) ./S+ G′, (m,m′, base) (2.7)

for all m ∈M and m′ ∈M ′. That is, we need to translate strategies between
partial games G|S+, (m,m′) and G′|S ′+, (m,m′, base) for every m ∈ M and
m′ ∈M ′. We assume that m and m′ satisfy the same atomic propositions, as
otherwise ∃ve looses both games immediately and the equivalence becomes
trivial.

Assume an ∃ve's strategy σ′ in G′|S ′+, (m,m′, base). Such σ′ gives her

a reply m′
a→ n′ to every m

a→ n (and symmetrically m
a→ n for every

m′
a→ n′). This can be summarized as a pair of functions fa : Ya → Y ′a and

f ′a : Y ′a → Ya for each a, where Ya and Y
′
a denote the

a→-successors of m and
m′, respectively. Consider the union:

Z =
⋃

a∈Act
{(n, fa(n)) | n ∈ Ya} ∪ {(f ′a(n), n) | n ∈ Y ′a}

of the graphs of all fa's and f
′
a's. It follows that (m,m′) ∈ BIS(Z), meaning

that Z is a legal move in Gν(BIS). Let σ be the strategy that chooses this
Z. Since (n, n′) ∈ Z i� some σ′-play leads to (n, n′, base) and exit(σ) = Z:

exit(σ) = S−1
+ [exit(σ′)]

as desired.

For the opposite translation, assume that ∃ve has a strategy σ in G|S+

that legally picks a relation Z. Observe that whether (m,m′) belongs to
BIS(Z) only depends on the part Z ∩ (Y × Y ′) of Z between children Y and
Y ′ of m and m′, respectively. Hence:

(m,m′) ∈ BIS(Z ∩ (Y × Y ′)).

By de�nition of BIS, this means that for every
a→-successor n of m or n′ of

m′ there is at least one
a→-successor n′ or n of the other point, respectively,

with nZn′. This gives ∃ve a strategy σ′, as she may respond with any such n′

or n to every n or n′, respectively. Similarly to the previous case exit(σ) = Z
and so:

exit(σ′) ⊆ S+[exit(σ)]

which completes the proof of (2.7) and therefore also (2.6).
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2.3 Modal Logic

A logic that is of particular interest in this thesis is the modal logic ML.
Fix sets of atomic propositions Prop and actions Act. Sentences of modal
logic are given by the grammar:

ϕ ::= > | ⊥ | τ | ¬τ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ

where τ ∈ Prop and a ∈ Act. The two constructors 〈a〉 and [a] are called
modal operators. We call the set:

Lit = {τ,¬τ | τ ∈ Prop}

the literals over Prop. In the monomodal case, i.e. with |Act| = 1, we skip
the labels and write 3 and 2 instead of 〈a〉 and [a].

We denote the set of all subformulae of a formula ϕ by SubFor(ϕ), where
isomorphic subformulae are not identi�ed. Hence, formally a subformula of ϕ
is a node in its syntactic tree. We use this convention consistently for ML as
well as for all its extensions considered in the thesis. Although irrelevant now,
it will gain importance later and allow us to avoid unnecessarily convoluted
de�nitions. Nonetheless, we will often abuse terminology and use the term
subformula in the more usual sense: a formula whose syntactic tree is a
subtree of the syntactic tree of ϕ.

Modal logic is interpreted in points of Kripke models. We always assume
that the modal signature matches with the logic: it consists of unary and
binary relational symbols Prop and { a→ | a ∈ Act}. Given such a modelM,
the semantics JϕK ⊆M is de�ned inductively as follows:

J>K = M and J⊥K = ∅
JτK = τM and J¬τK = M − τM

Jϕ1 ∨ ϕ2K = Jϕ1K ∪ Jϕ2K and Jϕ1 ∧ ϕ2K = Jϕ1K ∩ Jϕ2K
J〈a〉ϕK = {m ∈M | ∃

m
a→n

n ∈ JϕK} and J[a]ϕK = {m ∈M | ∀
m

a→n
n ∈ JϕK}.

We say that M,m (or just m if M is clear from the context) satis�es ϕ if
m ∈ JϕK and denote it by M,m |= ϕ. The language of a sentence ϕ is the
class of all pointed models that satisfy ϕ. Given anotherM′,m′ we call the
models modally equivalent and denote it M,m ≡ML M′,m′ if they satisfy
the same modal formulae.

Negation. Note that the negation ¬ is only allowed on the atomic proposi-
tions τ and not on arbitrary formulae. However, using de Morgan laws and
the dualities between modal operators:

¬〈a〉¬ϕ ⇐⇒ [a]ϕ and ¬[a]¬ϕ ⇐⇒ 〈a〉ϕ,

every such negation could be pushed to the atomic propositions. The as-
sumption that all formulae are already in such negation normal form will
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be convenient. Nevertheless, we will use connectives ¬, =⇒ and ⇐⇒ as
shorthands for their semantic equivalents.

Atomic Propositions vs. Colors. The set Prop of atomic propositions
can be in�nite. In that case it is not possible to describe the color of a point
with a single formula. However, if the set Prop is �nite then speci�cations in
terms of colors and atomic propositions are equivalent. A color c ∈ P(Prop)
can be described by a conjunction of all the literals consistent with it. Dually,
a literal τ or ¬τ is equivalent to the disjunction of all colors consistent with
that literal. Therefore, in such �nitary case we will sometimes consider an
equivalent syntax of ML with colors in place of literals.

Invariance under Bisimulation. A basic fact about modal logic is that
it is invariant under bisimulation, meaning that it cannot distinguish two
bisimilar points:

M,m -M′,m′ =⇒ M,m ≡MLM′,m′

for every M,m and M′,m′. The above fact follows from its re�ned ver-
sion. De�ne the modal-propositional depth of a formula ϕ to be the maximal
nesting of modal operators and atomic propositions in ϕ. For P ⊆ Prop
and k < ω denote M,m ≡k,PML M

′,m′ if M,m and M′,m′ satisfy the same
formulae of modal-propositional depth at most k and only using atomic
propositions from P (we skip the index P in the case P = Prop). Since
every formula uses a �nite number of atomic propositions, checking modal
equivalence boils down to checking it with respect to every �nite subset of
Prop:

M,m ≡kMLM′,m′

⇐⇒

M,m ≡k,PML M
′,m′ for every �nite P ⊆ Prop

for every k < ω. Analogously, the relation -k,P is de�ned the same as -k

except that the base condition is only checked against propositions in P . An
easy induction on k shows that:

M,m -k,P M′,m′ ⇐⇒ M,m ≡k,PML M
′,m′

for every �nite P ⊆ Prop and k < ω. This leads to a common proof tech-
nique: to show M,m ≡ML M′,m′ it su�ces to prove M,m ≡k,PML M

′,m′

for every k < ω and �nite P ⊆ Prop, and the latter one is equivalent to
M,m -k,P M′,m′.

In particular, since -k implies -k,P for all P ⊆ Prop we get that -k

implies ≡kML and consequently - implies ≡ML . In the special case when the
set Prop is �nite, the relations -k and ≡kML coincide.
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In general, the relation M,m -k,P M′,m′ can be equivalently de�ned
as M0,m -k M′0,m′ where M0 and N ′0 are the respective reducts of M
and M′ (i.e. models for smaller vocabulary obtained by forgetting all the
interpretations of atomic propositions outside of P ). Thus, it follows from
the game characterization (2.3) of -k that:

∃ve wins G<ω,P- (M,M′), (m,m′, k, count) ⇐⇒ M,m -k,P M′,m′. (2.8)

where G<ω,P- (M,M′) is a modi�ed version of the game G<ω- (M,M′) in
which only the atomic propositions from P are checked in the base step.

Game Semantics for ML. Similarly to the notion of bisimilarity, the
semantics of modal formulae can be naturally captured in terms of a game.
Fix a model M. Given a modal formula ϕ, the semantic game G(ϕ) is
de�ned as follows. The set Conf = M × SubFor(ϕ) of con�gurations consists
of points of M and subformulae of ϕ. The possible moves depend on the
topmost connective and re�ect the inductive de�nition of the semantics. In
con�gurations:

� (m,>) or (m,⊥), ∃ve immediately wins or looses, respectively;

� (m, τ) or (m,¬τ) ∃ve wins i� m ∈ τM or m /∈ τM, respectively;

� (m, ψ1∨ψ2) or (m, ψ1∧ψ2), ∃ve or ∀dam, respectively, chooses i ∈ {1, 2}
and the game continues from (m, ψi);

� (m, 〈a〉ψ) or (m, [a]ψ), ∃ve or ∀dam, respectively, chooses an
a→-successor

n of m and the game continues from (n, ψ).

Since at each step the formula component of a con�gurations is a strict
subformula of the previous one, the game must end in at most |SubFor(ϕ)|
many such steps. In particular, there are no in�nite plays, and so the de-
scription above is already complete. As mentioned, the game characterizes
the meaning of formulae.

Theorem 2.3.1 (ML Adequacy). For all m ∈M and ϕ ∈ ML:

m ∈ JϕK ⇐⇒ ∃ve wins G(ϕ) from (m, ϕ).

Proof. The above equivalence can be veri�ed by a straightforward induction
on the formula, so we only consider the case of a formula of shape 〈a〉ϕ for
a demonstration. By de�nition, m ∈ J〈a〉ϕK i� there exists an n such that
m

a→ n and n ∈ JϕK. On the other hand, ∃ve wins G(〈a〉ϕ) from (m, 〈a〉ϕ)
i� she can choose an

a→-successor n of m such that she wins from (n, ϕ)
in G(〈a〉ϕ). By induction hypothesis, we know that for every n ∈ M, ∃ve
wins from (n, ϕ) in G(ϕ) i� n ∈ JϕK. But the games G(〈a〉ϕ), (n, ϕ) and
G(ϕ), (n, ϕ) are equivalent (since the only di�erence between them is the
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presence of con�gurations of shape (m, 〈a〉ϕ) in the �rst game, but such
con�gurations are not reachable by any play). Thus, it follows that ∃ve wins
G(〈a〉ϕ) from (m, 〈a〉ϕ) i� m ∈ J〈a〉ϕK, as desired.

Apart from modal logic, we will refer to �rst-order logic FO and assume
the reader to be familiar with its basics ([24] is a good reference). Occasion-
ally, we will also mention monadic second-order logic MSO, an extension of
FO with quanti�cation over sets of elements (i.e. unary relations). Although
MSO has proven important in computer science, knowing it is not a prereq-
uisite for reading this thesis, as we will only mention it to sketch the context
of our results rather than to use it as a tool. In both cases of FO and MSO,
we assume that the syntax and semantics are de�ned in a standard way.
Given a formula ϕ with free variables x1, ..., xk, and a modelM with points
m1, ...,mk ∈M , we denote by ϕ(m1, ...,mk) the formula under interpretation
mapping each xi to mi. A formula with no free variables is called a sentence.

2.4 Fixpoint Extension of ML

We recall the well-known extension of modal logic with �xpoints and
the corresponding notions of games and automata (the lecture notes [37] are
a good introduction). Apart from setting notation and recalling classical
facts, we also include some of the proofs. This will not only make our
presentation more self-contained, but also describe the classical setting from
a perspective that will facilitate understanding of its extended versions later.
It will also make the comparison between the standard and the new setting
more transparent.

2.4.1 Fixpoint Modal Logic

Consider a modal formula ϕ using an atomic proposition τ and a model
M with an interpretation for all the accessibility relations and propositions
except for τM. One can think of the semantics of ϕ as a map F that takes
the missing interpretation of τ and returns the interpretation of ϕ, thus
transforming subsets ofM into subsets ofM . If it so happens that τ appears
only positively in ϕ (i.e. it is never negated) then such a map is monotone,
meaning that the more points satisfy τ , the more points satisfy ϕ. Since the
powerset P(M) of M ordered by set inclusion is a complete lattice, by the
Knaster-Tarski Theorem 2.1.1 monotonicity of F implies that it has both the
least and the greatest �xpoints LFP.F = F∞µ and GFP.F = F∞ν . The modal
�xpoint logic, called µ-calculus and abbreviated µ-ML, is then obtained from
the ordinary modal logic by extending it with operators interpreted as such
�xpoints.

Note that in our example the atomic proposition τ was treated as a vari-
able with interpretation ranging over subsets of the model. In order to make
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the distinction between such variables (thought of as intermediate objects)
and actual atomic propositions (that are a �xed component of the model un-
der consideration) we will distinguish variables and atomic propositions on a
syntactic level. Thus, from now on we assume an in�nite set Var of variables
whose elements will be typically denoted x, y, z. The syntax of µ-ML is then
given by the grammar:

ϕ ::= > | ⊥ | τ | ¬τ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | x | µx.ϕ | νx.ϕ

with τ ∈ Prop, a ∈ Act and x ∈ Var. In the last two clauses, the operators
µ and ν are said to bind the variable x. We call an occurrence of x in ϕ
bound if it has a superformula ψ ∈ SubFor(ϕ) labelled with an operator
binding x. The subformula binding this occurrence is the least such ψ. An
occurrence of x is free if it is not bound. One can always rename variables
that occur bound to fresh ones (e.g. rewrite x∧µx.x∧νx.x to x∧µy.y∧νz.z)
because such variable replacement, called alpha-conversion, does not change
the meaning of formulae nor any of its properties that we investigate. Thus,
for technical convenience unless stated otherwise we assume that occurrences
of x in ϕ are either all bound in precisely one place or all free. In particular,
no variable is both bound and free in one formula. A sentence is then a
formula with no free variables. In statements that apply both to least and
greatest �xpoints, we will sometimes use η to denote either µ or ν.

For the semantics of µ-ML in a model M we assume a valuation val :
Var → P(M) that interprets all the variables. The semantics JϕKval ⊆M of
a formula ϕ under val is then de�ned inductively:

J>Kval = M and J⊥Kval = ∅
JτKval = τM and J¬τKval = M − τM

Jϕ1 ∨ ϕ2Kval = Jϕ1Kval ∪ Jϕ2Kval and Jϕ1 ∧ ϕ2Kval = Jϕ1Kval ∩ Jϕ2Kval

J〈a〉ϕKval = {m ∈M | ∃
m

a→n
n ∈ JϕKval} and J[a]ϕKval = {m ∈M | ∀

m
a→n

n ∈ JϕKval}
JxKval = val(x)

Jµx.ϕKval = F∞µ and Jνx.ϕKval = F∞ν

where in the last clause F (H) = JϕKval[x 7→H]. We will skip the index val if it
is immaterial or clear from the context. The closure ordinal of ϕ is the least
α ∈ Ord∞ such that for all models and valuations the induced map F reaches
its �xpoints in α-many steps, meaning that Fαµ = F∞µ and Fαν = F∞ν .

Example 2.4.1. Consider the monomodal �xpoint formula ϕ = µx.2x.
Given a modelM, its semantics JϕK equals to the least �xpoint of the map
F (H) = J2xKval[x 7→H] = {m ∈ M | ∀m→n. n ∈ H}. This F is the operation
F2 for the structure (M,→M) and hence by (2.1) we get that ϕ is true at a
point i� no in�nite path starts there.
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Negation Note that, similarly as with ML, the syntax of µ-ML does not
include negation, but its sentences are semantically closed under negation in
the following sense. For every formula ϕ there is a dual formula ϕ̃ such that:

Jϕ̃Kval = M − JϕKṽal

for every modelM and valuations val and ṽal such that ṽal(x) = M − val(x)

for all x ∈ Var. If ϕ is a sentence, then both val and ṽal are irrelevant and
so the semantics of ϕ̃ is the complement of the semantics of ϕ. Such ϕ̃ is
constructed by induction on the complexity of ϕ with all the boolean and
modal cases de�ned the same as for plain ML and:

x̃ = x

µ̃x.ϕ = νx.ϕ̃, and ν̃x.ϕ = µx.ϕ̃

Correctness of such rewriting follows from the Knaster-Tarski characteriza-
tion of �xpoints from Theorem 2.1.1 and the de Morgan laws:

¬
∨
A =

∧
{¬a | a ∈ A} and ¬

∧
A =

∨
{¬a | a ∈ A}

which are satis�ed by the powerset lattice P(M) with ¬ interpreted as the
complement.

Example 2.4.2. Consider the formula ϕ = µx.2x from Example 2.4.1 which
de�nes well-foundedness. According to the de�nition, the dual formula ϕ̃ is:

µ̃x.2x = νx.2̃x = νx.3x̃ = νx.3x.

The reader may check that indeed νx.3x is true at a point i� there is an
in�nite path starting there.

Vectorial µ-calculus. A syntactically richer version of the modal µ-calculus
admits mutual �xpoint de�nitions of multiple properties, in formulae such
as:

µ1(x1, x2).(ϕ1, ϕ2),

where variables x1 and x2 may occur both in ϕ1 and ϕ2. Given a valuation
val as before, this formula is interpreted as the least �xpoint of the monotone
function (H1, H2) 7→ (Jϕ1Kval[xi 7→Hi], Jϕ1Kval[xi 7→Hi]) on the complete lattice
P(M)×P(M); the resulting pair of sets is then projected to the �rst compo-
nent as dictated by the subscript in µ1. Tuples of any size are allowed. This
vectorial calculus is expressively equivalent to the scalar version described
before, thanks to the so-called Beki¢ principle ([1, Bisection Lemma]) which
says that the equality:

µ

(
x1

x2

)
.

(
f1(x1, x2)
f2(x1, x2)

)
=

(
µx1.f1(x1, µx2.f2(x1, x2))
µx2.f2(µx1.f1(x1, x2), x2)

)
(2.9)
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holds for every pair of monotone operations fi : A1 × A2 → Ai on complete
lattices A1, A2, and similarly for the greatest �xpoint operator ν in place of
µ.

2.4.2 Simple Parity Games

The µ-calculus has a straightforward inductively-de�ned semantics, but
it is often useful to consider an alternative (but equivalent) semantics based
on parity games. Among other advantages, the game semantics provides
more e�cient algorithms for model checking of µ-calculus formulas than an
inductive computation of �xpoints [11].

We have already seen in Subsection 2.2.3 how �xpoint games characterize
�xpoints of monotone operations. In this case the winning condition was as
simple as it can be: ∃ve looses all the in�nite plays in the least �xpoint game
Gµ and wins them in the greatest �xpoint game Gν . In the context of µ-ML
the �xpoint operators µ and ν can be nested. Because of this, in order to
capture the meaning of formulae with a game we need the parity winning
condition that re�ects such nesting.

In the basic classical setting that we recall now, con�gurations of a game
do not possess any relevant internal structure and hence can be identi�ed
with positions. Recall that such games are called simple.

De�nition 2.4.3. Con�gurations of a simple parity game are identi�ed with
positions from a �xed arena:

Conf = V = V∃ t V∀

divided between the players. The legal moves are given by an edge relation:

Mov = E ⊆ V × V

and the winning condition by a rank function rank : V → R that maps each
position to an element of a �xed �nite linear order R = R∃ t R∀ divided
between ∃ve and ∀dam.

2.4.3 Parity Automata

The notion of parity game gives rise to parity automata, a stepping stone
between logic and games. The connection is threefold.

First, every µ-ML-formula ϕ de�nes an automaton Aϕ that recognizes
the same language. In fact, Aϕ arises from ϕ in a very direct way, as it
su�ces to de�ne an appropriate automaton structure on the set SubFor(ϕ)
of subformulae of ϕ. The construction is designed so that the semantic game
G(Aϕ) extends the game semantics for plain ML with extra rules for the new
operators. Since the translation allows us to view a formula as an automaton
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rather than to construct an abstract device, it is often referred to as the game
semantics for µ-ML.

Second, automata can be seen as a relaxation of the notion of a formula
seen as a game-inducing object, where only the elements that are crucial
from that point of view are kept. It then turns out that such generalization,
although often convenient, does not increase the expressive power of the
model: for every abstract automaton A there is a formula ϕA de�ning the
same language.

Third, an arbitrary game G = (V,E, rank) can be seen as a modal model.
Then, the logic (or equivalently: automata) can solve the game in the sense
that the set of wining positions of G is de�nable by a formula.

Since formulae can have free variables, for technical reasons we will also
consider automata with free variables. These variables resemble terminal
states in that they can be targets of transitions, but no transitions originate
in them, and whether they accept or not depends on an external valuation.
Moreover, we want our automata to be able to test whether a given atomic
proposition τ is true or not. Thus, we also include τ and ¬τ , indicating such
test, as legal targets of transitions.

A parity automaton consists of:

� a �nite set of states Q = Q∃ tQ∀ divided between two players;

� an initial state qI ∈ Q;

� a transition function:

δ : Q→ P(Q t Lit t Var) t (Act×Q)

where the �rst part is called ε-transitions and the second one modal
transitions;

� a function assigning ranks to states rank : Q→ R.

The language of an automaton is a subclass of all pointed models, de�ned
in terms of parity games. Fix a model M. Given an automaton A =
(Q, qI , δ, rank) and a valuation val : Var → P(M), we de�ne the semantic
game Gval(A) to be the parity game (V,E, rank′) where positions are of the
form:

V = M × (Q t Lit t Var)

and the edge relation E is de�ned as follows. In a position (m, q) for q ∈ Q:

� if δ(q) ⊆ QtLittVar, outgoing edges (called ε-edges, or ε-moves) are:

{((m, q), (m, z)) | z ∈ δ(q)},
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� if δ(q) = (a, p), outgoing edges (modal edges, modal moves) are:

{((m, q), (n, p)) | m
a→ n}.

There are no outgoing edges from positions (m, x), (m, τ) nor (m,¬τ) for
x ∈ Var and τ ∈ Prop, which means that the owner of these positions looses
immediately.

For q ∈ Q, the owner of the position (m, q) is the owner of the state q,
and rank′(m, q) = rank(q). For x ∈ Var, the position (m, x) belongs to ∀dam
if m ∈ val(x) and to ∃ve otherwise. Similarly, (m, τ) (or (m,¬τ)) belongs
to ∃ve i� m /∈ τM (or m ∈ τM, respectively). The rank′ of (m, x), (m, τ)
and (m,¬τ) can be set arbitrarily, as it does not a�ect the outcome of the
game. The semantics JAKval ⊆M of an automaton A is the set of all points
m ∈M for which the position (m, qI) in the game Gval(A) is winning for ∃ve,
in which case we say that A accepts M,m. The language of A is the class
of all pointed models it accepts.

Remark 2.4.4. It should be emphasized that, unless stated otherwise, by
automata we always mean alternating ones. That is, in the semantic game
we allow both players to make decisions. Alternating automata can be con-
trasted with its subclasses of nondeterministic and deterministic ones, where
all the choices are made by ∃ve, or there are no nontrivial choices at all, re-
spectively. In some cases these models are equivalent, meaning that given
an alternating automaton one can compute a nondeterministic, or even de-
terministic automaton recognizing the same language. However, in general
the alternating model is strictly more expressive.

We now inspect the translations between automata and logic. Both are
classical and can be found e.g. in [37]. However, since the standard con-
structions and proofs form a basis for more complex generalizations later,
we recall them now, both to put the new results into context and to set
notation.

2.4.4 From Formulae to Automata

Every �xpoint formula ϕ ∈ µ-ML gives rise to a parity automaton Aϕ
such that JϕKval = JAϕKval for every modelM and valuation val. Speci�cally,
given a formula ϕ (with some free variables), we de�ne an automaton Aϕ =
(Q, qI , δ, rank) (over the same free variables) as follows:

� Q is the set of all subformulae other than the literals and free variables
of ϕ:

Q = SubFor(ϕ)− (Lit t FreeVar(ϕ))

Ownership of a state in Q depends on the topmost connective, with ∃ve
owning ∨ and 〈a〉 and ∀dam owning ∧ and [a]; ownership of �xpoint
subformulae can be set arbitrarily as it will not matter;
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� qI = ϕ;

� the transition function is de�ned by cases:

� δ(θ1 ∨ θ2) = δ(θ1 ∧ θ2) = {θ1, θ2},
� δ(〈a〉θ) = δ([a]θ) = (a, θ),

� δ(ηx.θ) = {θ} (for η = µ or η = ν),

� δ(x) = {θ}, where ηx.θ is the (unique) subformula of ϕ binding
x.

� For the ranking function rank, take the lowest rank 0 (its ownership
does not matter) and assign it to all subformulae of ϕ except for imme-
diate subformulae of �xpoint operators (i.e. θ for some ηx.θ). To those,
assign ranks in such a way that subformulae have strictly smaller ranks
than their superformulae, and for every subformula ηx.θ the rank of θ
belongs to ∃ve if η = µ and to ∀dam if η = ν.

We denote Gval(ϕ) = Gval(Aϕ).

Remark 2.4.5. Recall that a subformula of ϕ is a node in its syntactic tree.
Hence, in the de�nition above clauses like δ(θ1 ∨ θ2) = {θ1, θ2} should be
read as: the value of δ on a node labelled by disjunction ∨ equals the set of
immediate children of that node. The only possibly confusing case is the last
one for a bound variable x. It states that the target of a transition originating
in an occurrence of x (i.e. a node labelled with x) is the immediate subformula
of the formula binding that occurrence (i.e. the child of the closest ancestor
of this occurrence of x labelled with ηx). Under our usual assumption all the
occurrences of each bound variable are bound in the same place. In that case
the de�nition is uniform for all occurrences of x. This special uniform case
is already general in the sense that every formula can be alpha-converted
to equivalent one satisfying the assumption and alpha-conversion does not
change the induced automata (up to isomorphism). Nonetheless, it will be
convenient to occasionally consider automata arising from formulae with the
same variable bound in multiple places. Formulae with the same variable
occurring both free and bound will not be considered.

Remark 2.4.6. Every automaton A, when paired with a model M and
valuation val, induces the semantic game Gval(A). The above translation
ϕ 7→ Aϕ is crafted so that the compositional de�nition of semantic games
for purely modal formulae (i.e. with no �xpoint operators) de�ned in Subsec-
tion 2.3 is a special case of the one for µ-ML. To that end, the game for ML
is extended with rules determining what happens in con�gurations having
x ∈ Var or ηx.θ on the formula coordinate. Since the new rules result in a
possibility of in�nite plays, we need to determine who wins in such cases.
In every in�nite play we look at the outermost operator η that was seen
in�nitely often and classify the play as won by ∃ve i� η = ν.
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Theorem 2.4.7 (µ-ML Adequacy). For every model M and valuation val,
JϕKval = JAϕKval.

Proof. Unfolding the de�nition of JAϕKval we prove that:

m ∈ JϕKval ⇐⇒ ∃ve wins Gval(ϕ) from (m, ϕ) (2.10)

for every m ∈ M and valuation val. The proof proceeds by induction on
the complexity of ϕ. All the cases except for ϕ = µx.ψ and ϕ = νx.ψ are
easy and the proof does not di�er from the one for plain ML expressed by
Theorem 2.3.1. Let us focus on the only remaining case with ϕ = µx.ψ (the
case with ϕ = νx.ψ is symmetric). Since by de�nition JϕKval = LFP.F for
F (H) = JψKval[x 7→H], Theorem 2.2.8 gives us:

m ∈ JϕKval ⇐⇒ m ∈ LFP.F ⇐⇒ ∃ve wins Gµ(F ) from m.

Hence, in order to prove (2.10) it su�ces if we show the exit-equivalence:

Gµ(F ),m ./ Gval(ϕ), (m, ϕ)

for all m ∈ M . We would like to decompose Gµ(F ) and Gval(ϕ) into phases
ending in M and M × {ψ}, respectively, and apply the Decomposition
Lemma 2.2.5 (with equivalence of such phases following from the induc-
tion hypothesis for ψ). To that end we view Gµ(F ) as a reachability game.
Denote:

G = Gµ(F ) and G′ = Gval(ϕ).

Since ϕ = µx.ψ, it follows that G′ moves deterministically from position
(m, ϕ) to (m, ψ) and therefore it su�ces to prove:

G,m ./ G′, (m, ψ). (2.11)

Towards the use of the lemma, de�ne:

S+ = M and S ′+ = M × {ψ}

and:
S+ = {(n, (n, ψ)) | n ∈ M} ⊆ S+ × S ′+

linking every n to (n, ψ). S+ and S ′+ only contain con�gurations with the
highest ranks of G and G′, respectively. Hence, substituting S = ∅, we get
(2.11) from the Decomposition Lemma 2.2.5 provided that we prove:

G, n ./S+ G′, (n, ψ)

for all n ∈ M . For that, we show that for every H ⊆ M the following are
equivalent:

1. ∃ve has a non-loosing strategy for G|S+, n with exit con�gurations H,
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2. n ∈ F (H),

3. ∃ve has a winning strategy for Gval[x 7→H](ψ), (n, ψ),

4. ∃ve has a non-loosing strategy for G′|S ′+, (n, ψ) with exit con�gurations
included in H × {ψ}.

This proves exit-equivalence: the implication (1) =⇒ (4) gives an immediate
translation of strategies σ in G|S+, n to σ′ in G′|S ′+, (n, ψ) with exit(σ′) ⊆
exit(σ)×{ψ} = S+[exit(σ)]. For the opposite direction, take σ′ in G′|S ′+, (n, ψ).
Consider H = π1(exit(σ′)) so that exit(σ′) ⊆ H × {ψ}. We get from
(4) =⇒ (1) a strategy σ for G|S+, n with exit(σ) = H = S−1

+ [exit(σ′)]. We
complete the proof of the Theorem 2.4.7 by proving the equivalence of all
four items (1), (2), (3) and (4).

For (1)⇐⇒ (2) observe that in G|S+, n ∃ve picks a subset H ⊆ M such
that n ∈ F (H), then ∀dam chooses its element n′ ∈ H and the game stops.
Thus, strategies for ∃ve can be identi�ed with such subsets of M (each such
H viewed as a strategy is non-loosing and has H itself as the set of its exit
con�gurations).

Since by de�nition F (H) = JψKval[x 7→H], (2) ⇐⇒ (3) follows from the
induction hypothesis (2.10) applied to ψ.

For (3)⇐⇒ (4) note that the games G′|S ′+, (n, ψ) and Gval[x 7→H](ψ), (n, ψ)
do not di�er until a move to a position of shape (n′, x). If it happens, G′|S ′+
moves deterministically to (n′, ψ) ∈ S ′+ and stops with no winner whereas
Gval[x 7→H](ψ) ends and ∃ve wins i� n′ ∈ H. It follows that winning strategies
for ∃ve in Gval[x 7→H](ψ), (n, ψ) are the same as her non-loosing strategies in
G′|S ′+, (n, ψ) whose exit con�gurations are included in H × {ψ}.

2.4.5 From Automata to Formulae

Theorem 2.4.8. For every parity automaton A there exists a formula ϕA
of µ-ML such that JAKval = JϕAKval for every modelM and valuation val.

Proof. Fix an automaton A = (Q, qI , δ, rank). For clarity of presentation we
only consider the case when A has no free variables, the general case requires
no new ideas. Without losing generality assume that the highest rank rmax

is not assigned to any state and every other rank is assigned to precisely one
state: unused ranks can be removed and every rank r assigned to multiple
states q1, ..., qk can be replaced with a linearly ordered sequence of its copies
r1 � ... � rk, one for each state, as this does not change the winner of any
play. Take variables VarQ = {xq | q ∈ Q} with distinct xq ∈ VarQ for every
q ∈ Q and denote:

Qr≤ = {q ∈ Q | r ≤ rank(q)} and Varr≤ = {xq | q ∈ Qr≤}.

We construct, by induction on r ∈ R, a formula ψr,q over VarQ with all free
variables in Varr≤ and all bound variables outside of Varr≤. The goal of our
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construction is that for every point m ∈M:

G(A), (m, q) ./Sr≤ G(ψr,q), (m, ψr,q) (2.12)

where:
Sr≤ = {((n, p), (n, xp)) | p ∈ Qr≤}

with domain and codomain:

Sr≤ = M ×Qr≤ and S ′r≤ = M × Varr≤.

That is, ψr,q is designed so that the games G(A), (m, q) and G(ψr,q), (m, ψr,q)
are the same until a move to a state p or a variable xp, respectively, such that
the rank of p is at least r. Hence, (2.12) for the highest rank rmax implies the
theorem: since no state in A has rank rmax, the relation Srmax≤ = ∅ is empty
and (2.12) means that the games G(A), (m, qI) and G(ψrmax,qI ), (m, ψrmax,qI )
are equivalent.

Note that although formally ψr,q may contain free variables, the partial
game Gval(ψr,q)|S ′r≤, (m, ψr,q) always stops when any such variable is reached.
Thus, we ignore the valuation val as irrelevant and write G(ψr,q). Moreover,
the reader should be warned that the constructed formulae do not have to
satisfy our usual assumption about bound variables: a variable xp can be
bound by multiple operators in ψr,q. One could avoid that as follows: when-
ever we build a formula θ using already constructed θ1, ..., θl, �rst replace all
the bound variables in each used copy of each θk with fresh ones. Nonethe-
less, to avoid clumsy notation we refrain ourselves from doing that.

The Base Case. Consider the lowest rank 0. The set S0≤ = M×Q contains
all the positions of G(A) except for the ones fromM×(LittVar). This means
that after the �rst move G(A)|S0≤ either stops immediately or reaches such
a terminal position. Thus for the base case of (2.12) it is enough to put:

� if δ(q) = (a, p):

ψ0,q =

{
〈a〉p if q belongs to ∃ve
[a]p if q belongs to ∀dam

� if δ(q) ⊆ Q t Lit t Var:

ψ0,q =

{∨
δ(q) if q belongs to ∃ve∧
δ(q) if q belongs to ∀dam.

The Inductive Step. For the inductive step, assume that for some rank r
and each q ∈ Q we have a formula ψr,q satisfying (2.12). Denoting the next
rank by r + 1 we construct ψr+1,q so that:

G(A), (m, q) ./Sr+1≤ G(ψr+1,q), (m, ψr+1,q) (2.13)
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for all m ∈ M. Let p be the unique state in Q that has rank r. In the
inductive proof we use the decomposition:

Sr≤ = Sr t Sr+1≤ with Sr = {((n, p), (n, xp)) | n ∈M}.

To simplify notation denote:

S = Sr+1≤ ⊆ S × S ′ where S = Sr+1≤ and S ′ = S ′r+1≤.

The Case with q = p. We start the construction with the case q = p and
put:

ψr+1,p = ηxp.ψr,p

where η = µ if r belongs to ∃ve and η = ν if r belongs to ∀dam. The
idea is that the formula ψr+1,p induces the same game as ψr,p except that
upon a visit to any (n, xp) the play continues instead of stopping. Since by
the induction hypothesis the play leading from (m, ψr,p) to (n, xp) in G(ψr,p)
corresponds to a play leading from (m, p) to (n, p) in G(A), we would like
the new game to continue from (n, ψr,p). The above de�nition does exactly
that: the �xpoint operator η bounding xp adds a deterministic transition
from (n, xp) to (n, ψr,p). The choice of µ or ν guarantees that in case of in-
�nitely many such unfoldings the winner in G(ψr+1,p) is the same as in G(A).

Formally, we claim that:

G(A), (m, p) ./S G(ψr+1,p), (m, ψr,p) (2.14)

for all m ∈M . Since ψr+1,p = ηxp.ψr,p, the game G(ψr+1,p) moves determin-
istically from (m, ψr+1,p) to (m, ψr,p) and hence (2.14) implies the induction
goal (2.13). De�ne sets of con�gurations:

S+ = M × {p}
S◦+ = M × {xp}
S ′+ = M × {ψr,p}

and relations R ⊆ S◦+ × S ′+ and S+ ⊆ S+ × S ′+:

R = {((n, xp), (n, ψr,p)) | n ∈M}
S+ = {((n, p), (n, ψr,p)) | n ∈M}.

We then have:

G(A), (m, p) ./Sr≤ G(ψr,p), (m, ψr,p)

./RtId(S′) G(ψr+1,p), (m, ψr,p)

for all m ∈M. The �rst equivalence is the induction hypothesis (2.12). The
second one is true because the partial games G(ψr,p)|S◦+ t S ′, (m, ψr,p) and

42



G(ψr+1,p)|S ′+tS ′, (m, ψr,p) are isomorphic until a move to some (n, xp) ∈ S◦+
in which case the �rst one stops and the second one moves deterministically
to (n, ψr,p) ∈ S ′+ and stops as well. We have Sr≤ = Sr t S, Sr ◦R = S+ and
S ◦ Id(S ′) = S and therefore:

Sr≤ ◦ (R t Id(S ′)) = (Sr t S) ◦ (R t Id(S ′))
= (Sr ◦R) t (S ◦ Id(S ′))
= S+ t S.

This allows us to compose the equivalences into:

G(A), (m, p) ./S+tS G(ψr+1,p), (m, ψr,p) (2.15)

for all m ∈M. Denoting G = G(A) and G′ = G(ψr+1,p), we get that S+ and
S ′+ only contain con�gurations with the most important rank r in Conf −S
and r′ in Conf ′ − S ′, respectively. Moreover, by the choice of η ∈ {µ, ν}, r
and r′ have the same owner in both games. Hence, applying the Decompo-
sition Lemma 2.2.5 we get (2.14) from (2.15).

The Case with q 6= p. It remains to construct formulae ψr+1,q for all other
states q 6= p. In this case we take ψr,q and replace all the occurrences of the
free variable xp with ψr+1,p constructed in the previous case:

ψr+1,q = ψr,q[xp 7→ ψr+1,p].

As in the previous case, we want to get a formula that induces the same game
as ψr,q except that it does not stop at (n, xp). The above substitution re�ects
this idea: in the new game every move to (n, xp) is replaced with a move to
(n, ψr+1,p). From there, the game is the same as G(ψr+1,p), (n, ψr+1,p) and
its correctness is already covered in the previous case.

Let us make the above idea more formal. First observe that ψr+1,q may
contain di�erent copies θ1, ..., θl of ψr+1,p as subformulae. Therefore, we
denote subformulae of the k-th copy θk with a superscript k, e.g. θk = ψkr+1,p.

This way, we de�ne relations S+ ⊆ S+×S ′+ and R ⊆ S◦+×S ′+ almost the
same as in the previous case except that the relations involve all the copies
ψ1
r,p, ..., ψ

l
r,p of ψr,p instead of just ψr,p. That is:

S+ = M × {p}
S◦+ = M × {xp}
S ′+ = M × {ψkr,p | k ≤ l}

and:

R = {((n, xp), (n, ψkr,p)) | k ≤ l, n ∈M}
S+ = {((n, p), (n, ψkr,p)) | k ≤ l, n ∈M}.
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Using the above relations we obtain the induction goal (2.13) from Propo-
sition 2.2.2 substituting G = G(A) and G′ = G(ψr+1,q). The proposition
assumes two premises:

G(A), (m, q) ./S+tS G(ψr+1,q), (m, ψr+1,q) (2.16)

and:

G(A), (m, p) ./S G(ψr+1,q), (m, ψkr,p) (2.17)

for all n ∈ M and k ≤ l. The �rst premise (2.16) follows from the composi-
tion:

G(A), (m, q) ./Sr≤ G(ψr,q), (m, ψr,q)

./RtId(S′) G(ψr+1,q), (m, ψr+1,q).

as in the previous case. The �rst line is the induction hypothesis (2.12).
The second one follows from the de�nition of ψr+1,q = ψr,q[xp 7→ ψr+1,p]:
ψr+1,q is the same as ψr,q except that ψr+1,p replaces xp. Hence, the two
partial games are identical until a move to some (n, xp) in the �rst game and
a corresponding move to (n, ψkr+1,p) (for some k ≤ l) in the second one. In
such case the �rst game stops whereas the second one moves deterministically
to (n, ψkr,p) and stops there as well (the index k depends on which occurrence
of xp was reached in the game on the left, but we do not care about it).

We get the second premise (2.17) from:

G(A), (m, p) ./S G(ψr+1,p), (m, ψr,p)

./Id(S′) G(ψr+1,q), (m, ψkr,p)

because S ◦ Id(S ′) = S. The �rst line is (2.14). For the second one observe
that once the game moves to ψkr,p for some particular k it cannot leave

SubFor(ψkr+1,p). A move leaving SubFor(ψkr+1,p) would only be possible if
there was a variable free in ψr+1,p but bound in its proper superformula
(and hence also bound in ψr+1,q). However, if xs is bound in ψr+1,q then
xs /∈ Varr+1≤, whereas it can be free in ψr+1,p only if xs ∈ Varr+1≤. Thus,
the reachable parts of the two compared games are isomorphic.
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Chapter 3

Model Theory for ML

In this chapter we ask classical model-theoretic questions in the modal
context. While model theory for single modal formulae is arguably well-
understood, the theory for entire sets of formulae turns out to be surprisingly
underdeveloped. The work presented here aims at �lling this gap. It splits
into two topics: bisimulational categoricity and ordinal models, addressed in
two respective sections. The question about bisimulational categoricity over
ordinal models, which lies in the intersection of the two topics, is addressed
in the second subsection.

Bisimulational categoricity. One of the central notions of classical model
theory is that of categoricity. A set of sentences is called categorical if it has
a unique model up to isomorphism. In the context of modal logic, bisimilar-
ity seems more appropriate than the isomorphism. One may therefore ask
about bisimulational categoricity : the property of having a unique model
up to bisimulation. Note that due to the obvious limitations imposed by the
Skolem-Löwenheim Theorem, the classical notion of categoricity of �rst-order
theories is only interesting when models of �xed cardinality are considered.
However, unlike with isomorphism, structures of di�erent sizes may still be
bisimilar. Thus, there is no need to relativize bisimulational categoricity.

It turns out that the notion of bisimulational categoricity for theories
expressed in modal logic is indeed well-behaved and can be characterized
in terms of image-�niteness. In Theorem 3.1.4 we show that a modal the-
ory (i.e. a maximal consistent set of modal formulae) has a unique model
up to bisimulation i� it has an image-�nite model, i.e. a model where ev-
ery point has �nitely many

a→-successors for each a ∈ Act. While the
right-to-left implication is (an easy folklore strengthening of) the well-known
Hennessy-Milner Theorem [16], the left-to-right one requires adaptation of
some classical model-theoretic tools and a simple topological argument. As
such, our characterization can be thought of both as a completion of the
Hennessy-Milner Theorem and as a modal version of the Ryll-Nardzewski
Theorem (proven independently by Ryll-Nardzewski [27] Svenonius [31] and
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Engeler [14]) which says that a maximal consistent set of FO-sentences has
a unique countable model (i.e. all countable models of T are isomorphic) i�
it has a modelM where for every d < ω there could be only �nitely many
d-tuples of elements ofM satisfying pairwise di�erent FO-formulae.

A natural direction for further studies is to investigate modal logic over
a �xed class C of models (i.e. replace �model� with �model from C� in all the
de�nitions). We study several such classes. First, consider two-way models
C� (also known as bidirectional models, e.g. in [2]). These are models with
two accessibility relations → and →−1 such that one is the converse of the
other. Theorem 3.1.5 says that over C� categoricity is equivalent to having
a model with �nite in- and out-degree. Another interesting case is the class
C→+ of all transitive models: monomodal models where the only accessibility
relation is transitive. Here the situation is a bit more subtle. Theorem 3.1.6
states that under an additional assumption of �niteness of Prop an analogous
characterization is true: bisimulational categoricity is equivalent to having a
�nite model.

Furthermore, Example 3.1.20 demonstrates that with C→+ the additional
assumption is necessary. Example 3.1.21 goes even further: over the class
C∀ of all universal models, i.e. ones with one arbitrary accessibility relation
and another one linking every two points, an analogous characterization is
false, even with no atomic propositions whatsoever. This also shows that
FO-de�nability of the class C under consideration, although often helpful, is
not always su�cient for a characterization similar to the ones we have. The
last characterization, Theorem 3.2.3 concerning ordinal models COrd, demon-
strates that simplicity of the considered class is not necessary either. Since
the class COrd behaves di�erently from all the previous ones, we investigate
it separately in the second section.

Ordinal models. The second section of this chapter is devoted to the study
of ordinal models COrd: monomodal models whose only accessibility relation
is a (descending and strict) linear well-founded order > on the universe.
We start with Theorem 3.2.3 which says that within such ordinal models
bisimulational categoricity is the same as having a �nite model. The charac-
terization is similar to the previous ones but the proof, although not hard,
is di�erent.

Further in the section we address another fundamental property: com-
pactness. If every �nite fragment of a set t of formulae is satis�able in C,
does it have to be the case for the entire t? For FO-de�nable (or even FO-
axiomatizable) classes of models, such as all the mentioned classes other than
COrd, compactness of ML is a straightforward consequence of compactness of
FO. COrd, however, cannot be axiomatized in FO and in fact FO is not com-
pact over COrd. This makes the question about compactness of ML over COrd

nontrivial. The Example 3.2.5 showing the lack of compactness with in�nite
Prop is rather straightforward. The complementary Theorem 3.2.6, however,
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has a more involved proof. It says that, perhaps surprisingly, if Prop is �nite
then ML is compact over COrd.

We conclude the chapter with Theorem 3.2.12 which expresses a short
model property: every set of modal formulae satis�able in COrd has an ordinal
model that is not too long. The ordinal bound on the length of such a model
depends on the number of colors and is shown to be strict in Example 3.2.11.

History and credits. The contribution of the �rst section, although phrased
in slightly di�erent terms, was published in [22] which continued the line of
research initiated in the author's master thesis [21]. The only signi�cant
exception is Example 3.1.16 which is a counterexample to what was initially
conjectured. The results from the second section are, to the best of our
knowledge, all new.

3.1 Bisimulational Categoricity

3.1.1 Introduction

Let us start with recalling the tight connection between modal logic, �rst-
order logic and bisimulation, given by the famous van Benthem Theorem.
Although we will mostly only need the easier of its two implications, for the
sake of completeness we present the full theorem as an important element
of the wider picture. The characterization identi�es ML as precisely the
fragment of FO that is invariant under bisimulation, exposing a deep link
between modal logic and bisimilarity.

Consider the standard translation, which is an embedding STx(_) : ML→
FO that maps every modal sentence ϕ to an FO formula STx(ϕ) with one
free variable x:

STx(>) = > and STx(⊥) = ⊥
STx(τ) = τ(x) and STx(¬τ) = ¬τ(x)

STx(ϕ ∨ ψ) = STx(ϕ) ∨ STx(ψ) and STx(ϕ ∧ ψ) = STx(ϕ) ∧ STx(ψ)

STx(〈a〉ϕ) = ∃
x

a→y.STy(ϕ) and STx([a]ϕ) = ∀
x

a→y.STy(ϕ)

with x 6= y. The FO formula uses the same modal signature as the original
ϕ, i.e. the signature with a binary symbol

a→ for each a ∈ Act and a unary
τ for each τ ∈ Prop. The standard translation of 〈a〉ϕ re�ects the semantics
of 〈a〉 as a restricted form of existential quanti�cation: 〈a〉ϕ means �there
exists an

a→-child of the current point that satis�es ϕ�. Symmetrically, [a] is
a restricted universal quanti�er. The above translation is designed so that:

M,m |= ϕ ⇐⇒ M satis�es STx(ϕ)(m)

for every model M and point m ∈ M . Of course, it follows from invari-
ance of ML under bisimulation that the image of STx(_) is invariant under
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bisimulation as well. The famous van Benthem Theorem [33, Theorem 1.9]
says that also the converse holds: ML is precisely the bisimulation invariant
fragment of FO.

Theorem 3.1.1 (van Benthem). For every ϕ(x) ∈ FO, ϕ is invariant under
bisimulation ⇐⇒ it is equivalent to the standard translation of some modal
formula.

Here, invariance under bisimulation of an FO formula ϕ(x) with one free
variable x means thatM,m -M′,m′ implies that ϕ(m) inM i� ϕ(m′) in
M′.

Given how natural the notion of a bisimulation is and how closely it is
related to modal logic, it is also natural to ask when modal logic can describe
a (pointed) model uniquely. That is, given a set of modal sentences, when
does it happen that it has a unique model up to bisimulation? A reader
familiar with model theory of �rst-order logic may realize that this question
is analogous to the notion of categoricity, the property of having a unique
model up to isomorphism.

Invariance of modal logic under bisimulation means that if points m and
m′ are bisimilar then they are always modally equivalent (i.e. satisfy exactly
the same formulae, which we denote by m ≡ML m′). Therefore, the quest for
characterizing bisimulational categoricity boils down to the question about
conditions under which the converse implication holds. As mentioned, in
image-�nite models points that are logically indistinguishable have to be
bisimilar. The following example shows that without the assumption of
image-�niteness this does not have to be the case.

Example 3.1.2. The Hedgehogs: H, rootH and H′, rootH′ :
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The two models are not bisimilar, as one of them is well-founded but the
other is not. However, it is easy to show that they cannot be distinguished
by ML formulae. In fact, even the full �rst-order logic cannot distinguish
the models, as can be shown using Ehrenfeucht-Fraïssé games (these are
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a classical tool characterizing expressive power of FO similarly to depth-k
bisimilarity -k characterizing expressive power of ML, see [24] for a refer-
ence).

As it turns out, the above example is an illustration of a general phe-
nomenon, which is that among in�nitely many behaviors one can always �nd
a limit one that: (i) can be either included or removed from the model but
(ii) our local logical means are too weak to tell the di�erence. This will be
the key intuition underlying our characterization of bisimulational categoric-
ity, which says that the requirement of image-�niteness is not only su�cient,
but also necessary.

In order to formulate the theorem, we �rst formally introduce the notion
of a type, i.e. a maximal consistent set of formulae, analogous to types in
�rst-order model theory (here by type we always mean a complete one).

De�nition 3.1.3. Given a point m in a modelM, its modal type or modal
theory, denoted tpM(m), is the set {ϕ ∈ ML | m ∈ JϕKM} of all modal
formulae that it satis�es. The set of all modal types will be denoted T.
Sometimes we will be only interested in models from a �xed class C. In such
case TC will denote the set of all the types that are present in some model
from C.

We can now formulate our �rst characterization. By de�nition, every
type has a model. The following theorem tells when such a model is unique.

Theorem 3.1.4. For every type t ∈ T, the following are equivalent:

(1) t has a unique model up to -;

(2) every model of t is bisimilar to an image-�nite model;

(3) t has a model which is image-�nite.

Note that although the above theorem describes bisimulational categoric-
ity over the class of all models, this does not automatically yield an analogous
characterization for its arbitrary subclasses. For instance, if we consider the
class CWF of all well-founded models then the Hedgehog H of Example 3.1.2
is a unique (up to bisimulation) model of its type, despite being inherently
image-in�nite (the reasons for this are discussed in Subsection 3.1.3). Nev-
ertheless, we provide characterizations analogous to Theorem 3.1.4 for some
interesting classes of models.

A two-way model (also called bidirectional model e.g. in [2]) is a model
over signature consisting of two accessibility relations, denoted → and →−1,
such that one is the reverse of the other (meaning that m→ n i� n→−1 m).
We denote the class of all two-way models by C�. Then:

Theorem 3.1.5. For every type t ∈ TC�, the following are equivalent:
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(1) t has a two-way model which is, up to -, unique among all two-way
models;

(2) every two-way model of t is bisimilar to an image-�nite two-way model;

(3) t has an image-�nite two-way model.

Consider the class C→+ of all transitive models, i.e. models with a single
accessibility relation →+ that is required to be transitive (in the context
of C→+ we will use the equivalent expressions descendant and child inter-
changeably; similarly with ancestor and parent). Then:

Theorem 3.1.6. Assume that the set Prop of atomic propositions is �nite.
For every type t ∈ T→+, the following are equivalent:

(1) t has a transitive model which is, up to -, unique among all transitive
models;

(2) every transitive model of t is bisimilar to a �nite transitive model;

(3) t has a �nite transitive model.

Note that for transitive models image-�niteness is the same as �niteness,
assuming that all the points are accessible from the root. Thus, in light of
Proposition 3.1.17 which says that in C→+ every �nite model can be uniquely
described with a single modal sentence, the last theorem implies that when it
comes to de�ning transitive models up to bisimulation, the expressive power
of modal logic does not increase when we move from single formulae to entire
theories.

In contrast to the above theorems, in Subsection 3.1.3 we will show coun-
terexamples limiting possible extensions of our characterizations:

� Example 3.1.20 shows that, perhaps surprisingly, the assumption of
�niteness of Prop in Theorem 3.1.6 is necessary.

� Example 3.1.21 demonstrates that even with �nite vocabulary, com-
pactness of the logic over the class C (or even FO-axiomatizability of
C, which is stronger than compactness) does not guarantee an analo-
gous characterization. We consider the class C∀ of all universal models,
i.e. models with two relations → and →∀ with the second one being
always full (i.e. linking every two points). We then show a complete
theory whose model is unique but in�nite (which means that every
point has in�nitely many →∀-successors).

Classes of models vs altered semantics. Considering various classes of
models and investigating model-theoretic questions related to ML over these
classes is a neat, uniform way of de�ning the subject of our study. However,
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an important motivation for such framework comes from a di�erent point of
view, where a class C is thought of as encoding modal logic interpreted over
all models but with modal operators having altered semantics.

� Consider two-way modal logic, i.e. monomodal logic enriched with
backward modalities: 3−1ϕ interpreted as �there exists a predecessor
satisfying ϕ�. Analogously, we obtain the notion of a two-way bisimu-
lation by extending the standard De�nition 2.1.4 with additional back-
ward back and forth conditions in which the term �predecessor� replaces
�successor�. Then, the notion of a two-way model allows us to capture
such two-way semantics without changing the de�nitions of modal logic
or bisimulation. This is because going backward along an edge → is
the same as going forward along the opposite edge →−1. Given a
monomodal model M, denote by M� the bimodal extension of M
with the same universe and interpretation of → and →−1 interpreted
as the converse of →. It follows that m, n ∈M are (i) equivalent with
respect to the two-way ML and (ii) two-way bisimilar inM i� they are
(i) modally equivalent and (ii) bisimilar in M�, respectively. More-
over, M� is image-�nite i� all the points in M have �nite in- and
out-degree. Thus, Theorem 3.1.5 can be reformulated as: a complete
theory in two-way ML has a unique model up to two-way bisimulation
i� it has a model where every point has �nite in- and out-degree.

� Similarly, one can consider transitive modal logic and transitive bisim-
ulations (also known as the EF-logic and EF-bisimulations, respec-
tively [4]) where �descendant� replaces �successor� in all the de�nitions.
Then, Theorem 3.1.6 says that a complete theory in the transitive
modal logic has a model unique up to transitive bisimulation i� it has
a �nite model. To see that the alternative formulation is equivalent,
for each monomodalM takeM→+ whose accessibility relation is the
transitive closure of that from M. Then, equivalence with respect to
transitive ML and transitive bisimilarity inM are the same as ordinary
modal equivalence and bisimilarity inM→+ , respectively.

� In the case of C∀, one can equivalently consider modal logic enriched
with universal modalities (〈∃〉ϕ interpreted as �there exists a point
satisfying ϕ�) and global bisimulations (which are bisimulations Z ⊆
M ×M ′ whose projections on both coordinates are equal to the full
universes π1(Z) = M and π2(Z) = M ′). Then our Example 3.1.21 is
a model of such universal modal logic that is in�nite yet unique up to
global bisimulation.

3.1.2 Proofs of the Characterizations

In all the three cases, the implication (2) ⇒ (3) is immediate, as by
de�nition every type has a model and modal logic is invariant under bisim-
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ulation.
The implication (3)⇒ (1) follows from a generalization of the Hennessy-

Milner Theorem [16]:

Proposition 3.1.7 (à la Hennessy-Milner). Assume an image-�nite model
M. Then, for everyM′ and every m ∈M,m′ ∈M′:

M,m ≡MLM′,m′ implies M,m -M′,m′.

This is a well-known folklore strengthening of the classical Hennessy-
Milner Theorem, where both M and M′ are assumed to be image-�nite.
Instead of proving it with bare hands, which is not di�cult, let us introduce
a higher-level point of view that will be important later. Along the same lines
as in the classical model theory for �rst-order logic (as found e.g. in [24]),
our types can be equipped with a topology turning it into a Hausdor� space.

De�nition 3.1.8. For every ϕ ∈ ML, we take the set 〈ϕ〉 = {t ∈ TC | ϕ ∈ t}
of all types containing it. Then, the set {〈ϕ〉 | ϕ ∈ ML} is a basis of clopen
sets generating a topology on T.

Alternatively, in the case when the signature is at most countable, one
could obtain the same topology by �rst �xing any enumeration of ML formu-
lae and then de�ning a metric d(t, t′) = 1

n for n being the number of the �rst
formula on which t and t′ di�er (and 0 if t = t′). The underlying intuition is
that types which are similar, i.e. hard to distinguish, should be close to each
other.

Proposition 3.1.9. Analogously to the �rst-order case [24], we have that
for every class of models C:

� the space TC is Hausdor�;

� the logic ML is compact over C (i.e. if every �nite fragment of a set of
formulae t is satis�able in C, then so is the entire t) ⇐⇒ the space
TC is compact;

� given T ⊆ TC, t ∈ TC is isolated in T ⇐⇒ there exists a single ML
formula ϕ ∈ t s.t. ϕ /∈ t′ for every other t′ ∈ T .

Proof. Observe that by identifying a type with its characteristic function we
can view the space TC as a subspace of 2ML. Since the later is Hausdor�, so
is TC . Moreover, a subspace of a compact Hausdor� space is compact i� it
is closed, and it is easy to check that closedness of T is the same as logical
compactness of ML over C. The last item follows from the observation that
in any topological space, a point is isolated i� it is isolated by a basic open
set.

Let us now prove Proposition 3.1.7:
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Proof. It su�ces to show that the relation ≡ML⊆M ×M ′ of modal equiva-
lence is itself a bisimulation. The base condition is immediate.

For the back and the forth conditions, let us take n ≡ML n′, and any a ∈
Act. By our assumption, n can only have a �nite number of

a→-children. In
particular, they have only a �nite number of distinct modal types t1, ..., tk ∈
T. Since T is a Hausdor� space, we can �nd pairwise disjoint basic open
neighborhoods 〈ϕ1〉, ..., 〈ϕk〉 of these types, which by de�nition means that
there are mutually exclusive formulae ϕ1, ..., ϕk with ϕi ∈ ti but ϕi /∈ tj for
all i 6= j. Both n, and by equivalence also n′, satisfy:

[a](
∨

i∈{1,...,k}

ϕi);
∧

i∈{1,...,k}

〈a〉ϕi; {[a](ϕi ⇒ ψ) | ψ ∈ ti}.

It follows that the types of
a→-children of n′ are exactly t1, ..., tk. But this

implies both the forth and the back conditions, as it means that for every
a→-child of n (or n′, respectively) there exists an equivalent

a→-child of n′ (n,
respectively).

Towards the last (and hardest to prove) implication (1) ⇒ (2), let us
establish a few facts about modal logic.

An important notion is that of modal saturation (also called m-saturation).
Our topology on types allows us to capture it in an elegant way.

De�nition 3.1.10. We say that a point m in a modelM ismodally saturated
if for every a ∈ Act, the set of types of its

a→-children {tpM(n) | m
a→ n} is a

closed subset of T. We callM modally saturated if all its points are modally
saturated.

In more concrete terms (the way modal saturation is usually de�ned [2]):
if every �nite fragment of t is realized in some

a→-child of m, then there exists
an m's

a→-child realizing the entire t.
Note that it is immediate that modal saturation generalizes the notion

of image-�niteness, as in a Hausdor� space �nite sets are always closed.
The following classical fact says that for saturated models modal equiv-

alence is the same as bisimilarity.

Proposition 3.1.11. Given any two modally saturated modelsM,M′:

M,m ≡MLM′,m′ implies M,m -M′,m′

for any m ∈M,m′ ∈M′.

Remark 3.1.12. A natural question in our context is whether the van Ben-
them theorem is true if we only take models from a �xed class C into account.
The standard translation STx(_) produces a �rst-order formula that is equiv-
alent to the original one in every model and invariant under bisimulation.

53



However, the more interesting direction is the opposite one, i.e. given an
FO formula invariant under bisimulation, to �nd an equivalent ML formula.
Here, an FO formula ϕ(x) is invariant under bisimulation over the class C
if for every M and M′ both belonging to C: M,m - M′,m′ implies that
ϕ(m) in M i� ϕ(m′) in M′. Note that restricting the class C weakens the
condition, which possibly makes more formulae invariant under bisimulation.
Finding a modal equivalent of a formula ϕ that is bisimulation-invariant over
C is a nontrivial task and sometimes it is just not possible, as illustrated by
the class:

C = C→+ ∩ C�n
of models that are both transitive and �nite. Finiteness of a modelM implies
that a m ∈M is not well-founded (an in�nite path starts there) i� m belongs
to a cycle m → ... → m. In turn, transitivity implies that this property is
equivalent to the existence of a self-loop m → m. The property can be
expressed with the FO-formula ϕ(x) = x → x and since well-foundedness is
invariant under bisimulation, so is ϕ over C. However, no modal formula can
be equivalent to ϕ. To see this, consider a pair of modelsMk andM′k from
C for every k < ω:

012k ···

012k ···

As usual with transitive models, for clarity we skip some arrows belonging
to the transitive closure of the depicted ones. No modal formula of modal-
propositional depth at most k can di�erentiate betweenMk andM′k. Since
onlyMk but notM′k is well-founded, this implies that well-foundedness over
C cannot be captured with ML. The equivalence Mk, k ≡kML M′k, k follows
from the game characterization (2.8). In order to win the k-round game,
it su�ces if ∃ve preserves the following invariant: either positions in both
models are equal, or both are greater than the remaining number of rounds.

Still, the van Benthem characterization is true in many interesting classes
of models, such as all �nite models, or all well-founded ones, but the proof
often requires new ideas (see [13] for a good summary). Here, let us only
state a much easier result, which essentially follows from the proof of the
classical version of the theorem (as found in [2]).
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Assume that a class C of models is axiomatized by a set A of FO-sentences
(meaning that C is the class of models satisfying A). Then, ML is precisely
the fragment of FO that is invariant under bisimulation over C:

Theorem 3.1.13 (Relativized van Benthem). Assume that C is axiomatiz-
able in FO. Then, for every ϕ(x) ∈ FO: ϕ is invariant under bisimulation
over C ⇐⇒ it is equivalent, in all models from C, to the standard translation
of a modal formula.

All the classes C�, C+ and C∀ (and of course the class of all models) can
be described by FO sentences: ∀x,y.x → y ⇐⇒ y →−1 x; ∀x,y,z.x →+

y ∧ y →+ z =⇒ x→+ z and ∀x,y.x→∀ y, respectively. Thus, the theorem
applies.

The following fact uses (the easier implication of, i.e. the correctness of
the standard translation) the above theorem:

Proposition 3.1.14. Assume an FO-axiomatizable class of models C. Then:

1. ML over C is compact, meaning that if every �nite fragment of a set
t ⊆ ML has a model in C then so does the entire t;

2. ML over C has the modally saturated model property, meaning that
every t ⊆ ML satis�able in C has a modally saturated model in C

Proof. Let A be the set of FO formulae axiomatizing C.
For the �rst item, observe that t is satis�able in C i� A ∪ STx[t] is satis-

�able (in any model). Hence, compactness of ML over C follows from com-
pactness of FO.

For the second item, take an ω-saturated model of A∪ STx[t]. Since this
set of formulae is satis�able, such a model must exist, and it is straightfor-
ward to check that ω-saturated models are also modally saturated ([24] is a
good reference for the basics of FO model theory).

Let us recall an elementary topological fact which, although simple, is
the heart of our characterizations. Since any in�nite compact space contains
a non-isolated point and closed subspaces of a compact space are always
compact, it follows that:

Lemma 3.1.15. If Y is a closed in�nite subset of a compact topological
space X, then it contains a point y ∈ Y that is not isolated in Y .

We are ready to prove the only missing implication (1) ⇒ (2) in all the
three theorems: Theorem 3.1.4 about all models, Theorem 3.1.5 about two-
way models and Theorem 3.1.6 about the transitive ones. Let us start with
the class of all models.
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All Models

Take a modelM,m that is not bisimilar to any image-�nite model. We
will construct another model that is equivalent but non-bisimilar to it. We
may combine: (i) Proposition 3.1.14 to obtain an equivalent model which is
modally saturated, (ii) Proposition 2.1.8 to take its quotient by - where (by
Proposition 3.1.11) no two points satisfy the same formulae and �nally (iii)
Proposition 2.1.6 to take a submodel accessible from the root. If such model
is not bisimilar to M,m then we are done, so the remaining case is when
M,m has all the properties listed above.

Since by our assumption M,m is not image-�nite, there must exist a
point n reachable from m by a �nite path and having in�nitely many

a→-
children for some a ∈ Act. The set T = {tp(n′) | n

a→ n′} is an in�nite
subset of the compact space T. Modal saturation of M means that T is
closed, and so by Lemma 3.1.15 it contains a non-isolated limit type tlim

realized in some
a→-child nlim of n. Now, in order to construct another model

for t we take N that is identical toM except that:

a→
N

=
a→
M
−{(n, nlim)},

i.e. we remove the arrow
a→ leading from n to nlim.

We prove by induction on k < ω that any point n ∈ M satis�es exactly
the same formulae of modal depth k in bothM andN (and thus in particular
N ,m |= t). The base case is obvious. For the induction step, the only
interesting case is for n, as prima facie it could satisfy fewer sentences of the
form 3ϕ. However, since tlim is not isolated in T , for any ϕ ∈ tlim there must
be t′ ∈ T s.t. ϕ ∈ t′. By de�nition of T this means that there is a sibling n′

of nlim such that M, n′ |= t′ . In particular, M, n′ |= ϕ. But modal depth
of ϕ is smaller than that of 3ϕ, so we know by induction hypothesis that
N , n′ |= ϕ and hence N , n |= 3ϕ.

On the other hand, we will show that M,m 6- N ,m, as ∀dam has the
following winning strategy in the bisimulation game: (i) First follow the
path to the point n in M. If after that ∃ve responds with a point n′ ∈ N
other than n, we know thatM, n 6≡ML N , n′ (as no two di�erent points are
equivalent in N ) and so M, n 6- N , n′, which means that ∀dam can now
win the game. (ii) If ∃ve responded with the same point n ∈ N , ∀dam
moves to nlim in M. Now ∃ve has to respond with some point n′ ∈ N but
by de�nition of N she cannot choose nlim and so again M, nlim 6≡ML N , n′,
meaning that ∀dam can win the game from that point. This completes the
proof of Theorem 3.1.4.

Two-Way Models

In the case of all two-way models, we need a slight modi�cation of the
previous construction due to the fact that in such models to remove an arrow
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m→ n we also have to remove the opposite one n→−1 m.
As in the previous case, we take a modally saturated model of t ∈ TC�

where any two di�erent points have di�erent types and any point is accessible
by a �nite path (possibly using both→ and→−1) from the root. This is pos-
sible, because the class C� of two-way models is closed under both generated
submodels and quotients by bisimulations. Assume that some point n ∈ M
has in�nitely many →-children (the case with in�nitely many →−1-children
is entirely symmetric) and take the limit tlim of T = {tp(n′) | n → n′}
realized by some nlim.

We de�ne an equivalent but not bisimilar model as follows. First take
the disjoint union N ′ =M1 +M2 +M3, where eachMi is a copy ofM. We
will denote the element of Mi corresponding to n′ ∈ M by n′i. Let us also
pick any child n′ ∈M of n di�erent than nlim. Then, our model N is just N ′
without the arrow n2 → nlim2 and with two additional arrows n2 → n′1 and
n3 → nlim2 :

→N=→N ′ −{(n2, n
lim
2 )} ∪ {(n2, n

′
1), (n3, n

lim
2 )}

and →−1 modi�ed accordingly.

A picture ofM,m and N ,m1:

n

nlim

n′

n1

nlim1

n′1

n2

nlim2

n′2

n3

nlim3

n′3

The rest of the proof is analogous to the previous case. We �rst prove
by induction on k < ω that for every m′ ∈M, the modelsM,m′ and N ,m′i
satisfy the same ML-formulae of modal depth k. This boils down to checking
several straightforward cases (the one in which we use the fact that tlim was
not isolated is that with n2's →-successors).

The winning strategy for ∀dam witnessingM,m 6≡ML N ,m1 is as follows:
(i) First follow the path from m1 to n2 in N . In order not to loose, ∃ve has
to respond inM with the only point that is equivalent to n2, namely n. (ii)
Then, ∀dam moves to nlim inM and ∃ve has to respond in N with a point
non-equivalent with it, thus loosing the game.
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Note that taking three copies of the original model rather than a single
one is necessary in the above construction. This is because accessibility
means two-way accessibility, i.e. with respect to both → and →−1. Thus,
after removing the arrow n2 → nlim2 , n2 does not have to be accessible from
m2. In fact, it could actually happen that M,m - N ,m2. However, we
know that n′1 is accessible from m1 and from there we can move backwards
to n2.

Transitive Models

This is the most involved case. The key di�culty is that we cannot
simply remove any arrow, as its existence may be forced by transitivity and
presence of other arrows. Consider the following example.

Example 3.1.16. In the model below, the rightmost blue point has a copy
of ω (with the reverse order as the accessibility relation) as its children. We
assume that the model is transitive and for clarity do not draw the arrows
implied by transitivity.

· · · · ·
·

a
co
py

of
(ω
,>
)

One can check that the type tlim of the rightmost blue point is not iso-
lated among the types of its blue siblings. However, it is isolated from the
perspective of the yellow point, which in turn is isolated from the perspective
of the root. Basing on that observation it is not hard to show that any model
ML-equivalent to the one above must realize tlim in a child of its root. In
particular, this demonstrates that not every non-isolated type can be omit-
ted. Nevertheless, we will show that if the set Prop of atomic propositions
is �nite, then in the presence of a non-isolated type it is always possible to
�nd some (possibly di�erent) type that can be omitted.

Let us start with the following simple fact:

Proposition 3.1.17. Assume �nite Prop. In C→+ , �nite models are de�n-
able up to -, meaning that ifM,m is a �nite transitive model, then there is
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a modal formula θ s.t. every transitive model of θ is bisimilar to M,m. In
particular, types of �nite transitive models are always isolated in TC→+ .

Proof. Since M = m1, ...,mk is �nite, it realizes only �nitely many types
t1, ..., tk (w.l.o.g. all distinct, as otherwise we may quotient the model). Since
TC→+ is a Hausdor� space, there are mutually exclusive sentences ϕi ∈ ti
for every i. First, de�ne ψi to be the formula that describes which atomic
propositions belong to ti and which other types it sees:

∧
{τ ∈ Prop | τ ∈ ti} ∧

∧
{¬τ ∈ Prop | τ /∈ ti}

∧

2(
∨
{ϕj | mi →+ mj}) ∧

∧
{3ϕj | mi →+ mj}.

Then, we put:

θi = ψi ∧2(
∧

j∈{1,...,k}

{ϕj ⇒ ψj})

It is straightforward that θi ∈ ti. On the other hand, if N , n |= θi, then
already N , n -M,mi. Indeed, w.l.o.g. we may assume that all the points of
such N are reachable from n and then it is easy to check that: (i) the types of
all the points of N are precisely {t1, ..., tk}, (ii) the map f : N →M sending
a point with type ti to mi is a functional bisimulation. It then follows that
each type ti is isolated by its basic neighborhood 〈θi〉.

As in both previous cases, let us take a model M,m that is in�nite,
modally saturated, all the points are reachable from m and no two points
realize di�erent types, but the model is not bisimilar to a �nite one. Again,
this uses the fact that the class C→+ under consideration is closed under
generated substructures and quotients by bisimulations. It follows that the
root has in�nitely many descendants. We will need the following fact:

Lemma 3.1.18. There exists a point n∞ ∈ M s.t. n∞ →+ n∞ and its type
t∞ is a non-isolated element of {tpM(n′) | n∞ →+ n′}.

Proof. We will inductively construct a sequence of (not necessarily distinct)
points, indexed by countable ordinals (nα)α<ω1 ⊆ M with the property
that for any α < β: (i) nα →+ nβ and (ii) tpM(nβ) is not isolated in
{tpM(n′) | nα →+ n′}.

For the induction base, we simply take the root n0 = m.
For α + 1, we know by induction assumption that tpM(nα) is non-

isolated in a subset of C→+ and hence also non-isolated in C→+ . Thus,
by Proposition 3.1.17 we know that the model generated by nα has to be
in�nite (except for the base case α = 0 where the fact that m has in�nitely
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many descendants is just an assumption). Now we look at the in�nite set
Tα = {tpM(n′)| nα →+ n′} and pick some its limit: a non-isolated type
tα+1 ∈ TC→+ which, by modal saturation, is realized in some descendant
nα+1 of nα.

For a limit ordinal α, we �x a subsequence (αi)i∈ω ⊆ α of shape ω which
is co�nal with α (such subsequence exists because α is countable). Take any
limit tα of the set Tα = {tpM(nαi) | i ∈ ω}. Since tα is not isolated and TC→+

is Hausdor�, every ϕ ∈ tα must belong to in�nitely many types from Tα. It
follows that there are arbitrary big i s.t. ϕ ∈ tαi , so every nαj , and hence by
co�nality also every nβ , has a descendant satisfying ϕ. Hence, by modal sat-
uration, each nβ has a descendant realizing tα. Moreover, since inM no two
di�erent points satisfy the same formulae, the point nα realizing tα is unique.

Now we claim that nα = nβ for some α 6= β. Indeed, observe that if
n→+ n′, then n′ cannot satisfy more formulae of the form 3ϕ than n. Since
there are only countably many formulae, for su�ciently large α all tpM(nα)
may only di�er on formulae equivalent to boolean combinations of Prop. But
P(Prop) is �nite, so nα = nβ for some α < β and thus we put n∞ = nα. It
then follows from (i) that n∞ →+ n∞. Finally, (ii) implies that the type t∞
is not isolated in {tpM(n′) | n∞ →+ n′}, as desired.

Let us illustrate Lemma 3.1.18 with an example.

Example 3.1.19. The rightmost blue point in Example 3.1.16 was non-
isolated but impossible to omit. However, the model was not modally satu-
rated, as opposed tho the following one (again, for readability we skip some
arrows and assume that the accessibility relation is the transitive closure of
the depicted one):

· · ·

· ·
·

a
co
py

of
(ω
,>

)

Although the type of the rightmost blue point must be realized in every
model equivalent to this one, such point has in�nitely many (red) children,
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and among these children there exists a non-isolated point (with a loop) that
can be omitted.

Now, to �nish the proof f Theorem 3.1.6 we de�ne a new model N which
has the same universe and interpretation of atomic propositions as M and
accessibility relation obtained by removing all the arrows leading to n∞:

(→+)N = (→+)M − {(n′, n∞) | n′ ∈M}.

Observe that in M, whenever we have n →+ n∞, then the set of de-
scendants of n∞ is a subset of the descendants of n and so the type t∞ is
not isolated in {tpM(n′) | n→+ n′}. This allows us, as in the two previous
cases, to prove by induction on modal depth thatM, n ≡ML N , n for every
n ∈ M. On the other hand, n∞ is reachable from the root inM but not in
N , which gives a winning strategy for ∀dam in the bisimulation game. This
completes the proof of Theorem 3.1.6.

3.1.3 Limitations

We end with examples illustrating limitations of our method. First of
all, let us emphasize that our proofs rely on compactness of the logic under
consideration and it is not hard to come up with an example of a class C over
which ML is not compact where characterization analogous to ours fails. For
instance, consider the class CWF of all well-founded models, i.e. monomodal
models with no in�nite paths. ML is not compact over CWF and describes the
in�nitely branching Hedgehog (Example 3.1.2) uniquely. This is because the
only limit type, i.e. the type of any of the (bisimilar and hence equivalent)
points from the limit spike, is not satis�able in CWF. In particular, this lim-
its model theory for logics stronger than ML, such as its �xpoint extension
µ-ML, which can express well-foundedness.

Since non-compact logics seem out of our reach, a natural question is if
compactness is su�cient for an analogous characterization. Unfortunately,
this is not the case. The following example shows that even the stronger
assumption of �rst-order axiomatizability of the class C, which implies the
(relativized) van Benthem Theorem 3.1.13 and hence also compactness, is
not su�cient.

Recall that in the proof of Theorem 3.1.6 we used the assumption that
there are only �nitely many atomic propositions. The reader could be
tempted to think that with more atomic propositions it is easier to �nd non-
isolated points, so the theorem should be true also without that assumption.
Surprisingly, however, the condition turns out to be necessary.
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Example 3.1.20. Assume Prop = {yellow}∪{blueα | α < ω} and consider
the following modelM,m:

0 1 2 3 · · ·

where each point satis�es at most one atomic proposition: blue point with
number α satis�es blueα, the yellow one satis�es yellow and both white
ones satisfy no atomic propositions whatsoever.

We claim that every other transitive model M′,m′ satisfying the same
modal formulae must be bisimilar to the one above. To prove this, it suf-
�ces to come up with a winning strategy for ∃ve in the bisimilarity game
G-(M,M′). This is easy and so we focus on the only interesting case when
in the �rst move ∀dam chooses a point n that satis�es no atomic propositions.

First consider the case when n ∈ M, i.e. n is the upper white point
from the picture. SinceM,m, and by equivalence alsoM′,m′, satisfy 33>,
222⊥ and 22¬τ for every τ ∈ Prop, it follows that m′ must have a grand-
child n′ that has no children and satis�es no atomic propositions. Hence,
such n′ is bisimilar to n. By transitivity, grandchildren of m′ are also its
children, so n′ is a legal answer.

Second, consider the case with n′ ∈ M′. Since both M,m and M′,m′
satisfy 2(yellow ⇐⇒ 3>) and n′ does not satisfy yellow, it does not
satisfy 3> either, i.e. has no children. This means that n′ is bisimilar to the
upper white point inM, making it a winning answer and hence completing
the proof.

The above example exploits the fact that the set of atomic propositions
is in�nite. A natural question is whether one can cook up a counterexample
with �nitely many propositions. The following example shows that even if
the set Prop is empty, compactness is still not su�cient. Recall the class C∀
of universal models. It is de�nable by a single �rst-order sentence: ∀x,yx〈∃〉y.
However, consider the following modelM∈ C∀:

Example 3.1.21. M = ω + 1 = {0, 1, ..., ω}; m →M n i� m = n + 1 or
m = n = ω. We assume Prop = ∅.

ω 0 1 2 3 · · ·

Observe that M,m 6≡ML M, n for all m 6= n and so every point has in-
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�nitely many pairwise non-equivalent children with respect to the universal
modality. However, it is not hard to show that any model N ,m in C∀ equiv-
alent to M, ω must be bisimilar to it. The problem is that although the
topological part of our reasoning still works and we may �nd a limit of the
types realized inM (in fact, in this situation there is precisely one such limit
type, the type of ω) it is not possible to omit that limit type.

3.2 ML over Ordinal Models

In the previous section we have investigated bisimulational categoricity of
ML over various classes of models. In each characterization, we rely on a num-
ber of good properties of ML over the class implied by its FO-axiomatizability.
In particular, compactness and existence of saturated models are crucial,
even if in some cases deriving the characterization requires some e�ort and
Examples 3.1.20 and 3.1.21 demonstrate that sometimes these properties are
not su�cient at all.

In this section we take di�erent approach. We investigate the class of
monomodal models where the accessibility relation is a well-founded linear
order. Since every well-founded linear order is isomorphic with an ordinal,
we investigate ordinal models. More speci�cally:

De�nition 3.2.1. An ordinal model is a monomodal modelM whose uni-
verse M with the only accessibility relation → are identical to some ordinal
with descending (strict) order:

(M,→) = (κ,>)

for some κ ∈ Ord called the length ofM (recall that we identify every ordinal
with the set of all smaller ordinals). We represent suchM as a sequence of
colors:

(cα)α<κ ∈ (P(Prop))κ

and use the same additive notation as with bare ordinals: M +N denotes
the concatenation of sequencesM and N . The class of all ordinal models is
denoted COrd.

Well-foundedness is a prototypical example of a property that is not FO-
axiomatizable. Therefore, we cannot derive any desirable properties of ML
from the corresponding ones for FO the way we did before. Nonetheless,
in Theorem 3.2.3 we give a characterization similar to the previous ones:
a theory has a unique ordinal model i� it has a �nite one. Instead of us-
ing compactness of ML, the proof combines compactness of its propositional
fragment with a pumping argument. An arguably more interesting (and rela-
tively harder to prove) result is Theorem 3.2.6 characterizing compactness of
ML over COrd in terms of the number of atomic propositions: ML is compact
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over COrd i� |Prop| < ω. Both results, apart from being interesting in their
own right, demonstrate how bisimulational categoricity can be independent
from compactness. On top of that, in Theorem 3.2.12 we show that ML over
COrd has a short model property in a suitable sense.

Bisimulation-invariant properties only depend on the descendants of the
root, i.e. strictly smaller points. In order to meaningfully compare models
that do not necessarily contain a greatest element, we introduce the following
notation. Given models c = (cα)α<κ and d = (dα)α<λ:

c ∼ML d ⇐⇒ c+ e, κ ≡ML d+ e, λ

where e ∈ P(Prop) is a �xed color. That is, we require c and d to satisfy the
same modal formulae once they are both extended with a greatest element
e taken as a root. Since modal equivalence of c+ e, κ and d+ e, λ does not
depend on the speci�c choice of e, we leave it unspeci�ed. It follows that the
two conditions are equivalent:

� c ∼ML d;

� for every k < ω and �nite P ⊆ Prop:

c+ e, κ -k,P d+ e, λ.

In the light of (2.8), we usually think of the relation -k,P in terms of the
restricted k-step bisimilarity game G<ω,P- (c+e, d+e), (κ, λ, k, count). Recall

that G<ω,P- is the same game as G<ω- except that only propositions from P
are checked in the base stage. Let us use this equivalence to prove that ∼ML

is a congruence for concatenation:

Proposition 3.2.2. Assume two sequences c0, c1, ... and d0, d1, ... of models,
both of length ξ ∈ Ord, satisfying cγ ∼ML dγ for every γ < ξ. Then:

c =
∑
γ∈[0,ξ)

cγ ,∼ML

∑
γ∈[0,ξ)

dγ = d.

Proof. Fix �nite P . For every k < ω and α < |cγ |, the assumption cγ ∼ML dγ
implies existence of β < |dγ | such that cγ , α -k,P dγ , β. Symmetrically, for
every β < |dγ | and k < ω there is α < |cγ | with the same property. Denote
the lengths of c and d by κ and λ. We show that c + e, κ -k,P d, λ for all
k < ω by giving ∃ve a winning strategy from (κ, λ, k, count). The strategy
is easy: preserve the invariant that both points α and β come from cγ and
dγ′ for the same γ = γ′ and cγ , α -k,P dγ , β.

3.2.1 Bisimulational Categoricity

Let us start with an analysis of bisimulational categoricity over COrd.

64



Theorem 3.2.3. For every type t ∈ TCOrd
, the following are equivalent:

(1) t has a unique ordinal model up to -;

(2) every ordinal model of t is bisimilar to a �nite ordinal model;

(3) t has a �nite ordinal model.

Note that given pointed models c, κ and d, λ, a straightforward trans�nite
induction on max(κ, λ) reveals that c, κ and d, λ are bisimilar i� their parts
(cα)α∈[0,κ) and (dβ)β∈[0,λ) consisting of points below the root are identical.
Thus, if we require a model to be reachable from the root (i.e. require the
root to be the greatest element), which we can do without losing generality,
then we would get that t has a unique ordinal model i� all its ordinal models
are �nite i� it has a �nite ordinal model. Let us prove the theorem.

Proof. As before, the implication (2) =⇒ (3) is obvious and (3) =⇒ (1)
follows from Proposition 3.1.7 so it remains to prove (1) =⇒ (2). Assume
that t has a model c, κ that is not bisimilar to a �nite ordinal model, meaning
that κ is in�nite. It su�ces to construct a model for t not bisimilar to c, κ.
This is an immediate corollary of the following proposition.

Proposition 3.2.4 (Upper Skolem-Löwenheim for COrd). Assume a modal
type t. If t is satis�able in an ordinal model c, κ with in�nite κ then it has
ordinal models d, λ for arbitrarily big λ.

Proof. In the case of ML (or any bisimulation-invariant formalism) over a
class of models C, such result in the style of the upper Skolem-Löwenheim
Theorem is often immediate: if C is closed under (in�nite) disjoint unions the
result is trivial; if C is FO-axiomatizable then by Theorem 3.1.13 it follows
from an analogous result for FO. The class COrd is neither of the two cases,
however, so we need a separate proof. Assume c, κ |= t as in the formulation.
Without loss of generality the root is the greatest element, i.e. c = (cα)α≤κ.

Identifying every color c ∈ P(Prop) with its characteristic function χc :
Prop → {0, 1} we may view the set of all colors as a compact topological
space {0, 1}Prop. Hence, there exists a color clim ∈ P(Prop) that is a limit
of the colors (cα)α<ω. Explicitly, this means that for every �nite P ⊆ Prop
there are arbitrarily big α < ω such that χclim and χcα are equal on P .

For every ordinal ξ ∈ Ord, consider the model:

(clim)ξ = climclim...

being (ξ,>) with every point colored by clim. We claim that inserting ξ-many
copies of clim between [0, ω) and [ω, κ]:

(cα)α∈[0,ω) + (clim)ξ + (cα)α∈[ω,κ] = (dβ)β∈[0,λ] = d
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results in a modally equivalent model:

c, κ ≡ML d, λ (3.1)

regardless of the choice of ξ. The above λ is the (unique) ordinal isomorphic
to the concatenation of orders ω, ξ and [ω, κ]. Thus, taking ξ of arbitrarily big
cardinality we get arbitrarily big λ and infer Proposition 3.2.4 (and therefore
also Theorem 3.2.3) from (3.1).

The equivalence follows from (cα)α∈[0,κ) ∼ML (dβ)β∈[0,λ) because the col-
ors cκ and dλ are equal. Due to Proposition 3.2.2 it su�ces to show:

(cα)α∈[0,ω) ∼ML (cα)α∈[0,ω) + (clim)ξ.

To that end, �x �nite P ⊆ Prop and k < ω. We prove:

(cα)α∈[0,ω) + e -k,P (cα)α∈[0,ω) + (clim)ξ + e

by giving ∃ve a strategy winning from (ω, ω+ξ, k, count) in the corresponding
game.

For each α < ω+ξ, denote by c◦α = π(cα) the image under the projection
π : P(Prop) → P(P ). The set P(P ) of colors is �nite. Let x0 < ω be the
least number such that all the colors appearing �nitely often in (c◦α)α∈[0,ω)

appear below x0 and for i < ω let xi+1 be the least x < ω such that all colors
appearing in�nitely often in (c◦α)α∈[0,ω] are present in (xi, x].

This leads to the following strategy for ∃ve. She preserves the invariant
that if the current pair of points is (α, β) and there are k < ω rounds left
before the end of the game, then either (i) α = β or (ii) the points satisfy
the same atomic propositions from P , and xl < α, β. This is always possible
because by de�nition of clim, its projection π(clim) = c◦

lim
appears in�nitely

often in (c◦α)α∈[0,ω).

3.2.2 Compactness

Let us now analyze compactness of ML over COrd. It is easy to see that
if the set Prop is in�nite then the logic is not compact.

Example 3.2.5. Assume Prop = {τi | i < ω} and consider the set of modal
sentences:

t = {2(τi =⇒ 3τi+1) | i < ω} ∪ {3τ0}.

That is, for each i we require that if a point αi satis�es τi then some αi+1 < αi
satis�es τi+1, and some point satis�es the �rst τ0. It follows that t cannot
be satis�ed in a well-founded model because it would imply existence of an
in�nite descending chain α0 > α1 > ... with each αi satisfying τi.
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On the other hand, any �nite subset t0 ⊆ t is satis�able in COrd. Such
�nite t0 uses only �nitely many propositions. Let l < ω be the maximal
i for which τi appears in t0. Consider the �nite ordinal model of shape
({l + 1, ..., 0}, >) with i |= τj i� l − i = j. Such model, with l + 1 as a root,
satis�es t0. It follows that every �nite fragment of t has a model in COrd but
the entire t does not.

In�niteness of Prop is crucial in the above example. In the case of FO,
this assumption can be easily dropped: even with Prop = ∅ (which means
that ordinal models COrd = Ord are just ordinals) there exists a set of FO-
sentences whose every fragment is satis�able in Ord but the entire set is not.
FO can express �niteness of the model by saying that there is exactly one
point with no predecessor. Then, a sequence of sentences ϕ1, ϕ2, ..., with
each ϕi stating that there are at least i distinct elements, witnesses the lack
of compactness.

Somehow surprisingly, however, it turns out that in the case of ML if the
set Prop is �nite then the logic is compact over COrd.

Theorem 3.2.6. Assume that |Prop| < ω and take a set of modal sentences
t. If every �nite fragment of t is satis�able in COrd then so is the entire t.

Towards the proof, let us introduce some terminology. Consider the set:

tWF = {3ϕ =⇒ 3(ϕ ∧2¬ϕ) | ϕ ∈ ML}

of modal sentences. The meaning of this is that whenever a point has a
descendant α satisfying ϕ then there is a least β ≤ α satisfying it. Since
every subset of an ordinal model (in particular the set JϕK of points satisfying
ϕ) has the least element, every point of a model in COrd satis�es tWF.

A proto-model is a monomodal model M which is almost an ordinal
model except that the assumption of well-foundedness is weakened and we
only require tWF to be valid. That is, the accessibility relation of a proto-
model equals > for a linear order ≤ on the universe and each point satis�es
tWF. Since proto-models are closed under appending a single greatest ele-
ment, the notation ∼ML extends from models to proto-models in an obvious
way. We call a point m in a (proto-)model M modally de�nable if there is
a modal formula ϕ de�ning it in the sense that m is the unique point inM
satisfying ϕ: JϕK = {m}. We callM de�nable if all its points are de�nable.
Let us prove the following lemma.

Lemma 3.2.7. Given a proto-modelM, letMdef be its submodel with uni-
verse Mdef consisting of modally de�nable points of M and the order and
colors inherited fromM. We have:

M,m ≡MLMdef,m

for every m ∈ Mdef. In particular, Mdef is a de�nable proto-model and
M∼MLMdef.
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Proof. The proof of the equivalence proceeds by induction on the complexity
of formulae. The only nontrivial case is to show that if M,m |= 3ϕ then
also Mdef,m |= 3ϕ, as in Mdef the point m can have fewer descendants
than inM. However, sinceM is a proto-model we haveM,m |= 3ϕ =⇒
3(ϕ ∧2¬ϕ) and thus alsoM,m |= 3(ϕ ∧2¬ϕ). It follows that there must
be n < m inM which is the least point ofM satisfying ϕ. This means that
n is de�nable by the sentence ϕ ∧ 2¬ϕ and so it belongs to Mdef. Since by
the induction hypothesisMdef, n |= ϕ, we getMdef,m |= 3ϕ.

The next proposition is the key to Theorem 3.2.6.

Proposition 3.2.8. Assume that Prop < ω. Then every de�nable proto-
model is an ordinal model (i.e. is well-founded).

Let us �rst show how the theorem follows from Lemma 3.2.7 and Propo-
sition 3.2.8.

Proof. Fix �nite Prop and assume a set of modal sentences t whose every
�nite fragment is satis�able in COrd. Being a proto-model is axiomatizable
by a set of FO-sentences TWF+lin ⊆ FO: the fact that ≤ is a linear order can
be expressed by a sentence ϕlin and validity of tWF by the set of sentences
{∀x.STx(ϕ) | ϕ ∈ tWF}. Denote by T the standard translation STx[t] ⊆ FO
of t. Since every �nite fragment of t is satis�able in COrd, so is every �nite
fragment of TWF+lin∪T . By compactness of FO, this gives us a model (in the
general sense, not necessarily belonging to COrd) M satisfying TWF+lin ∪ T
with the variable x interpreted as some m ∈ M. This means that M,m
is a proto-model satisfying t. Without losing generality we assume that m
is the greatest element of M (otherwise take the induced sub-proto-model
consisting of points smaller than m).

LetM0 be the sub-proto-model ofM with m removed (i.e. M0 = M −
{m}). Using Lemma 3.2.7 we may take the de�nable sub-proto-modelMdef

0

of M0 so that M0 ∼ML Mdef
0 . In particular, M′,m |= t where M′ is the

proto-model obtained from Mdef
0 by appending back the point m as the

greatest element. By Proposition 3.2.8,Mdef
0 is well-founded and hence so is

M′. This means thatM′,m is an ordinal model satisfying t, as desired.

It remains to prove Proposition 3.2.8. We start by showing how any
formula ϕ satis�ed by a point m in a proto-modelM can be rewritten into
a linear ϕ′. The resulting ϕ′ wll be potentially stronger than the original ϕ
but still satis�ed by m. The purpose of this is to replace arbitrary modal
de�nitions with linear ones, although the translation is valid for arbitrary
formulae, not necessarily de�nitions. For convenience, we work with the
alternative syntax of ML with colors in place of of literals. Since the set Prop
is �nite, such syntax is equivalent to the original one.
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We call a modal formula ϕ linear if there is a descending chain of sub-
formulae ψ1, ..., ψl with ϕ = ψ1 and:

ψi =ci ∧2θi ∧3ψi+1 for 1 ≤ i < l,

ψl =cl ∧2θl;

where, for each i ≤ l, ci is a color and θi is an arbitrary formula. The key
property of such linear formula is that the set {ψ2, ..., ψl} of all immediate
subformulae of a 3 which are not subformulae of a 2 is linearly ordered by
the relation of being a subformula.

Satisfaction of linear formulae has a particularly simple description. Con-
sider a linear ϕ with subformulae ψ1, ..., ψl witnessing its linearity. For every
m,M,m |= ϕ is equivalent to the existence of a map h : {1, ..., l} →M such
that:

1. h(i) satis�es ci and 2θi for each i ≤ l;

2. h is strictly antitone meaning that i < j implies h(i) > h(j) and

3. h(1) = m.

Let us make formulae linear.

Proposition 3.2.9. If a point m in a proto-modelM satis�es a formula ϕ
then there is a linear ϕ′ satis�ed by m and stronger than ϕ (meaning that
every pointed proto-model satisfying ϕ′ satis�es ϕ).

Proof. Assume a pointed proto-modelM,m and a formula ϕ true at m.
We �rst show how to remove all the disjunctions that do not appear in

the scope of at least one 2 operator. If no superformula of ψ∨ψ′ ∈ SubFor(ϕ)
begins with 2 then we obtain a stronger formula that is still satis�ed in m by
appropriately choosing one of the disjuncts, ψ or ψ′, and putting it in place
of ψ ∨ψ′. The intuition is that if the only modal operators above ψ ∨ψ′ are
3's but not 2's then it su�ces to have one witness n for ψ∨ψ′ in the model;
and if n satis�es ψ ∨ ψ′ then it satis�es at least one of the disjuncts.

Formally, consider the semantic game corresponding to the evaluation
of ϕ from m. By the Adequacy Theorem 2.3.1 for ML, ∃ve has a winning
strategy σ in that game. Since no 2 appears in the (unique) path from ϕ
to ψ ∨ ψ′, whenever a σ-play π reaches a position of shape (n, ψ ∨ ψ′) then
all the ∀dam's choices in π are propositional and thus they are all encoded
in the subformula ψ ∨ ψ′ itself. Consequently, there is at most one σ-play π
ending in ψ ∨ ψ′. The strategy wins by picking either ψ or ψ′ after that π.
Hence, if we remove the other disjunct the same σ will witnesses that ∃ve
wins the semantic game for the resulting formula. We call such removal of
not-boxed disjunctions dedisjuncti�cation.
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Consider two rewriting rules:

2χ ∧2χ′ 7→ 2(χ ∧ χ′)
3χ ∧3χ′ 7→ 3(χ ∧ χ′) ∨3(χ ∧3χ′) ∨3(3χ ∧ χ′).

Both rules produce semantically equivalent formulae. The �rst one is valid
over arbitrary models. The second one exploits linearity of the accessibility
relation <: if m has descendants n satisfying ψ and n′ satisfying ψ′ then these
descendants are either equal or ordered and the three disjuncts correspond
to the three possible cases n = n′, n′ < n and n < n′.

Using the two above rules and dedisjuncti�cation we turn ϕ into the
desired linear form. Starting from k = 1, after the k-th step we want to have
ψ1, ..., ψk with ϕ = ψ1 and ψi = ci ∧ 2θi ∧ 3ψi+1 for all 1 ≤ i < k. That
is, ϕ is almost linear except that the last ψk can be arbitrary. Initially, the
condition is trivial with k = 1 and just one ψ1 = ϕ.

Assume that after the k-th step we have the mentioned ψ1, ..., ψk. It
su�ces to rewrite the deepest ψk into ck ∧2θk ∧3ψk+1 with arbitrary ψk+1.
By dedisjuncti�cation, we may remove all the disjunctions from ψk so that
it becomes a conjunction χ1 ∧ ...∧ χd of colors and formulae beginning with
3 and 2. Without loss of generality, at least one conjunct begins with a
2 (otherwise we can add 2> which is equivalent to >) and precisely one
color (conjunction of at least two di�erent colors is inconsistent and if there
are no colors then we could take a disjunction of all the colors and apply
dedisjuncti�cation to pick precisely one of them). Hence, we get a formula of
the form ck∧2χ2

1 ∧...∧2χ2
m∧3χ3

1 ∧...∧3χ3
n . Using the �rst rule we replace

all 2χ2
1 ∧ ... ∧ 2χ2

m with a single 2(χ2
1 ∧ ... ∧ χ2

m) = 2θk+1. If no conjunct
begins with 3 the entire procedure terminates and if there is exactly one
3χ3

1 we are done with the k + 1-st step putting ψk+1 = χ3
1 . Otherwise,

for every pair of conjuncts beginning with 3 we (i) use the second rule to
replace it with a disjunction 3ξ1 ∨ 3ξ2 ∨ 3ξ3 of three formulae beginning
with 3 and immediately (ii) dedisjunctify to get just one 3ξ1,3ξ2 or 3ξ3.

It remains to prove that the rewriting terminates. The second rewriting
rule can increase the nesting of the 3 operators. However, since every its
application is followed by dedisjuncti�cation, the overall number of 3 op-
erators in the formula never increases and after the k + 1-st step the last
formula ψk+1 has strictly less 3's than ψk after k-th step. Thus, the pro-
cedure terminates after at most |ϕ| steps, bringing ϕ into the desired linear
form.

We �nish the proof of Proposition 3.2.8 and hence also Theorem 3.2.6.

Proof. Assume a de�nable proto-model M over Prop. Each point m in M
comes with a modal formula ϕ de�ning it. Thanks to Proposition 3.2.9 we
assume that all these de�nitions are linear.
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Assume towards contradiction thatM is not well-founded: there exists
an in�nite descending chain m1 > m2 > ... in M. For each mi with a
linear de�nition ϕ presented as ψ1, ..., ψl let wi = c1...cl ∈ (P(Prop))∗ be the
consecutive colors from the sequence. This way, we get an in�nite sequence
of �nite words w1, w2, ... over Γ = P(Prop). Consider the binary subsequence
relation �ss on Γ∗ de�ned as d1...dm �ss e1...en i� there is a subset i1 <
... < im of positions 1, ..., n such that d1...dm = ei1 ...eim . By the famous
result known as Higman's Lemma [17, Theorem 4.3], Γ∗ equipped with �ss

is a well-quasi-order meaning that every in�nite sequence v1, v2, ... in Γ∗

contains a pair v = vi and v′ = vj such that that v �ss v
′ and i < j. In

particular, our sequence w1, w2, ... contains such a pair. This means that
there are points m > m′ in the sequence with linear de�nitions ϕ and ϕ′

whose corresponding words w and w′ satisfy w �ss w
′. Let h : {1, ..., l} →M

and h′ : {1, ..., l′} →M be the antitone maps witnessing that the two points
satisfy ϕ and ϕ′. By w �ss w

′, there exists a subsequence i1 < ... < il of
1, ..., l′ such that cj = c′ij for all j ≤ l. Consider the map h′′ : {1, ...l} → M
given by:

h′′(j) = min(h(j), h′(ij))

for every j. By monotonicity of min, such h′′ is strictly antitone. For all
j ≤ l, h(j) and h′(ij), and therefore also h′′(j), have the same color cj .
Moreover, the meaning of any formula beginning with a 2 is a downward
closed subset of M , so h(j) |= 2θj and h′′(j) ≤ h(j) imply h′′(j) |= 2θj . It
follows that the map h′′ is a witness for h′′(1) |= ϕ. However:

h′′(1) ≤ h′(i1) ≤ h′(1) = m′ < m

contradicting the assumption that m is the unique point satisfying ϕ.

3.2.3 Short Model Property

In the remaining part of this section we investigate what we call a short
model property: if a modal theory t has an ordinal model then it has one that
is not very long. Since well-foundedness is preserved under taking submodels,
the de�nable submodel of any given model from COrd belongs to COrd as well.
Given any ordinal model we can always take away the root, pick a de�nable
submodel of the remaining part and plug the root back. Hence, Lemma 3.2.7
implies that any t satis�able in COrd is satis�ed in a model where every
point is de�nable, with a possible exception for the root. Since the size of
a de�nable model is not greater than the number of formulae we get the
following proposition, complementary to Proposition 3.2.4, as a corollary.

Proposition 3.2.10 (Lower Skolem-Löwenheim for COrd). Assume a modal
theory t satis�able in COrd. The theory has an ordinal model of cardinality
not greater than max(ω, |Prop|).
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Ordinal models come equipped with ordinal-valued length, a more �ne-
grained measure than the cardinal-valued size. With in�nite Prop, the above
proposition is already optimal for such length: for arbitrary ordinal κ ∈ Ord
there is an ordinal model of length κ + 1 over |Prop| = |κ| with no shorter
modally equivalent ordinal model. Take the set Prop = {τα | α < κ} and an
ordinal model cκ, κ of shape κ+ 1 where a point α satis�es τβ i� α = β. It is
easy to see that any model modally equivalent to cκ, κ has it as a submodel.

With �nite Prop more can be said. For a more precise analysis, for
the rest of this section we will refer to the number of colors instead of the
number of propositions. With k atomic propositions there are 2k colors, but
it is insightful to look at models with l colors for l that is not necessarily
a power of 2. The following example gives a lower bound on the length of
models.

Example 3.2.11. For every 1 ≤ k < ω consider colors c1, c2.... We induc-
tively de�ne sequences w0, w1, ...:

w0 = ε

wk+1 = (wk + ck+1)ω.

For each k < ω, wk uses colors c1, ..., ck, has length ωk and there is no
sequence d shorter than that with wk ∼ML d. The last property follows from
the invariant that every point α in each sequence wk is modally de�nable.
Such invariant implies the property because in any d ∼ML wk the points β
and β′ satisfying the respective de�nitions ϕ and ϕ′ of α and α′ from wk
must have the same order as α and α′.

An arguably more interesting part is the following upper bound matching
the above lower one.

Theorem 3.2.12 (Short Model Property). Assume a modal theory t over
k < ω colors satis�able in COrd. The theory has an ordinal model of length
at most ωk + 1.

Proof. It su�ces to show that for every c over k colors there is d of length
at most ωk with c ∼ML d. We prove that by induction. The base step with
k = 0 is trivial, as the only sequence over the empty set of colors is the
empty one ε. Assume the claim is true for k and take a model c = (cα)α<κ
over k + 1 colors. For every i < ω inductively de�ne:

α0 = 0

αi+1 = (if it exists) the least α such that all the colors appear in (αi, α].

Let z denote either ω if there are in�nitely many αi's or i + 1 if αi is the
greatest one. Put: ⋃

i<z

[0, αi) = (cα)α<κ′ = c′.

72



We claim that:

c ∼ML c
′. (3.2)

This is nontrivial only with z = ω as otherwise c = c′. If z = ω we prove
the equivalence by showing that d + e -n d + e for all n < ω. To that end,
we give ∃ve a winning strategy in the game G<ω- (c, c′) from (κ, κ′, n, count).
The strategy is easy: preserve the invariant that if the current points are
(α, α′) and there are l rounds left then either α = α′ or the points have the
same color and αl < α,α′.

Denote Ii = (αi, αi+1) if i+ 1 < z and Ii = (αi, κ] if i+ 1 = z. Each ci =
(cα)α∈Ii contains at most k colors. Thus, by the induction hypothesis there
exists di of length κi ≤ ωk such that ci ∼ML di. Applying Proposition 3.2.2
we get:

c′ =
∑
i<z

(cαi + ci) ∼ML

∑
i<z

(cαi + di) = d

which, together with (3.2), leads to:

c ∼ML d.

Since the length of d is:∑
i<z

(1 + κi) ≤
∑
i<z

(1 + ωk) =
∑
i<z

ωk ≤ ωk+1,

this completes the proof.
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Chapter 4

Countdown µ-calculus

The modal µ-calculus has a number of desirable properties such as simple
syntax and a tight (and e�ective) connection with simple parity games and
automata, which make it a convenient formalism to study. At the same
time, the logic is rather expressive: it can de�ne all bisimulation-invariant
properties de�nable in monadic second-order logic (MSO) [20, Theorem 11],
such as �there is an in�nite path of a-labeled edges�. However, there are some
properties of interest which are not de�nable even inMSO. Notable examples
include (un)boundedness properties such as �for every number n, there is a
path with at least n consecutive a-labeled edges�. An extension of MSO
called MSO+U, aimed at de�ning such properties, has been considered [8].
However, the satis�ability problem of MSO+U turned out to be undecidable
even for word models [6, Theorem 1.1]. Since the modal µ-calculus is a
fragment of MSO, it is worthwhile to extend it with a mechanism for de�ning
(un)boundedness properties, in the hope of retaining decidability.

Countdown µ-calculus. In this chapter we investigate such an extension:
the countdown µ-calculus µ<∞-ML. In addition to µ-calculus operators, it
features countdown operators µα and να parametrized by ordinal numbers
α. Instead of least and greatest �xpoints, they de�ne ordinal approxima-
tions of those �xpoints. Intuitively, while the meaning of classical µ-calculus
formulae µx.ϕ(x) and νx.ϕ(x) is de�ned by in�nite unfolding of the formula
ϕ until a �xpoint is reached, for µαx.ϕ(x) and ναx.ϕ(x) the unfolding stops
after α steps (which makes a di�erence if α is smaller than the closure ordi-
nal of ϕ). The classical �xpoint operators are kept but renamed to µ∞ and
ν∞, to make clear the lack of any restrictions on the unfolding process.

Countdown Games. An inductive de�nition of the semantics of count-
down formulae is just as straightforward as in the classical case. With some
more e�ort games are adapted to such countdown setting as well. We present
countdown games which are similar to simple parity games known from the
classical setting, but are additionally equipped with counters that are decre-
mented and reset by the two players according to speci�c rules. We �rst
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describe games corresponding to �xpoint approximations Fαµ and Fαν with
α smaller than ∞. The new games for Fαµ and Fαν extend the ones for the
�xpoints F∞µ and F∞ν with a single counter. We illustrate the modi�cation

with the full bisimilarity - and its depth-k variant -k. The same way as
the game characterizing - is derived as an instance of a �xpoint game, in
Example 4.1.3 we derive the game for -k as an instance of our �xpoint-
approximation game.

The general countdown games are introduced as a nested version of these
for �xpoint approximations Fαµ and Fαν , similarly to simple parity games
being a nested version of games for the �xpoints F∞µ and F∞ν .

Countdown Automata. Countdown games give raise to the notion of
countdown automata. Countdown automata extend the usual parity au-
tomata with counters: the semantic games they induce are countdown games
rather simple parity ones. The correspondence between countdown formulae
and such countdown automata and games is as tight as for the classical µ-
calculus. E�ective language-preserving translations from logic to automata
and back are described in the respective Subsections 4.4.1 and 4.4.2.

Vectorial vs Scalar Calculus. The threefold correspondence between
logic, games and automata lifts to the countdown setting. However, compli-
cations arise: the distinction between vectorial and scalar formulae, which
in the classical case disappears to a large extent due to the Beki¢ princi-
ple (2.9), now becomes pronounced. While it is relatively easy to come up
with a counterexample to a countdown version of the Beki¢ principle, this
does not exclude possibility of another completely di�erent translation. In
Theorem 4.6.2 we show that vectorial countdown calculus is indeed more
expressive than its scalar fragment.

Stacked Counters. We further introduce automata with stacked counters.
With countdown automata, all the modi�cations to the counter values are
inherently entangled with the visited ranks. Automata with stacked counters
are an alternative automata model where the counters can be manipulated
according to explicit instructions given by the transition function. Unlike
with countdown automata, such instructions are independent from the ranks.
To maintain the hierarchical character of the countdown, we choose a syntax
that guarantees it by design: a stack of counters. Such alternative model, as
well as e�ective language-preserving translations, are given in Section 4.7.

Countdown Complexity. We analyze complexity of de�nable languages.
Given a language L de�nable in µ<∞-ML, one can ask about the minimal
nesting of the countdown operators required in a formula to de�ne L. An-
other number related to L is the least stack height necessary for an automa-
ton with stacked countdown to recognize L. We also introduce a syntactic
parameter for countdown automata called countdown depth. Countdown
depth leads to yet another measure of complexity: the least countdown
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depth necessary to recognize the language. Theorem 4.7.8 says that the
three measures all coincide. The resulting parameter of L is called its count-
down complexity. This strati�es languages into a countdown hierarchy of
classes with greater and greater complexity. In Theorem 4.8.1 we show that
under mild assumptions such hierarchy is strict.

Decidability Issues. Over �nite models, the countdown operators do not
introduce any new expressive power to µ-ML. This makes the (�nite) model
checking problem for µ<∞-ML decidable but also less interesting. An ar-
guably more interesting question here is that of satis�ability. We formulate
Conjecture 4.9.2 according to which the satis�ability problem is decidable
for the full logic µ<∞-ML. Unfortunately, the lack of positional determinacy
in countdown games prevents us from using proof techniques known from
parity automata (where one can transform an alternating automaton into
a nondeterministic one that guesses the positional strategy). Still, we use
automata to solve the logic in a special case: Büchi automata and in�nite
words. These are countdown automata with only two ranks r∀ > r∃. The-
orem 4.9.5 says that satis�ability of Büchi automata over in�nite words is
decidable.

The full Conjecture 4.9.2 remains open. Nevertheless, the existence of an
automata model equivalent to logic is encouraging. Apart from allowing us
to solve some fragments of the logic, it implies that µ<∞-ML does not share
some of the troublesome properties of MSO + U that result in undecidability.
In particular, it can be used to show that all languages de�nable in µ-ML
have bounded topological complexity (i.e. at most Σ1

2, see [30] for an introduc-
tion to topological complexity in computer science). Since MSO + U de�nes
a Σ1

n-complete language for every n < ω [18, Theorem 5.1], by [30, Theo-
rem 7], it follows that some MSO + U-de�nable languages are not expressible
in µ<∞-ML (whether µ<∞-ML-de�nability implies MSO + U-de�nability re-
mains an open question). Since by [10, Theorem 1.3] every logic closed under
boolean combinations, projections and de�ning the language from Exam-
ple 4.2.5 contains MSO + U, this means that our calculus is not closed under
projections and as a consequence does not have an equivalent nondeterminis-
tic automata model. This is an arguably good news, as in light of [5, Theorem
1.4], giving up closure under projections is the only way to go if one wants to
design a decidable extension of MSO closed under boolean operations. De-
cidability of the weak variant WMSO + U of MSO + U over in�nite words [3]
and in�nite (ranked) trees [7] shows that such extensions are possible. In
fact, both results are obtained by establishing a correspondence with equiv-
alent automata models, namely deterministic max-automata [3, Theorem 1]
and nested limsup automata [7, Theorem 2]. Since the existence of accepting
runs for such automata can be expressed in µ<∞-ML, we get that µ<∞-ML
contains WMSO + U on in�nite words and trees. The opposite inclusion is
false (due to topological reasons), at least for the trees. The relation between
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µ<∞-ML and the ω-B-, ω-S- and ω-BS-automata of [9] remains unclear, as
these models do not admit determinization. Also, the relation between our
logic and regular cost functions (see e.g. [12]) is less immediate than it could
seem at �rst glance and requires further research.

History and Credits. The key mechanism of countdown games is im-
plicit in [15], where the authors investigate a nonstandard semantics for the
scalar fragment of the µ-calculus equivalent to replacing every µ and ν by
our countdown operators µα and να, respectively. However, the authors
did not abstract from formulae in their de�nition of games, nor consider
the full vectorial calculus that corresponds to automata. Countdown logic,
automata and games in its mature form were introduced in [23] and the ma-
terial presented in this chapter is an extended version of it. There are two
notable exceptions: Section 4.7 and Subsection 4.9.1 present an entirely new
material.

4.1 Games for Fixpoint Approximations

We have seen in Subsection 2.2.3 how the least �xpoint LFP.f and the
greatest �xpoint GFP.f of a given monotone operation f : P(X) → P(X)
can be characterized with games Gµ(f) and Gν(f), respectively. According to
the Knaster-Tarski Theorem 2.1.1, these �xpoints are computed as limits f∞µ
and f∞ν of (trans�nite) sequences (fαµ )α∈Ord and (fαν )α∈Ord of their respective
approximations. We start this chapter showing how the De�nition 2.2.7
of �xpoint games can be modi�ed to characterize these approximations of
�xpoints. The idea is that Gµ(f), x is a reachability game and so ∃ve is
supposed to show that x belongs to f∞µ in �nitely many steps. In case of fαµ
∃ve's job should be even harder, as she is supposed to show that x is already
included in the α-th approximation fαµ ⊆ f∞µ of the �xpoint. To capture
this intuition we enrich the game with a counter storing an ordinal value.
At the beginning of each round ∃ve will decrement the counter and in case it
reaches 0 she will loose. Symmetrically, to characterize fαν we enrich Gν(f)
with a counter decremented by ∀dam.

De�nition 4.1.1. Fix a monotone f : P(X)→ P(X). The games G<∞µ (f)
and G<∞ν (f) are played in three-step rounds.

1. the owner of the counter, which is ∃ve in case of µ and ∀dam in case
of ν, chooses a new counter value β < α smaller than the current value
α (in particular, if α = 0 the player is stuck and looses);

2. from the current position x ∃ve chooses Y ∈ P(X) such that x ∈ f(Y );

3. ∀dam chooses y ∈ Y and the next round starts from y with counter
value β.
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Formally:
Conf = X × Ord× {cdn, psn} ∪ P(X)× Ord

and:

Mov ={((x, α, cdn), (x, β, psn)) | β < α} ∪
{((x, α, psn), (Y, α)) | x ∈ f(Y )} ∪
{((Y, α), (x, α, cdn)) | x ∈ Y }.

Con�gurations in X×Ord×{psn} always belong to ∃ve, these in P(X)×Ord
always belong to ∀dam and the ones from X × Ord × {cdn} belong to ∃ve
in case of µ and to ∀dam in case of ν. Since at each round the counter
decreases, by well-foundedness of Ord there are no in�nite plays and so the
winning condition is insubstantial. We will write Gαµ and Gαν to denote games
with a default initial counter value α ∈ Ord.

The game is designed so that it captures the approximations of �xpoints
in analogy to Theorem 2.2.8.

Theorem 4.1.2. For every x ∈ X and α ∈ Ord:

1. ∃ve wins G<∞µ (f) from (x, α, cdn) i� x ∈ fαµ .

2. ∃ve wins G<∞ν (f) from (x, α, cdn) i� x ∈ fαν .

Proof. The proof proceeds by immediate trans�nite induction on α. Assume
that the claim is true for all β < α. For both η = µ and η = ν, it follows
from the respective items of Proposition 2.2.9 that ∃ve has a strategy for
the round starting at (x, α, cdn) only leading to winning con�gurations i�
x ∈ fαη .

We have illustrated the game characterization of �xpoints from Theo-
rem 2.2.8 with Example 2.2.10. Using the theorem we have derived adequacy
(2.2) of the bisimulation game G-(M,M′) from the fact that bisimilarity -
is the greatest �xpoint of the operation BIS : P(M×M ′)→ P(M×M ′). Let
us now demonstrate how an analogous characterization for depth-k bisimi-
larity -k follows from Theorem 4.1.2.

Example 4.1.3. We show that adequacy (2.3) of the game G<ω- (M,M′) for
depth-k bisimilarity -k follows from Theorem 4.1.2. To that end, observe
that for all k < ω the relation -k+1 is precisely BIS(-k). Since -0 is the full
relation it follows that:

-k= BIS
k
ν

for all k < ω. Hence, the theorem implies that ∃ve wins G<∞ν (BIS) from
(m,m′, k, cdn) i� m -k m′. Therefore, to prove (2.3) it su�ces to show:

G<∞ν (BIS), ((m,m′), k, cdn) ./ G<ω- (M,M′), (m,m′, k, count) (4.1)

for all m ∈M,m′ ∈M ′ and k < ω.
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Proof. To prove the equivalence, �rst we relax the de�nition of G<ω- so that in
the countdown step count instead of a deterministic decrement of the counter
(leading from k to k − 1 or to ∃ve's victory in case of value 0) we ask ∀dam
to choose its new smaller value. Since bigger values are always better for
∀dam, such modi�cation does not change the winner of the game. Moreover,
after such a relaxation there is nothing special about �nite numbers and we
may generalize G<ω- by allowing the counter to take arbitrary ordinal values.

Denote such generalized game by G<∞- . Because the counter value never

increases, if G<∞- starts with �nite one it is equivalent to the original game

G<ω- initialized in the same con�guration. Hence, for (4.1) it su�ces if we
prove:

G, ((m,m′), α, cdn) ./ G′, (m,m′, α, count) (4.2)

for all m ∈M,m′ ∈M ′ and α ∈ Ord where:

G = G<∞ν (BIS) and G′ = G<∞- (M,M′).

Towards the use of the Decomposition Lemma 2.2.5 we view both G and G′
as parity games in a similar fashion as in Example 2.2.10: we assign the same
rank belonging to ∀dam to all the con�gurations. Note that in this case the
assignment of ranks is purely technical and does not matter for the games as
neither game allows for in�nite plays. It re�ects, however, that ∀dam wants
to end the game within as few rounds as possible. Consider con�gurations
S+ ⊆ Conf and S ′+ ⊆ Conf ′ from which each round starts i.e.:

S+ = (M ×M ′)×Ord×{cdn} and S ′+ = M ×M ′×Ord×{count}.

With such rank functions we apply the Decomposition Lemma 2.2.5 (substi-
tuting S = ∅) and deduce (4.2) from:

G, ((m,m′), α, cdn) ./S+ G′, (m,m′, α, count)

where S+ ⊆ S+×S ′+ is the relation that links con�gurations ((m,m′), α, cdn)
and (m,m′, α, count) that have the same points and counter value:

S+ = {(((n, n′), α, cdn), (n, n′, α, count)) | n ∈M, n′ ∈M ′, α ∈ Ord}.

Since both games start with ∀dam choosing a new counter value β < α and
the stage changes to psn and base, respectively, it su�ces if we prove:

G, ((m,m′), β, psn) ./S+ G′, (m,m′, β, base).

This follows from composing:

G, ((m,m′), β, psn) ./Sβ Gν(BIS), (m,m′)

./R G-, (m,m′, base)

./S′β G
′, (m,m′, β, base)
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where:

Sβ = {(((n, n′), β, cdn), (n, n′)) | n ∈M, n′ ∈M ′},
R = {((n, n′), (n, n′, base)) | n ∈M, n′ ∈M ′},
S′β = {((n, n′, base), (n, n′, β, count) | n ∈M, n′ ∈M ′}.

The �rst equivalence follows from the observation that the counter will not
be modi�ed before G stops; similarly with the third equivalence and G′. The
middle one is (2.7). The composition:

Sβ ◦R ◦ S′β = {(γ, γ′) ∈ S+ | the counters have value β}

is precisely S+ restricted to con�gurations with counter value β. Since all
the con�gurations accessible in G and G′ before stopping have unchanged
counter value equal to β, this completes the proof.

Note that although we mostly focus on �nite-depth bisimilarity, depth-α
bisimilarity for arbitrary (�nite or in�nite) ordinal α could be de�ned as:

-α= BIS
α
ν .

Then, the above proof shows that such a relation is characterized with
G<∞- (M,M′):

∃ve wins G<ω- (M,M′), (m,m′, α, count) ⇐⇒ M,m -αM′,m′.

for all α ∈ Ord.

Interestingly enough, history comes full circle here. Initially, -ω was con-
sidered as a candidate for the notion capturing behavioral equivalence [28].
When - was introduced it replaced the more complicated -k. Now, we re-
turn from the smooth theory of �xpoints and related games back to their
approximations in the hope of broadening our understanding.

4.2 Countdown Logic

We now introduce the countdown µ-calculus µ<∞-ML. We begin with
the scalar version.

4.2.1 The Scalar Fragment

As before, �x an in�nite set Var of variables and a set Act of actions.
The syntax of (scalar) countdown µ-calculus is de�ned as follows:

ϕ ::= > | ⊥ | τ | ¬τ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | x | µαx.ϕ | ναx.ϕ (4.3)
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with τ ∈ Prop, a ∈ Act, x ∈ Var and α ∈ Ord∞; the presence of ordinal
numbers α is the only syntactic di�erence with the standard µ-ML.

The semantics of countdown formulae is de�ned inductively the same
way as for the standard µ-ML with the only di�erence that µα and να are
interpreted as Fαµ and Fαν instead of F∞µ and F∞ν :

J>Kval = M and J⊥Kval = ∅
JτKval = τM and J¬τKval = M − τM

Jϕ1 ∨ ϕ2Kval = Jϕ1Kval ∪ Jϕ2Kval and Jϕ1 ∧ ϕ2Kval = Jϕ1Kval ∩ Jϕ2Kval;

J〈a〉ϕKval = {m ∈M | ∃
m

a→n
n ∈ JϕKval} and J[a]ϕKval = {m ∈M | ∀

m
a→n

n ∈ JϕKval}
JxKval = val(x)

Jµαx.ϕKval = Fαµ and Jναx.ϕKval = Fαν

where in the last clause F (H) = JϕKval[x 7→H].

This contains the classical µ-calculus, with µ∞ and ν∞ being just the
ordinary µ and ν �xpoint operators. However, µ<∞-ML is capable of cap-
turing boundedness and unboundedness properties which are not expressible
in the classical setting:

Example 4.2.1. For |Act| = 1, consider the formula µαx.2x and compare
it to the �xpoint formula µx.2x from Example 2.4.1. The semantics of both
formulae in a modelM are obtained by iterating the same map:

H
F7→ {m ∈M | ∀m→n. n ∈ H}.

The only di�erence is that in the case of µ the map is iterated until reaching
a �xpoint F∞µ , whereas with µω the process stops after ω steps with Fωµ .
For α < ω the set Fαµ consists of the points from which there is no path
longer than α. Hence, Jµωx.2xK = Fωµ is the set of all points for which there
exists a �nite bound on the lengths of paths starting there. Example 2.1.2
illustrates that.

4.2.2 The Vectorial Calculus

The (full) countdown µ-calculus is de�ned as for its scalar fragment,
except that �xpoint operators act on tuples (vectors) of formulae rather
than on single formulae.

De�nition 4.2.2. The syntax of countdown µ-calculus is given as follows:

ϕ ::= > | ⊥ | τ | ¬τ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | x | µαi x.ϕ | ναi x.ϕ

where τ ∈ Prop, a ∈ Act, x ∈ Var and α ∈ Ord∞ as in the scalar fragment and
additionally 1 ≤ i ≤ d < ω with x = 〈x1, ..., xd〉 ∈ Vard and ϕ = 〈ϕ1, ..., ϕd〉
being d-tuples of variables and formulae, respectively.
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De�nition 4.2.3. The meaning JϕKval ⊆ M of a formula ϕ in a model M
under valuation val is de�ned by induction the same way as for the scalar
formulae except for the operators µαi and ναi , in which case:

Jµαi x.ϕKval = πi(F
α
µ ) and Jναi x.ϕKval = πi(F

α
ν )

where the monotone map F : (P(M))d → (P(M))d is given as:

F

H1
...
Hd

 =

Jϕ1Kval
′

...

JϕdKval
′


for val′ = val[x1 7→ H1, ..., xd 7→ Hd] and πi : (P(M))d → P(M) is the i-th
projection.

Note that operators µ∞ and ν∞ are equivalent to µ and ν from the
classical µ-calculus. Furthermore, for every ordinal α, the formula µα+1

i x.ψ
is equivalent to:

ψi[x1 7→ µα1x.ψ, . . . , xd 7→ µαdx.ψ]

and similarly for να+1. As a result, without loss of generality we may assume
that in countdown operators µα and να only limit ordinals α are used.

The countdown µ-calculus is semantically closed under negation in the
same way as the classical calculus: for every formula ϕ one can construct ϕ̃
dual to ϕ, meaning that:

Jϕ̃Kval = M − JϕKṽal

for every modelM and valuations val and ṽal such that ṽal(x) = M − val(x)
for all x ∈ Var. The standard inductive de�nition is then extended with
straightforward:

µ̃αi x.ϕ = ναi x.ϕ̃ and ν̃αi x.ϕ = µαi x.ϕ̃.

Example 4.2.4. Consider the formula µωx.2x from Example 4.2.1 de�ning
boundedness. It follows that its dual µ̃ωx.2x = νωx.3x is true at a point if
there are arbitrarily long paths starting there. Since the formula µx.2x from
Example 2.4.1 describes well-foundedness, the conjunction νωx.3x ∧ µx.2x
is true at a point i� there are arbitrarily long paths starting there but no
in�nite one. Although such a formula is satis�able, for example in The
Hedgehog from Example 3.1.2, it follows by the König's Lemma that every
its model must be in�nite. This demonstrates that, unlike µ-ML, µ<∞-ML
does not have the �nite model property.

In Section 4.6 we will compare the expressive power of the vectorial and
scalar countdown µ-calculus in detail. For now, let us show that the Beki¢
principle (2.9) fails for countdown operators:
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Example 4.2.5. An in�nite word W ∈ Γω over the alphabet Γ = {a, b}
can be seen as a model for Act = Γ with ω as the set of points and with
transition relations de�ned by:

n
a→ m ⇐⇒ m = n+ 1 and Wn = a.

For every regular language K ⊆ Γ∗ and x ∈ Var, it is straightforward to
de�ne a �xpoint formula (in the classical µ-calculus, so without countdown
operators) 〈K〉x that holds in a point n, for a valuation val, if and only if
there exists a word w ∈ K and a path in W labelled with w that starts in n
and ends in a point that belongs to val(x). Then, the formula:

ϕ = νω1 (x1, x2).(〈Γ∗〉x2, 〈a〉x2)

is true in a word W i� it contains arbitrarily long blocks of consecutive a's.
To see this, observe that at the i-th step of approximation: (i) the second
component (x2) contains a point n i� the next i transitions are all labelled
with a, and (ii) the �rst component (x1) contains a point n i� the second
component contains at least one point after n.

However, the following scalar formula constructed by analogy to the Beki¢
principle:

ψ = νωx1.〈Γ∗〉(νωx2.〈a〉x2)

is equivalent to 〈Γ∗〉(νωx2.〈a〉x2), and the formula under 〈Γ∗〉 holds in a
point i� all the future transitions from that point are labelled with a. Thus,
ψ holds (in any point) i� the word W is of the form Γ∗aω, and so ψ is not
equivalent to ϕ.

Let us emphasize that the above counterexample to a principle analogous
to the Beki¢ rule relies on the fact that the index ω in the operator νω is an
ordinal, not ∞. The operators µα and να with α =∞ are ordinary �xpoint
operators and so the principle (2.9) allows us to rewrite every countdown
formula to a form where the only non-scalar operators are µα and να with
α 6=∞.

A number of good properties of µ-ML comes from the tight connection
between logic, games and automata. As it turns out, such a threefold corre-
spondence can be lifted to the countdown setting if we appropriately modify
the de�nition of a parity game and then consider countdown automata arising
from such countdown games.

4.3 Countdown Games

To match with the classical µ-ML we needed a parity winning condition:
the logic involving nesting of �xpoint operators corresponds to the parity
condition thought of as a nested safety/reachability condition. The count-
down calculus µ<∞-ML allows for nesting of countdown operators µα and
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να. Since the semantics of each such ηα is captured by respective game G<∞η
featuring a single counter, this naturally leads to the notion of countdown
games extending simple parity games with multiple counters. The counters
are organized in a hierarchical manner re�ecting the hierarchical character
of nesting.

Intuitively, the counters say how many more times various ranks can be
visited, in similar manner to the signatures introduced by Walukiewicz [38,
Section 3]. A player responsible for decrementing a counter may lose the
game if the value of that counter is zero, just as a player responsible for
�nding the next position in a game may lose if there is no position to go to.

De�nition 4.3.1. Syntactically, a countdown game is given as a tuple
(V,E, rank, ctrI) such that (V,E, rank) is a simple parity game and ctrI :
D → Ord is a map from a subset D ⊆ R of ranks to ordinals. We call ctrI
the initial counter assignment and the set D nonstandard ranks of the game.
The idea is that nonstandard ranks have associated counters and at positions
with such ranks countdown will occur.

Explicitly, a countdown game assumes:

� a set V = V∃ t V∀ of positions,

� an edge relation E ⊆ V × V , and

� a rank function rank : V → R for a �xed �nite linear order R =
R∃ tR∀.

In addition, we �x:

� a subset D ⊆ R of nonstandard ranks and

� an initial counter assignment ctrI : D → Ord.

Unlike with simple parity games, con�gurations of a countdown game
are not identi�ed with its mere positions. Each con�guration consists of a
position v ∈ V , a counter assignment ctr : D → Ord, and a bit of information
from the set {cdn, psn}: 1

Conf = V × OrdD × {cdn, psn}.

The last component encodes one of the two possible kinds of con�gurations,
called countdown and positional con�gurations. Positional con�gurations
(v, ctr, psn) are owned by the owner of v, and countdown ones (v, ctr, cdn) by
the owner of its rank rank(v). The possible moves Mov ⊆ Conf × Conf are
given as follows:

1A reader concerned about set-theoretic issues can modify the above de�nition by

replacing arbitrary counter assignments OrdD with only those that have all values bounded

by the initial ones {ctr ∈ OrdD | ctr ≤ ctrI} so that Conf is a proper set. Since only the

latter assignments are reachable, the two de�nitions are equivalent.
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� From a countdown con�guration (v, ctr, cdn), the owner of r = rank(v)
chooses a counter assignment ctr′ such that:

� ctr′(r′) = ctrI(r
′) for r′ < r,

� ctr′(r) < ctr(r) (if r is nonstandard),

� ctr′(r′) = ctr(r′) for r′ > r,

and the game proceeds from the positional con�guration (v, ctr′, psn).

In words: counters for ranks lower than r are reset, the counter for r (if
any) is decremented, and counters for higher ranks are left unchanged.
Note that if r is standard then there is no real choice here: ctr′ is
determined by ctr. And if r is nonstandard then the move amounts to
choosing an ordinal α < ctr(r).

� From a positional con�guration (v, ctr, psn), the owner of v chooses an
edge (v, w) ∈ E and the game proceeds from the countdown con�gu-
ration (w, ctr, cdn).

In any con�guration, if the player responsible for making the next move is
stuck, (s)he looses immediately. Otherwise, in an in�nite play, the winner is
determined by the parity condition: the owner of the greatest rank appearing
in�nitely often looses.

The default initial counter assignment is ctrI and the default initial mode
is the countdown one, meaning that G, v stands for G, (v, ctrI , cdn). We
denote D∃ = D ∩ R∃ and D∀ = D ∩ R∀. In the context of arbitrary parity
games we denote the lowest irrelevant rank with 0. In the particular case of
countdown games, we will always assume that this rank is standard, so that
the counter update corresponding to 0 is trivial (i.e. no counter changes).

Both countdown games and games for �xpoint approximations involve
the positional and countdown modes, marked with psn and cdn, respectively.
This is not a coincidence: as we mentioned, countdown games generalize the
games for �xpoint approximations the same way as simple parity games
generalize games for �xpoints. Let us inspect this connection in a bit more
detail.

Example 4.3.2. Fix a monotone operation f : P(X) → P(X). We show
how the game Gαµ (f) for the α-th approximation of the least �xpoint (as
given in De�nition 4.1.1) arises from Gµ(f) (the case with Gαν (f) and the α-th
approximation of the greatest �xpoint is analogous). Recall that according
to De�nition 2.2.7 the game Gµ(f) is played in rounds consisting of two
alternating steps:

1. from x ∈ X, ∃ve comes up with Y ⊆ X such that x ∈ f(Y );

2. ∀dam chooses y ∈ Y and the next round starts from there.
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We want to view Gµ(f) as a simple parity game G = (V,E, rank). The
positions V are just the con�gurations of Gµ(f) and edges E ⊆ V × V are
its legal moves. Since Gµ(f) is a reachability game, it could seem natural
to assign one rank r belonging to ∃ve to all the positions. However, we
only assign r to the positions in X and leave the remaining positions from
P(X) with an irrelevant standard rank 0 < r. This does not change the
winner of any play, but re�ects the fact that we want to count the number
of rounds, not moves. With G de�ned this way, we obtain Gαµ (f) by turing
r into a nonstandard rank with initial counter value α. The resulting game
G′ = (V,E, rank, ctrI) is played in rounds consisting of three alternating
steps:

1. from con�guration consisting of a position x ∈ X and a counter value
β, ∃ve decrements the counter by picking some β′ < β;

2. next, ∃ve comes up with Y ⊆ X such that x ∈ f(Y );

3. ∀dam chooses y ∈ Y and the next round starts from (y, β′).

In the above description we skip the trivial counter updates corresponding
to rank 0. It follows that the games G′ and Gαµ (f) are isomorphic (up to
skipping the trivial counter updates).

The case with ν in place of µ is the same except that the rank r belongs
to ∀dam and thus if we turn it into a nonstandard one it is him who con-
trols the counter. In Example 4.1.3 we showed how the game G<∞- (M,M′)
characterizing depth-α bisimilarity -α⊆M ×M ′ is the same as Gαν (BIS) for
the operation BIS : P(M ×M ′) → P(M ×M ′). In light of the above dis-
cussion, this allows us to see G<∞- (M,M′) as a countdown game. However,
an explicit description similar to the one above can be easily given. Take
G-(M,M′) and view it as a simple parity game with the round-beginning
positions M ×M ′ × {base} having the most important rank r belonging to
∀dam and all the other positions having an irrelevant lower rank 0. If we
now turn that r into a nonstandard rank, we obtain Gαν (BIS) (again, up to
skipping the trivial counter updates).

Every play of the game alternates between positional and countdown
con�gurations, and in each move only one component of the con�guration is
modi�ed. Therefore, although a play is formally a sequence of con�gurations,
it can be more succinctly represented as an alternating sequence of positions
and counter assignments:

π = ctr1v1ctr2v2ctr3v3 · · · (4.4)

Note that the only way the counters may interfere with a play is when a
counter has value 0 and so its owner cannot decrement it. It is therefore bene-
�cial for a player to have greater ordinals at his/her counters. More precisely,
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given a countdown game, de�ne a partial order 4better on its con�gurations:
(v, ctr, psn) 4better (v, ctr′, psn) and (v, ctr, cdn) 4better (v, ctr′, cdn) if and
only if ctr(r) ≤ ctr′(r) for all r ∈ D∃ and ctr(r) ≥ ctr′(r) for all r ∈ D∀.
It easily follows from the de�nition that if γ 4better γ

′ and ∃ve has a move
from γ to a con�guration δ, then she has a move from γ′ to a δ′ such that
δ 4better δ

′. Symmetrically, if ∀dam has a move from γ′ to δ′ then he has a
move from γ to some δ with δ 4better δ

′. That is: 4better is a gamemulation
order. As a result, if ∃ve has a winning strategy from γ and γ 4better γ

′ then
she has a winning strategy from γ′.

Another easy observation is that if the countdown starts from limit ordi-
nals, one may always choose values greater by a �nite k than the ones given
by some �xed strategy. More speci�cally, for a number k < ω we de�ne a
relation above+k of being k-above between counter assignments. For every
ctr and ctr′, above+k(ctr, ctr′) i�:

� ctr′(r) = min(ctr(r) + k, ctrI(r)) for r ∈ D∃, and

� ctr′(r) = ctr(r) for r ∈ D∀.

The relation above+k extends to con�gurations in a natural way: above+k(γ, γ
′)

i� the only di�erence between γ and γ′ is in their respective counter assign-
ments ctr and ctr′ with above+k(ctr, ctr′). It follows from the de�nition that
if all initial counter values are limit ordinals then such above+k is a gamem-
ulation.

As all parity games, countdown games are con�gurationally determined.
The following example demonstrates that, unlike simple parity games, count-
down games are not positionally determined, in the sense that the players
may need to look at the counter values in order to choose a winning move.

Example 4.3.3. Consider the Hedgehog from Example 3.1.2:

· · ·

H
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and view it as the arena (V,E) of a countdown game with all the positions
V = V∃ belonging to ∃ve. Assign the same rank r belonging to ∀dam to
all the positions and make r nonstandard with initial counter value ω. It
follows that the game alternates between two stages: ∀dam decrementing the
counter and ∃ve picking a move in the arena. Since at the beginning ∀dam
needs to pick k < ω, ∃ve can always win by choosing a path longer than k
so that the counter will hit 0 before the game reaches a dead-end position.
However, there is no uniform choice of a one path that would allow her to
win against all k.

Even though not positional, countdown games possess a much weaker
(yet still useful) property: players can win with strategies that do not depend
on the counters in �nite stages of the game. Consider a countdown game
(V,E, rank, ctrI). For a countdown play:

π = ctr1v1...vn−1ctrnvn, or π = ctr1v1...ctrnvnctrn+1

denote by pos(π) the sequence of consecutive positions v1...vn. Recall that
a phase of a game is a set of plays convex with respect to the pre�x order.
Given a phase B and a strategy σ for player P , we say that a partial function
f : V ∗ → V guides σ in B if for every σ-plays π, πv ∈ B such that v ∈ V is
a position chosen by P , the value f(pos(π)) is de�ned and equals v. We say
that σ is counter-independent in B or B-counter-independent i� it is guided
in B by some partial function called the B-guide of σ and denoted σB. We
call B proper if membership in B does not depend on the counter values,
meaning that for plays π, π′ of the same length, pos(π) = pos(π′) implies
π ∈ B ⇐⇒ π′ ∈ B.

Proposition 4.3.4. Take a countdown game G = (V,E, rank, ctrI) and a
proper phase B of G. Assume that the set pos[B] = {pos(π) | π ∈ B} is
�nite. If ∃ve wins from con�guration γI , then she wins with a strategy that
is counter-independent in B.

Proof. The assumption on pos[B] implies that there exists a �nite bound
lmax on the length of plays in B. Consider a winning strategy σ for ∃ve. We
show by induction on 0 ≤ l ≤ lmax that:

For every σ-play π of length |π| = lmax − l, there exists a winning strategy
σπ for G, γI that is counter-independent in the subphase Bπ of B and equal
to σ on plays without a pre�x from Bπ.

Once we prove the claim for l = lmax, we obtain a strategy σε counter-
independent in Bε = B, as desired.

The base case is l = 0 where there is nothing to prove, as |π| = lmax

implies that either Bπ = {π} if π ∈ B or Bπ = ∅ otherwise. In both cases σ
is trivially guided in Bπ by a partial function unde�ned on every argument.
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For the inductive step, assume that the claim is true for l and for every
σ-play π with |π| = lmax − l denote the Bπ-guide of σπ by σBπ . Given a
σ-play π with |π| = lmax − l − 1, there are three cases to consider:

� After π it is ∃ve who makes a move. Since π is a σ-play, σ provides
a move z = σ(π). Since πz is also a σ-play and |πz| = lmax − l,
by induction hypothesis there exists a winning strategy σπz that is
counter-independent in Bπz. ∃ve can therefore win with the following
strategy:

σπ(ρ) =

{
σπz(ρ) if πz is a pre�x of ρ,

σ(ρ) otherwise.

Unless π, πz ∈ B and z ∈ V , the strategy σπ is guided by σBπ = σBπz

in Bπ. Otherwise it is guided by:

σBπ(v) =

{
z if v = pos(π),

σBπz(v) otherwise.

� After π ∀dam chooses a position v from a setW ⊆ V . For every such v,
πv is a σ-play, |πv| = lmax− l and hence induction hypothesis provides
σπv guided by σBπv in Bπv. We combine strategies for all the possible
choices from W :

σπ(ρ) =

{
σπv(ρ) if πv is a pre�x of ρ,

σ(ρ) otherwise.

Such σπ is guided in Bπ by:

σBπ(v) =

{
σBπv(v) v has pos(πv) as a pre�x,

unde�ned otherwise.

� After π ∀dam updates the current counters ctr to ctr′. The only in-
teresting case is when the current rank r is nonstandard and so ctr′ is
given by a choice of an ordinal α < ctr(r) (the case with standard r is
similar to the �rst one). Denote such ctr′ by ctrα and πctrα by πα. For
every α < ctr(r) the play πα is consistent with σ and |πα| = lmax − l,
so induction hypothesis gives us σπα guided by σBπα in Bπα .
Observe that for plays πα, πβ leading to con�gurations γα and γβ , re-
spectively, we have γβ 4better γα whenever α < β. It follows that if
after π ∀dam chooses α, ∃ve may as well continue as if he picked β.
Denote such strategy by σ[β/α].

Importantly, if α ≤ β and σBπβ guides σπβ in Bπβ , then it also guides
σ[β/α] in Bπα . This is because whenever σ[β/α]-plays παξ and παξv
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belong to Bπα and v is chosen by ∃ve, there exists πβξ
′ 4better παξ

such that πβξ
′ and πβξ

′v are σπβ -plays. Since πβξ
′ 4better παξ implies

pos(παξ) = pos(πβξ
′), by properness of B both πβξ

′ and πβξ
′v belong

to Bπβ . Hence, σ
Bπβ (pos(παξ)) = σBπβ (pos(πβξ

′)) = v, as desired.

There are two cases to consider, depending on whether ctr(r) is a limit
ordinal or not. If it is a successor ordinal then there is a maximal α
that can be chosen by ∀dam. In that case, ∃ve uses the strategy:

σπ(ρ) =

{
σ[α/β](ρ) if πβ is a pre�x of ρ,

σ(ρ) otherwise,

guided in Bπ by σBπ = σBπα .

On the other hand, if ctr(r) is a limit ordinal then there is no maximal
α that ∀dam can choose, and for each of his choices ∃ve might have
used a di�erent σπα . However, by assumption the set of positions that
appear in B is �nite. As a consequence, there are only �nitely many
possible partial functions guiding σπα in Bπα and we may �nd σBπ such
that σπα is guided in Bπα by σBπ for arbitrarily big α < ctr(r). De�ne:

σπ(ρ) =

{
σ[α′/α](ρ) if πα is a pre�x of ρ,

σ(ρ) otherwise,

where α′ ≥ α is the least number greater than α with σBπα = σBπ . By
design, σπ is guided by σBπ in Bπ.

Positionality (and the lack thereof) is one of the aspects in which parity
and countdown games di�er. However, both types of games share the prop-
erty that the players may use strategies that avoid unnecessary repetitions
of positions. A bad loop for player P in a countdown play π is a su�x vi...vj
of the underlying positions pos(π) such that vi = vj , the rank of vi belongs
to P and no vk with i < k < j has a more important rank.

Proposition 4.3.5. Consider a countdown game G = (V,E, rank, ctrI). If
player P wins, then (s)he wins with a strategy σ that avoids bad loops, mean-
ing that no σ-play contains a loop bad for P .

Proof. The reasoning behind the above fact is essentially the same as for
plain parity games. In a countdown game, if a play moves from a position
v to itself via a path without visiting ranks higher than rank(v), then all
the counters for lower ranks are reset and those for higher ranks remain
unchanged. It follows that the resulting con�guration is at least as good
for the opponent P ′ of the owner P of rank(v) as the one at the previous
visit to v. Hence, P ′ can repeat the strategy from that moment, and either
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eventually the game stops looping on v via lower ranks or P looses. This
means that in order to win, P must have a strategy that avoids such loops,
and therefore (s)he may use that strategy immediately.

4.4 Countdown Automata

As mentioned, countdown games are designed in a way that allows to
lift the classical correspondence between logic, games and automata to the
countdown setting. As with simple parity games and µ-ML, the bridge be-
tween countdown games and µ<∞-ML is given by countdown automata. Such
an automaton is almost the same as an ordinary parity automaton, except
that the semantic game de�ning the language of a given automaton is a
countdown game rather than a parity game. On the syntactic level, a count-
down game is just a parity game extended with a set D ⊆ R of nonstandard
ranks and an initial counter assignment ctrI : D → Ord. By analogy, we
obtain a countdown automaton by extending a parity automaton with these
two missing components.

De�nition 4.4.1. A countdown automaton A is a tuple (Q, qI , δ, rank, ctrI)
such that (Q, qI , δ, rank) is a parity automaton and ctrI : D → Ord is an ini-
tial counter assignment for a subset D ⊆ R of nonstandard ranks. Explicitly,
A consists of:

� a �nite set of states Q = Q∃ tQ∀ divided between two players;

� an initial state qI ∈ Q;

� a transition function:

δ : Q→ P(Q t Lit t Var) t (Act×Q)

� a rank function rank : Q→ R;

� a set D ⊆ R of nonstandard ranks and an assignment of initial counter
values ctrI : D → Ord, as in a countdown game.

Analogously to parity automata, the language of a countdown automaton
is given by a semantic game.

De�nition 4.4.2. Fix an automaton A = (Q, qI , δ, rank, ctrI), a model M
and a valuation val : Var → P(M). The semantic game Gval(A) is the
countdown game given as the extension of the semantic game induced by
the parity automaton (Q, qI , δ, rank) with D ⊆ R and ctrI : D → Ord.
Explicitly, Gval(A) = (V,E, rank′, ctrI) where positions are of the form:

V = M × (Q t Lit t Var)

and the edge relation E is de�ned as with parity automata in Subsec-
tion 2.4.3. That is, in a position (m, q) for q ∈ Q:

91



� if δ(q) ⊆ Q t Lit t Var, outgoing edges are:

{((m, q), (m, z)) | z ∈ δ(q)},

� if δ(q) = (a, p), outgoing edges are:

{((m, q), (n, p)) | m
a→ n}.

There are no outgoing edges from positions (m, x), (m, τ) nor (m,¬τ) for
x ∈ Var and τ ∈ Prop.

For q ∈ Q, the owner of the position (m, q) is the owner of the state q,
and rank′(m, q) = rank(q). For x ∈ Var, the position (m, x) belongs to ∀dam
if m ∈ val(x) and to ∃ve otherwise. Similarly, (m, τ) (or (m,¬τ)) belongs to
∃ve i� m /∈ τM (or m ∈ τM, respectively). The rank′ of (m, x), (m, τ) and
(m,¬τ) can be set to an arbitrary standard rank so that it does not a�ect
the outcome of the game.

The set D ⊆ R of nonstandard ranks and the initial counter assignment
ctrI are taken from the automaton.

The semantics JAKval ⊆ M of an automaton A is the set of all points
m ∈M for which the con�guration ((m, qI), ctrI , cdn) in the game Gval(A) is
winning for ∃ve, in which case we say that A acceptsM,m. The language
of A is the class of all pointed models it accepts.

We will now explain the translations between logic and automata in turn.

4.4.1 From Formulae to Automata: Game Semantics

As with µ-ML, every countdown formula ϕ ∈ µ<∞-ML can be viewed as
a countdown automaton Aϕ such that JϕKval = JAϕKval for every model M
and valuation val. The construction is very close to the one for plain µ-ML,
with two key di�erences.

First, Example 4.2.5 demonstrates that an equality analogous to the
Beki¢ principle (2.9) is not valid for countdown operators µα and να, and
Theorem 4.6.2 shows that in fact there is no other way around, as vectorial
formulae have more expressive power. This requires an adaptation of the
game to the more general vectorial setting. Instead of having a variable x and
a formula θ such that ηx.θ binds x, we now have tuples θ = 〈θ1, ..., θd〉 and
x = 〈x1, ..., xd〉 such that ηαx.θ binds x. Then, instead of the deterministic
move from x to θ as in the classical case, the vectorial semantic game moves
from xi to the formula θi with a matching coordinate 1 ≤ i ≤ d.

Second, µ<∞-ML features countdown operators, which de�ne languages
beyond the regular ones. Since our design goal was to lift the correspondence
between logic and games to the richer countdown setting, we now want to
de�ne a countdown, rather than a simple parity game, in hope it will capture
the semantics of µ<∞-ML. In order to turn a simple parity game into a
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countdown one, it su�ces to determine a subset D ⊆ R of nonstandard
ranks together with an assignment ctrI : D → Ord of initial counter values.
To this end, we de�ne the irrelevant lowest rank 0 to be standard and for all
the other ranks, i.e. ranks r of immediate subformulae θ1, ..., θd of a �xpoint
formula ηαi x.θ, we look at the index α ∈ Ord∞. If α =∞, then ηαi is a usual
�xpoint operator and hence we leave its rank standard. Otherwise, we put
r ∈ D with ctrI(r) = α.

Applying the above modi�cations, we obtain the following de�nition of
a countdown automaton Aϕ = (Q, qI , δ, rank, ctrI) corresponding to a given
formula ϕ:

� the set Q of states and its ownership is the same as in the simple parity
case:

Q = SubFor(ϕ)− (Lit t FreeVar(ϕ))

∃ve owns formulae with ∨ and 〈a〉 as the topmost connective and ∀dam
these with ∧ and [a]; ownership of �xpoint subformulae and countdown
subformulae is irrelevant;

� qI = ϕ;

� the transition function is de�ned by cases:

� δ(θ1 ∨ θ2) = δ(θ1 ∧ θ2) = {θ1, θ2},
� δ(〈a〉θ) = δ([a]θ) = (a, θ),

� δ(ηαi x.θ) = {θi} (for η = µ or η = ν),

� δ(x) = {θi}, where ηαj (x1, ..., xd).(θ1, ..., θd) is the (unique) sub-
formula of ϕ binding x with x = xi.

� For the ranking function, assume that the lowest rank in R is standard
and call it 0 (ownership of this rank does not matter). Then let rank
assign 0 to all subformulae of ϕ except for immediate subformulae of
�xpoint operators. To those, assign ranks in such a way that subformu-
lae have strictly smaller ranks than their superformulae, and for every
subformula ηαi x.ϕ:

� all formulae in the tuple ϕ have the same rank r,

� r belongs to ∃ve if η = µ and to ∀dam if η = ν, and

� if α = ∞ then r is standard, otherwise it is nonstandard and
ctrI(r) = α.

We put Gval(ϕ) = Gval(Aϕ).
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Theorem 4.4.3 (Countdown Adequacy). For every modelM and valuation
val, JϕKval = JAϕKval.

Proof. Unfolding the de�nition of JAϕKval from De�nition 4.4.2 we prove
that:

m ∈ JϕKval ⇐⇒ ∃ve wins Gval(ϕ) from ((m, ϕ), ctrI , cdn) (4.5)

for every m ∈M and valuation val. As with the Adequacy Theorem 2.4.7 for
the classical µ-calculus, the proof proceeds by induction on the complexity
of the formula ϕ. The only new cases are ϕ = µαi x.ψ and ϕ = ναi x.ψ for
x = 〈x1, ..., xd〉, ϕ = 〈ϕ1, ..., ϕd〉 and α ∈ Ord∞. Since the cases with µ and
ν are symmetric we only consider the �rst one. Moreover, we focus on the
case with α ∈ Ord as in the remaining one α =∞ the proof only simpli�es.
By de�nition of the semantics, Jµαi x.ψKval = πi(F

α
µ ) for:

F (H1, ...,Hd) = (Jψ1Kval
′
, ..., JψdKval

′
)

where val′ = val[x1 7→ H1, ..., xd 7→ Hd]. The proof of (4.5) is similar to the
analogous equivalence (2.10) for plain µ-ML. The �rst di�erence is that we
deal with a countdown, rather than a �xpoint operator. For that reason,
we apply Theorem 4.1.2 in place of Theorem 2.2.8. The second di�erence
is the presence of vectorial formulae. Because of this, we use the natural
isomorphism:

ι : P(M)d ∼= P(M × d)

which maps every tuple of sets (H1, ...,Hd) ∈ P(H)d to the set {(n, i) | n ∈
Hi} ∈ P(M × {1, ..., d}). Such ι allows us to view F as an operation F̂ =
ι ◦ F ◦ ι−1 on P(M × {1, ..., d}). Then:

m ∈ JϕKval ⇐⇒ m ∈ πi(Fαµ )

⇐⇒ (m, i) ∈ F̂αµ
⇐⇒ ∃ve wins G<∞µ (F̂ ) from ((m, i), α, cdn).

The �rst equivalence is the de�nition of the meaning of µα. The second one
follows from equality ι(F βµ ) = F̂ βµ proven by straightforward induction on
β ∈ Ord. The third one follows from Theorem 4.1.2. Hence, in order to
prove (4.5) it su�ces to show:

G, ((m, i), α, cdn) ./ G′, ((m, ϕ), ctrI , cdn)

where:
G = G<∞µ (F̂ ) and G′ = Gval(ϕ).

Since the game on the right begins with a vacuous counter update (as ϕ has
an irrelevant rank) followed by a deterministic ε-transition to ψi, the crux
of the proof is to show:

G, ((m, i), α, cdn) ./ G′, ((m, ψi), ctrI , cdn). (4.6)
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We will use the Decomposition Lemma 2.2.5 with S = ∅ and sets of stopping
con�gurations:

S+ = (M×{1, ..., d})×Ord×{cdn} and S ′+ = (M×{ψ1, ..., ψd})×OrdD×{cdn}.

S+ and S ′+ are precisely the sets of con�gurations with the most important
ranks r and r′ of G and G′, respectively. Consider the relation S+ ⊆ S+×S ′+
de�ned as:

((n, j), β, cdn) S+ ((n′, ψj′), ctr, cdn)

⇐⇒
n = n′, j = j′ and ctr(r′) = β

for all ((n, j), β, cdn) ∈ S+ and ((n′, ψj′), ctr, cdn) ∈ S ′+. With the above
de�nitions we get (4.6) from the lemma once we prove:

G, ((n, j), β, cdn) ./S+ G′, ((n, ψj), ctr, cdn) (4.7)

for all n ∈ M , β ∈ Ord, j ≤ d and ctr such that ctr(r′) = β. Observe that
both games start with ∃ve, the owner of r and r′, choosing some κ < β.
This κ becomes the new value of the only counter and in G and the value of
the counter for r′ in G′ (and all the remaining counters get reset, as r′ is the
most important). Therefore, it su�ces to prove:

G, ((n, j), κ, psn) ./S+ G′, ((n, ψj), ctrI [r
′ 7→ κ], psn)

for all κ < β. To that end take arbitrary H1, ...,Hd ⊆ M and denote by
Ĥ = ι(H) the result of applying the isomorphism ι to the tuple H. We
complete the proof by showing that the following are equivalent:

1. ∃ve has a non-loosing strategy σ for G|S+, ((n, j), κ, psn) with exit con-
�gurations exit(σ) ⊆ S+ equal:

Ĥ × {κ} × {cdn},

2. (n, j) ∈ F̂ (Ĥ),

3. n ∈ πj(F (H)),

4. ∃ve has a winning strategy for Gval′(ψj), (n, ψj) where val′ = val[x1 7→
H1, ..., xd 7→ Hd],

5. ∃ve has a non-loosing strategy σ′ for G′|S ′+, ((n, ψj), ctrI [r
′ 7→ κ], psn)

with exit con�gurations exit(σ′) ⊆ S ′+ included in:

{((n′, ψk), ctr, cdn) | k ≤ d, n′ ∈ Hk, ctr(r′) = κ}.
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Equivalence (1) ⇐⇒ (2) follows from the de�nition of G; (2) ⇐⇒ (3)
from the de�nition of ι and F̂ and (3) ⇐⇒ (4) from the de�nition
of F and the induction hypothesis (4.5) applied to ψj . The last equiv-
alence (4) ⇐⇒ (5) holds because the two games Gval′(ψj), (n, ψj) and
G′|S ′+, ((n, ψj), ctrI [r

′ 7→ κ], psn) are isomorphic until a move to position
(n′, xk) for some k ≤ d and n′ ∈ M (in particular, in G′|S ′+ the value
ctr(r′) = κ cannot be changed because r′ cannot be visited before the game
stops). If the games ever reach such (n′, xk), in Gval

′
(ψj) ∃ve wins i� n′ ∈ Hk

whereas G′ moves deterministically to (n′, ψk) and stops there. This estab-
lishes equivalence between winning strategies in (3) and non-loosing strate-
gies with appropriate exit-con�gurations in (4).

Example 4.4.4. For Act = {a}, consider the formula ϕ = µωx.2x from
Example 4.2.1. The automaton Aϕ has three states: Q = {ϕ,2x, x}, with
ϕ the initial state, and the transition function comprises two deterministic
ε-transitions and one modal transition:

δ(ϕ) = {2x}, δ(2x) = (a, x), δ(x) = {2x}.

The state 2x is owned by ∀dam; ownership of the other two states does
not matter. The automaton uses two ranks, 0 < 1, where 0 is standard
and 1 is nonstandard, assigned to states by: rank(ϕ) = rank(x) = 0 and
rank(2x) = 1. Rank 1 is owned by ∃ve; ownership of rank 0 does not
matter. (Note how the state 2x is owned by ∀dam, but its rank is owned
by ∃ve). The initial counter value is ctrI(1) = ω.

Now consider any model M. Since Act has only one element, M is
simply a directed graph (M,→). The semantic game G(ϕ) onM (ϕ has no
free variables, so neither has Aϕ and we need not consider valuations val)
has positions of the form (m, q) where m ∈ M and q ∈ Q, with ownership
and rank inherited from q. Edges are of the form:

� ((m, ϕ), (m,2x)) and ((m, x), (m,2x)) � the ε-edges,

� ((m,2x), (n, x)) such that m→ n is an edge inM � the modal edges.

Con�gurations of the game arise from positions together with counter as-
signments; there is only one nonstandard rank, so a counter assignment is
simply an ordinal.

For a point m ∈ M, the default initial con�guration of the game is
the countdown con�guration ((m, ϕ), ω, cdn). A play that begins in this
con�guration proceeds as follows:

1. The �rst two moves are deterministic: �rst to the positional con�gu-
ration ((m, ϕ), ω, cdn) (since the rank 0 of ϕ is standard and smaller
than 1); and then to the countdown con�guration ((m,2x), ω, cdn).
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2. ∃ve, as the owner of the rank 1 of 2x, makes the next move: she chooses
a number k < ω, and the games moves to the positional con�guration
((m,2x), k, psn).

3. ∀dam owns the position, so he makes the next move: he chooses a
point n ∈M such that m→ n, and the game moves to the countdown
con�guration ((n, x), k, cdn).

4. The rank 0 of x is standard and smaller than 1, so in the next move
the counter does not change and the game moves to ((n, x), k, psn).
The next move is also deterministic, to the countdown con�guration
((n,2x), k, cdn). The game then goes back to step 2. above, with k in
place of ω.

From this it is clear that ∃ve wins from ((m, ϕ), ω, cdn) if and only if there is a
�nite bound on the lengths of paths starting in m, as stated in Example 4.2.1.

4.4.2 From Automata to Formulae

We provide a theorem that directly generalizes Theorem 2.4.8 to the
countdown setting.

Theorem 4.4.5. For every countdown automaton A there exists a formula
ϕA of µ<∞-ML such that JAKval = JϕAKval for every modelM and valuation
val.

Proof. Syntactically, the proof is very similar to the classical one. Fix a
countdown automaton A = (Q, qI , δ, rank, ctrI). As with parity automata,
we only consider the case when A has no free variables, the highest rank rmax

is not assigned to any state and every other rank is assigned to at least one
state. Note that, unlike in the classical setting, we cannot assume that each
rank is assigned to at most one state, though. For convenience, we assume
that all the initial counter values are nonzero (otherwise the owner P of the
corresponding rank r looses immediately upon entering a state with rank r,
so we may turn all the states with that rank into dead-end states owned by
P and having the standard rank 0). Taking variables VarQ = {xq | q ∈ Q}
with distinct xq for every q ∈ Q denote:

Qr≤ = {q ∈ Q | r ≤ rank(q)} and Varr≤ = {xq | q ∈ Qr≤}.

Proceeding by induction on r, for each state q we construct a formula ψr,q
over VarQ with all free variables in Varr≤ and all bound variables outside of
Varr≤. We simplify notation: for avery free variable xp in ψr,q we identify
all the occurrences of xp as subformulae of ψr,q. For syntactic simplicity,
we assume that all the constructed formulae, when seen as automata, have
the same ranks R′, nonstandard ranks D′ and initial counter assignment
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ctr′I ∈ OrdD
′
(the rank function rankr,q : SubFor(ψr,q) → R′ may depend on

r and q and need not be surjective).
The goal of our construction is to have:

G(A), ((m, q), ctrI , cdn) ./Sr≤ G(ψr,q), ((m, ψr,q), ctr′I , cdn), (4.8)

for every m ∈M where Sr≤ is the relation:

Sr≤ = {(((n, p), ctr, cdn), ((n, xp), ctr′, cdn)) | p ∈ Qr≤}

with domain and codomain:

Sr≤ = M×Qr≤×OrdD×{cdn} and S ′r≤ = M×Varr≤×OrdD
′×{cdn}.

The above de�nitions are analogous to the ones for the classical case (2.12),
with sets Sr≤ and Sr≤ extended to countdown con�gurations (and not just
mere positions) and the relation Sr≤ adapted accordingly. Note that al-
though we will refer to the counter values at some point in the proof, the
relation Sr≤ in the induction hypothesis ignores them.

The Base Case. The base case r = 0 is no di�erent from the classical
variant:

� if δ(q) = (a, p):

ψ0,q =

{
〈a〉p if q belongs to ∃ve
[a]p if q belongs to ∀dam

� if δ(q) ⊆ Q t Lit t Var:

ψ0,q =

{∨
δ(q) if q belongs to ∃ve∧
δ(q) if q belongs to ∀dam.

The game G(A)|S0≤ is the same as in the classical case, except that be-
fore stopping or ending it goes through a counter update. Such update is
irrelevant, though, because we only care about the position in which the
game stops and since the initial counter value is nonzero it can always be
decremented.

The Inductive Step. For the inductive step, assume (4.8) for rank r, which
gives us ψr,q for each q ∈ Q and denote the next rank by r + 1. We want to
construct ψr+1,q satisfying:

G(A), ((m, q), ctrI , cdn) ./Sr+1≤ G(ψr+1,q), ((m, ψr+1,q), ctr′I , cdn) (4.9)

for all m ∈ M. Let p1, ..., pd be the states in Q that have rank r. We will
use the decomposition:

Sr≤ = Sr t Sr+1≤ (4.10)
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where Sr = Sr≤ − Sr+1≤ can be described explicitly as:

((n, s), ctr, cdn) Sr ((n′, θ), ctr′, cdn)

⇐⇒
n = n′ and there is i ≤ d such that s = pi and θ = xpi .

We introduce the same notation as in the classical case:

S = Sr+1≤ ⊆ S × S ′ where S = Sr+1≤ and S ′ = S ′r+1≤.

The Case with q ∈ {p1, ..., pd}. We start the construction with the case
q = pi for some i ≤ d. Taking formulae ψr,p = 〈ψr,p1 , ..., ψr,pd〉 constructed
in the previous case and the corresponding variables xp = 〈xp1 , ..., xpd〉 put:

ψr+1,pi = ηαi xp.ψr,p

where η = µ if r belongs to ∃ve and η = ν if r belongs to ∀dam with
α = ctrI(r) if r is nonstandard and α =∞ otherwise. That is, we generalize
the classical scalar construction to tuples ψr,p and xp and add two indices:
i denoting the coordinate of pi among p1, .., pd and α denoting the initial
value of a counter corresponding to r (or ∞ if r is standard). The idea
is similar to the classical case except that now at each visit to the rank r,
which corresponds to unravelling of the countdown operator, its owner has
to decrement the counter, starting from α. Formally, we denote the rank of
all ψr,p1 , ..., ψr,pd by r

′ and prove:

G(A), ((m, pi), ctr, cdn) ./S G(ψr+1,pi), ((m, ψr,p), ctr′, cdn)) (4.11)

for all m ∈ M and ctr, ctr′ with ctr(r) = ctr′(r′). This su�ces to prove our
induction goal (4.9), as the game G(ψr+1,pi), ((m, ψr+1,pi), ctr′I , cdn) starts
with a pair of deterministic moves (a vacuous counter update and an ε-
move) leading to ((m, ψr,pi), ctr′I , cdn) and equality ctrI(r) = ctr′I(r

′) follows
directly from the de�nitions. Consider sets of con�gurations:

S+ = M × {pj | j ≤ d} × OrdD × {cdn}

S◦+ = M × {xpj | j ≤ d} × OrdD
′ × {cdn}

S ′+ = M × {ψr,pj | j ≤ d} × OrdD
′ × {cdn}.

We will use relations S+ ⊆ S◦+ ⊆ S+ × S ′+ and R ⊆ S◦+ × S′+ de�ned
for every γ = ((n, pj), ctr, cdn) ∈ S+, γ

◦ = ((n◦, xpj◦ ), ctr◦, cdn) and γ′ =
((n′, ψr,pj′ ), ctr′, cdn) ∈ S ′+ as follows:

γS−+γ
′ ⇐⇒ n = n′ and j = j′,

γ◦Rγ′ ⇐⇒ n◦ = n′, and j◦ = j′,

γS+γ
′ ⇐⇒ n = n′, j = j′ and ctr(r) = ctr′(r′).
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That is, R links con�gurations with equal points and the variable xpj match-
ing the formula ψr,pj ; similarly with S−+ except that it requires the state pj to
match with the formula ψr,pj . Only S+ looks at the counters: is strengthens
S−+ with an additional requirement that the counter values for r and r′ are
equal.

We will use the Decomposition Lemma 2.2.5 substituting G = G(A) and
G′ = G(ψr+1,pi). The sets S+ and S ′+ only contain con�gurations with the
most important rank r in Conf−S and r′ in Conf ′−S ′, respectively. Hence,
the lemma implies (4.11) once we prove:

G(A), γ ./S+tS G(ψr+1,pi), γ
′ (4.12)

for all (γ, γ′) ∈ S+. Fix such a pair with γ = ((n, pj), ctr, cdn) and γ′ =
((n, ψr,pj ), ctr′, cdn) such that ctr(r) = ctr′(r′). We �rst prove a weaker claim
with the special case ctr = ctrI and ctr′ = ctr′I and S

−
+ in place of S+:

G(A), ((n, pj), ctrI , cdn) ./S−+tS
G(ψr+1,pj ), ((n, ψr,pj ), ctr′I , cdn). (4.13)

For that compose:

G(A), ((n, pj), ctrI , cdn) ./Sr≤ G(ψr,pj ), ((n, ψr,pj ), ctr′I , cdn)

./RtId(S′) G(ψr+1,pj ), ((n, ψr,pj ), ctr′I , cdn)

The �rst equivalence is the induction hypothesis (4.8) applied to ψr,pj . The
second one is true for the same reasons as in the analogous proof for µ-ML.
The partial games:

G(ψr,pj )|S◦+ t S ′, ((n, ψr,pj ), ctr′I , cdn)

and:
G(ψr+1,pj )|S ′+ t S ′, ((n, ψr,pj ), ctr′I , cdn)

are isomorphic until they move to some ((n′, xpk), ctr′, cdn) in which case
the �rst game stops and the second one �res a vacuous counter update,
moves deterministically to ((n′, ψr,pk), ctr′, cdn) and stops as well. Triviality
of the update follows from the observation that none of the formulae we
construct is equal to a variable (assuming the convention that

∨
{θ} = θ ∨ θ

and symmetrically for
∧
), so no variable is an immediate subformula of a

countdown operator and hence all variables have rank 0. Since:

Sr≤ ◦ (R t Id(S ′)) = (Sr t S) ◦ (R t Id(S ′))
= (Sr ◦R) t (S ◦ Id(S ′))
= S−+ t S

the two equivalences compose into (4.13). To get (4.12) we need to strengthen
(4.13) in two ways:
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(i) replace ctrI and ctr′I with any pair of counter assignments ctr and ctr′

using the assumption ctr(r) = ctr′(r′) and

(ii) replace S−+ with S+, i.e. impose an additional requirement that if the
games stop in some (((n′, pk), ctr′′, cdn), ((n′, ψr,pk), ctr′′′, cdn)) ∈ S−+
then actually ctr′′(r) = ctr′′′(r′).

For the �rst item (i) observe that both games start with the owner of r and
r′ (which is the same player) choosing β < ctrI(r) = ctr′I(r

′) and resetting
counters for all the less important ranks. These ranks include the only ones
that can be reached before the games stop: ranks smaller than r in G(A) and
ranks of strict subformulae of ψr+1,pj in G(ψr+1,pj ). Since after this initial
decrement counters for all the reachable ranks have initial values, it follows
that instead of ctrI and ctr′I we could take any ctr and ctr′ provided that 0 <
ctr(r) i� 0 < ctr′(r′) (which follows from ctrI(r) = ctr′I(r

′)). Moreover, after
this �rst countdown step the counters for r and r′ will never be decremented
again before the games stop. Since the equality ctrI(r) = ctr′I(r

′) implies
that the owner of r and r′ can choose the same value at the beginning of
both games, this gives us the second item (ii).

The Case with q /∈ {p1, ..., pd}. We are left with the construction of ψr+1,q

for q /∈ {p1, ..., pd}. Put:

ψr+1,q = ψr,q[xp1 7→ ψr+1,p1 , ..., xpd 7→ ψr+1,pd ].

That is, we take ψr,q and replace every xpi with the respective ψr+1,pi which
we have just constructed.

Let θ1, ...θl be all the subformulae of ψr+1,q which are copies of one of
ψr+1,p1 , ..., ψr+1,pd . We denote the subformula of θk that is a copy of ψ ∈
SubFor(ψr+1,p) by ψk. Once the game reaches a particular ψkr,pi , the only
reachable formulae are subformulae of θk. This is because a move leaving
SubFor(θk) would require existence of a variable xs free in θk (meaning that
xs ∈ Varr+1≤) and bound in ψr,q (so xs /∈ Varr≤) which is a contradiction.
Thanks to this, we may assume that all the formulae {ψkr,pi | i ≤ d, k ≤ l}
have the same rank independent of k and denote it by r′.

We use sets of con�gurations and relations almost the same as in the
previous case except that we deal with several copies of every ψr,pj :

S+ = M × {pj | j ≤ d} × OrdD × {cdn}

S◦+ = M × {xpj | j ≤ d} × OrdD
′ × {cdn}

S ′+ = M × {ψkr,pj | j ≤ d, k ≤ l} × OrdD
′ × {cdn}

and S+ ⊆ S◦+ ⊆ S+ × S ′+ and R ⊆ S◦+ × S′+
γS−+γ

′ ⇐⇒ n = n′ and j = j′,

γ◦Rγ′ ⇐⇒ n◦ = n′, and j◦ = j′,

γS+γ
′ ⇐⇒ n = n′, j = j′ and ctr(r) = ctr′(r′)
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for every γ = ((n, pj), ctr, cdn) ∈ S+, γ
◦ = ((n◦, xpj◦ ), ctr◦, cdn) and γ′ =

((n′, ψkr,pj′ ), ctr′, cdn) ∈ S ′+
Using these relations we get the induction goal (4.9) from Proposition 2.2.2

instantiating G = G(A) and G′ = G(ψr+1,q). The proposition assumes two
premises:

G(A), ((m, q), ctrI , cdn) ./S+tS G(ψr+1,q), ((m, ψr+1,q), ctr′I , cdn) (4.14)

and:

G(A), γ ./S G(ψr+1,q), γ
′ (4.15)

for all (γ, γ′) ∈ S+. The �rst premise (4.14) follows from:

G(A), ((m, q), ctrI , cdn) ./S−+tS
G(ψr+1,q), ((m, ψr+1,q), ctr′I , cdn) (4.16)

in a similar way as (4.12) follows from (4.13) but the argument is even
simpler: none of the two above partial games decrements counter for r and
r′, respectively, before it stops. This is because all the positions with rank
r and r′ belong to S+ and S ′+, respectively. Equivalence (4.16) follows from
composing:

G(A), ((m, q), ctrI , cdn) ./Sr≤ G(ψr,q), ((m, ψr,q), ctr′I , cdn)

./RtId(S′) G(ψr+1,q), ((m, ψr+1,q), ctr′I , cdn).

The �rst line is the induction hypothesis (4.8) applied to ψr,q. The second
one follows from the de�nition of ψr+1,q which implies that the partial games
G(ψr,q)|S◦+ tS ′, (m, ψr,q) and G(ψr+1,q)|S ′+ tS ′, (m, ψr+1,q) are identical un-
til they move to some (n, xpi) and (n, ψkr+1,pi

) (ψkr+1,pi
replaces xpi , where

the irrelevant index k depends on the particular occurrence of xpi). If this
happens, the �rst game stops, whereas the second one runs a counter update
(which is trivial since xpi has standard rank) and moves deterministically to
(n, ψkr+1,pi

) where it stops. We have:

Sr≤ ◦ (R t Id(S ′)) = S+ t S

as in the previous case which allows us to compose the two lines into (4.16).
Towards the second premise (4.15), take (γ, γ′) ∈ S+ with γ = ((n, pj), ctr, cdn)

and γ′ = ((n, ψkr,pj ), ctr′, cdn) such that ctr(r) = ctr′(r′). We compose:

G(A), ((n, pj), ctr, cdn) ./S G(ψr+1,pj ), ((n, ψr,pj ), ctr′, cdn)

./Id(S′) G(ψr+1,q), ((n, ψkr,pj ), ctr′, cdn).

The �rst line is (4.11). The second line follows from our previous analysis:
it is not possible to leave SubFor(θk) from ψkr,pj and thus the reachable part
of the game on the right is isomorphic with the game on the left. This
completes the proof of Theorem 4.4.5.

102



4.5 Facts about the Logic

To demonstrate usefulness of the correspondence between formulae and
automata, but also for technical use in further proofs, we shall now establish
some facts about the logic (and automata).

4.5.1 Guarded Formulae and Automata

We start showing that without loss of generality formulae are guarded.

De�nition 4.5.1. We say that an automaton A is guarded if it does not
contain a loop without modal transitions (i.e. a sequence of states q1...ql
with qi+1 ∈ δ(qi) for all i < l and q1 ∈ δ(ql)). A formula ϕ is guarded if it is
guarded when seen as an automaton Aϕ.

It is relatively easy to see that an automaton can be turned into an
equivalent guarded one.

Proposition 4.5.2. Every countdown automaton can be transformed into
an equivalent guarded one.

Proof. Recall that a loop in a countdown play is called bad for player P if
it leads from position v to itself, P owns the rank of r and no position in
the loop has a rank greater than r. The maximal length of a sequence of
consecutive ε-moves not containing a bad loop in the semantic game G(A) is
bounded by some k < ω depending on the automaton. Take a new automa-
ton A′ that simulates the original A and additionally stores in its memory
the sequence of all states visited since the last modal move. In case A′ de-
tects a loop bad for P , it stops and P looses immediately. Since the bound
k depends only on A and not on the model, A′ is well de�ned as it only
needs to remember a sequence of states of length at most k. By Proposi-
tion 4.3.5, without loosing generality we may require players to use strategies
that avoid loops bad for them, so A′ accepts the same language as A. Since
A′ is guarded by design, this completes the proof.

Let us have a look at how the maximal number k of ε-transitions without
a bad loop depends on A. In a sequence of ε-transitions without a bad loop,
no state q with the most important rank r can repeat. Hence, there could be
at most |rank−1(r)| ≤ |Q| visits to r in the sequence. The places where the
sequence passes through r decompose it into subsequences that visit fewer
ranks. Using these observations one can show by induction on d that if w
is such a sequence visiting d ranks then |w| ≤ (|Q| + 1)d. Since the total
number |R| of ranks of A is �xed, we get the upper bound:

k ≤ (|Q|+ 1)|R|
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as d ≤ |R|. If the ranks are assigned injectively to states, the above reasoning
shows k ≤ 2|R|.

On the other hand, we give an exponential lower bound on k, even in
the case when the automaton is injectively ranked. For simplicity assume
that there is an ε-transition between every two states, that the ranks are
given as a �nite subset {0, ..., n} ⊆ ω with the usual ordering and that
each rank i is assigned to a unique state qi. Recursively de�ne w0 = ε and
wi+1 = wiqi+1wi. The sequence wn has length 2n − 1 yet it contains no bad
loops and so it witnesses:

2|R| − 1 ≤ k.

Let us now have a look at a particular case of automata: logical formulae.

Proposition 4.5.3. Every countdown formula can be transformed into an
equivalent guarded one.

Proof. Every formula can be seen as an automaton, massaged via Propo-
sition 4.5.2 to obtain a guarded one and translated to a new, equivalent
formula. Inspecting the translation from Subsection 4.4.2 one could check
that it preserves guardedness and so the new formula is guarded, therefore
proving Proposition 4.5.3. Instead of doing that, let us give a more direct
translation that exploits the game semantics for the logic but avoids abstract
automata.

Given a formula ϕ we modify it inductively (proceeding from leaves to the
root of the syntactic tree). Replace every subformula θ = ηαk (x1, ..., xn).(ψ1, ..., ψn)
with:

θ′ = ηαk,1(xi,j)i,j≤n.(ψi,j)i,j≤n

where ψi,j is obtained from ψi by replacing

(i) every guarded xm with xm,1 and

(ii) every other xm with >/⊥ (respectively) if j = n and η = ν/µ, or with
xm,j+1 otherwise.

This way, the number of visits to immediate subformulae of the ηα operator
without any modal move is counted in the index j. If the index j reaches n
and the play moves to some variable xm,n, then by the pigeonhole principle
some of the formulae ψi,j visited without a modal move nor a visit to a su-
performula of θ′ must have the same index i. This in turn corresponds to a
repeated visit to some ψi in the semantic game for the original formula, with-
out modal moves nor visits to a superformula of θ, which implies existence
of a loop bad for ∃ve/∀dam when η = ν/µ, respectively.

Note that in the case of scalar formulae, the above construction yields a
guarded formula that is also scalar and linear in the size of the original one:
we just replace every unguarded occurrence of a variable bound by µα (or
να) by ⊥ (or >, respectively).
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4.5.2 Pre-modal Phase

The Example 4.3.3 shows that countdown games heavily depend on the
counters: the players may need to look at the counter values not only to
update them but also to choose moves in the arena. Proposition 4.3.4 gives
a very restricted form of counter-independence. Although the guaranteed
property of strategies is slightly abstract, in the context of games induced
by automata (and in particular, formulae) it can be turned into a more
human-friendly form.

For an automaton A with states Q, a valuation val and a point mI in a
model M, the pre-modal phase of the game Gval(A), (mI , qI) consists of all
pre-modal plays, i.e. plays with no modal move. All the positions accessible
in that phase are of the form (mI , q) for q ∈ Q and if A is guarded, then no
pre-modal play is longer than |Q|. Hence, it follows from Proposition 4.3.4
that:

Proposition 4.5.4. In every game Gval(A), (mI , qI) for a guarded automa-
ton A, the winning player has a pre-modally counter-independent (i.e. counter-
independent in the pre-modal phase) winning strategy.

Since all the positions appearing in the pre-modal phase only have the
initial point on the �rst coordinate, we can identify pre-modal plays π and
π′ starting in (m, q) and (m′, q) for di�erent m 6= m′ if π equals π′ after
swapping m and m′. Likewise, we simplify the pre-modal guide:

σI : ({m} ×Q)<|Q| → {m} ×Q

guiding pre-modal σ-plays to:

σI : Q<|Q| → Q

by skipping the redundant �rst coordinate. Note that the assumption that
σI guides some winning strategy from point m may imply some conditions
on the atomic propositions satis�ed by that point.

The next two propositions are a bit technical but will be useful in Sec-
tions 4.6 and 4.8. We �rst prove that strategies with equal pre-modal guides
can be synchronized so that they agree on all the pre-modal moves (and not
only the positional ones).

Proposition 4.5.5. Consider two points m0,m1 in a modelM, a valuation
val and a guarded automaton A. Assume that ∃ve wins the game Gval(A)
from m0 and m1 with pre-modally counter-independent strategies σ0 and σ1,
respectively, both guided by the same pre-modal guide σI . Then there are
winning strategies σ′0, σ

′
1 guided by σI such that:

� σ′0 and σ′1 behave the same in the pre-modal phase, up to swapping the
points m0 and m1, and
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� for every (mi, ctr) reachable by a σ′i-play, there are (m0, ctr0) and (m1, ctr1)
such that each (mj , ctrj) is reachable by a σj-play and ctri 4better ctr.

A symmetric statement works for ∀dam.

Proof. By symmetry, we only focus on the case for ∃ve. Starting in m0 or
m1, she can maintain the invariant that for the play π so far, there are π0 and
π1 consistent with σ0 and σ1 respectively, such that (i) all the three plays are
(point-wise) equal on her choices of positions and on all ∀dam's choices, and
(ii) her choices of counter values in π are the maximum of the corresponding
choices from π0 and π1. This way either she wins in the pre-modal phase or
the play reaches a modal move with counter values at least as good for her
as after some σ0- and σ1-plays, respectively. She may then continue from mi

with the winning strategy σi.

Under some monotonicity conditions, strategies with the same pre-modal
guide can be combined into a third one.

Proposition 4.5.6. Consider three points m1,m2,m3 in a modelM s.t. for
every a ∈ Act, the sets Sa

1 , S
a
2 , S

a
3 of their a-successors are monotone, i.e.

Sa
1 ⊆ Sa

2 ⊆ Sa
3; a valuation val that does not distinguish mi (i.e. mi ∈

val(x) ⇐⇒ mj ∈ val(x) for all x ∈ Var); and a guarded automaton A. If a
player P wins the semantic game Gval(A) from m1 and m3 using strategies
σ1, σ3 guided by the same pre-modal guide σI , then P also wins from m2 with
a strategy σ2 guided by σI .

Proof. By Proposition 4.5.5, we may assume that σ1 behaves the same as
σ3 in the pre-modal phase. Initially P may apply the same strategy from
m2, as the point in the model does not matter, or does not change, in the
pre-modal phase. Consider any play consistent with this strategy. If P does
not win already in the pre-modal phase, the play reaches a modal move, i.e.
a con�guration (m2, q) with q ∈ Q such that δ(q) = (a, p). If the state q is
owned by P then P may continue with σ1, and if q is owned by P 's opponent
then P may continue with σ3.

4.6 Vectorial vs. Scalar Calculus

In this section we investigate the relation between scalar and vectorial
formulae. We have already seen with Example 4.2.5 that unlike with stan-
dard �xpoints, the Beki¢ principle is not valid in the countdown setting.
Interestingly, scalar formulae correspond to automata with a simple syntac-
tic restriction.

Proposition 4.6.1. Scalar countdown formulae and automata where every
two states have di�erent ranks have equal expressive power.
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Proof. Inspecting the translations between formulae and automata from Sub-
sections 4.4.1 and 4.4.2, it is evident that injectively ranked automata are
translated to scalar formulae, and that, although in our translation the choice
of the ranks function is not deterministic, every scalar formula can be trans-
lated to an injectively ranked automaton.

Since the Beki¢ principle fails, a natural question is whether there is an-
other way of transforming vectorial formulae to scalar form (or, equivalently,
arbitrary countdown automata to injectively ranked ones). We shall give
a negative answer in Theorem 4.6.2. However, before we proceed, let us
analyze the following example, which shows that scalar formulae are more
expressive than they may seem, covering in particular the property from
Example 4.2.5.

4.6.1 Languages of Unbounded In�xes

Fix a regular language of �nite words L ⊆ Γ∗. Let U(L) ⊆ Γω be the
language of all in�nite words that contain arbitrarily long in�xes from L.
For instance, the language from Example 4.2.5 is U(a∗). We shall now show
that U(L) can be de�ned in the countdown µ-calculus, �rst by a vectorial
formula, then by a scalar one.

Consider a �nite deterministic automaton A = (Q, δ, qI , F ) that recog-
nizes L. Let δ+ : Γ+ × Q → Q be the unique inductive extension of the
transition function δ : Γ×Q→ Q to nonempty words. De�ne:

Kp,q = {w ∈ Γ+ | δ+(w, p) = q}

the (regular) language of nonempty words leading from p to q in A, and
let Kp,F denote the union

⋃
q∈F Kp,q. By the pigeonhole principle we have

U(L) =
⋃
q∈Q Uq(L), where Uq(L) ⊆ Γω consists of words such that for

every n < ω, w has an in�x wn = vIu1...unvF ∈ L s.t. (i) vI ∈ KqI ,q, (ii)
u1, ..., un ∈ Kq,q, and (iii) vF ∈ Kq,F . Then Uq(L) can be de�ned by a
vectorial formula:

Uq(L) = Jνω1 (x1, x2).(〈Γ∗KqI ,q〉x2, 〈Kq,q〉x2 ∧ 〈Kq,F 〉>)K

where 〈K〉ψ is the formula as explained in Example 4.2.5. Indeed, the cor-
responding semantic game on a word w proceeds as follows:

1. ∀dam chooses a number n < ω as the value of his only counter,

2. ∃ve skips a pre�x v0vI ∈ Γ∗KqI ,q of w,

3. ∀dam decrements his counter;

4. ∃ve keeps moving through u1, u2, ... ∈ Kq,q so that after each step,
some state in F is reachable from q by some pre�x of the remaining
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word. After each such choice of ui ∀dam has to decrement his counter,
and so ∃ve wins i� she can make at least n− 1 such steps.

The two di�erent stages in which ∀dam's counter is decremented re�ect the
two-phase dynamics of the game: �rst ∀dam challenges ∃ve with a number,
and then ∃ve shows that she can provide an in�x long enough.

It is more tricky to de�ne the language Uq(L) with a scalar formula, but it
turns out to be possible. To this end, observe that without loss of generality
we may restrict attention to words w such that:

1. the in�xes wn ∈ L start arbitrarily far in w;

2. each wn can be decomposed as vIu1...unvF ∈ L s.t. (i) vI ∈ KqI ,q, (ii)
u1, ..., un ∈ Kq,q, (iii) vF ∈ Kq,F , and additionally (iv) all ui begin with
the same letter a ∈ Γ;

3. there are at least two distinct letters a, b ∈ Γ that appear in�nitely
often in w;

4. the �rst letter of w is b.

Indeed, for (1) note that otherwise wn start in the same position k for all n
large enough. But then even the stronger property �There exists a position
k such that the run of A from k visits q and F in�nitely often� holds, and
this is easily de�nable by a �xpoint formula.

Item (2) follows from the pigeonhole principle and the observation that
in wn×|Γ| = vIu1...un×|Γ|vF at least n ui's begin with the same letter.

For (3) observe that otherwise w has a su�x aω for some a ∈ Γ, in
which case membership in Uq(L) is de�nable by a �xpoint formula. This is
because an ultimately periodic word is bisimilar to a �nite model, and so
every monotone map reaches its �xpoints in �nitely many steps, meaning
that the countdown operator νω is equivalent to ν∞.

Finally, for (4) note that the language Uq(L) is closed under adding and
removing �nite pre�xes, and so if a formula ϕ de�nes Uq(L)∩ bΓω, then the
formula 〈Γ∗〉(〈b〉> ∧ ϕ) de�nes Uq(L).

With this in mind, de�ne:

ϕ = νωx.(〈b〉>∧ 〈Γ∗KqI ,q〉(〈a〉>∧x))∨ (〈Kq,q〉(〈a〉>∧x)∧〈a〉>∧ 〈Kq,F 〉>).

Note how 〈b〉>∧x and 〈a〉>∧x replace x1 and x2 from the vectorial formula.
Consider the corresponding semantic game on a word w. Consider con�g-
urations of the game with the main disjunction as the formula component.
Every in�nite play of the game must visit such con�gurations in�nitely often.
In such a con�guration, if the next letter in the model is either a or b then
∃ve must choose the right or left disjunct, respectively. In particular, once
the game reaches a con�guration where 〈a〉> holds, it must also hold every
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m0m1m2···

n0n1n2···

a, b
a, b

a, b

b

bb

Figure 4.1: The modelM. Blue arrows represent edges labeled both with a
and b, and pink arrows are edges labeled only with b.

time the variable x is unraveled in the future. As a result, ∃ve wins from
a con�guration where 〈a〉> holds against ∀dam's counter n < ω i� there is
u1...un+1vF starting in the current position such that u1, ..., un+1 ∈ Kq,q,
each ui starts with a, and vF ∈ Kq,F . Moreover, ∃ve wins from a position
where 〈b〉> holds, against ∀dam's n+1 < ω, i� there is vI ∈ Γ∗KqI ,q starting
in the current position such that the next position after vI satis�es 〈a〉> and
∃ve wins from there against n. Putting this together, we get that ∃ve wins
from a position satisfying 〈b〉> against n i� there is vIu1...unvF = wn as in
condition (2) above. Since the game starts with ∀dam choosing an arbitrary
n < ω, it follows that indeed ϕ de�nes Uq(L).

4.6.2 Greater Expressive Power of the Vectorial Calculus

We now show an example of a property that is de�nable in the vectorial
countdown calculus but not in the scalar one.

Fixing Act = {a, b}, consider a model M = (M,
a→, b→) with points

M = {mi, ni | i < ω}, and with exactly the edges: mi
a→ mj , ni

a→ mj and

ni
b→ mj for all i > j; and mi

b→ mj for all i and j. Note that the relation
a→ is a subset of

b→. The model is shown in Fig. 4.1.
Consider the vectorial sentence νω1 (x1, x2).(〈b〉x2, 〈a〉x2). This describes

the property there are arbitrarily long paths with labels in ba∗, and so it is true
in all points mi and false in all points ni. The following result immediately
implies that this property cannot be de�ned in the scalar countdown calculus:

Theorem 4.6.2. For every scalar sentence ϕ, there exists i < ω such that:

mi ∈ JϕK ⇐⇒ ni ∈ JϕK.
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Proof. Observe that since scalar sentences are closed under negation, it is
enough to prove that for every scalar ϕ there is a κϕ < ω such that for all
i > κϕ:

mi ∈ JϕK =⇒ ni ∈ JϕK (?)

Moreover, since every scalar formula can be transformed into an equivalent
guarded formula that is also scalar, it su�ces to prove (?) for guarded for-
mulae. For the rest of the proof, we �x a scalar sentence ϕ and denote
G = G(ϕ) = (V,E, rank, ctrI). Thanks to Proposition 4.6.1 we assume ϕ
when seen as an automaton is injectively ranked and Proposition 4.5.3 al-
lows us to assume that ϕ is guarded. Let us start with an easy fact.

Proposition 4.6.3. There exists some N < ω such that for all N ≤ i < j:

mi ∈ JϕK ⇐⇒ mj ∈ JϕK

and if ∃ve wins the corresponding evaluation games then she does so with pre-
modally counter-independent strategies σmi and σmj with the same pre-modal
guide σI that does not depend on i, j.

Proof. Note that the relations
a→ and

b→ are monotone, i.e. the bigger i,
the more a- and b-successors mi has. On the other hand, there are only
�nitely many possible pre-modal guides, so by the pigeonhole principle if
∃ve wins from mi for arbitrarily big i, some pre-modal guide σI is used for
arbitrarily big i. Thus, by Proposition 4.5.6 she can use σI to win for all i
big enough.

Towards (?), assume that mi ∈ JϕK for all i big enough (otherwise, by
Proposition 4.6.3, ϕ is false in mi for all i big enough, which trivially implies
(?)) and denote by N the least number for which Proposition 4.6.3 holds. We
show that without losing generality the strategies have some nice properties:

Proposition 4.6.4. The family {σmi | i < ω} of strategies can be massaged
so that for every i > N , if a σmi-play visits a modal position for the �rst
time and it has the shape (mi, 〈a〉ψ), then σmi chooses a point mj for some
j < N .

Proof. By Proposition 4.6.3, σmi and σmN have the same pre-modal guide
σI . Therefore, by Proposition 4.5.5, there is a strategy σ′mi winning from mi

guided by the same σI and only reaching pre-modal con�gurations at least
as good for ∃ve as the ones reachable by σmN . Then, whenever (mi, 〈a〉ψ) is

reached in a pre-modal σ′mi-play, by the monotonicity of
a→ and the assump-

tion that N < i, ∃ve may just continue with σmN . Moreover, since σmN is a
legitimate strategy, it must pick a point mj for some j < N , as desired.
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Denote by B the phase of the game G(ϕ) that consists of plays of the
shape π = ξρ such that the play ξ is pre-modal and leads to 〈b〉 and ρ

(starting with an ∃ve's choice of a b→-successor of the initial point mi) does
not visit (i) a formula beginning with [a], [b] or 〈b〉, nor (ii) a formula with a
rank that was visited in the pre-modal phase (that is, in ξ) with a possible
exception for its last con�guration:

B =

{
ξρ

∣∣∣∣ ξ is pre-modal and leads to 〈b〉; ρ is nonempty and has no
proper pre�x visiting [a], [b], 〈b〉 nor a rank visited in ξ

}
where by a visit to a modal operator ♥ we mean a visit to a formula ♥ψ
beginning with it. Note that the only modal moves that start and end in
B are those corresponding to 〈a〉. The next step is the following further
enhancement of the strategies:

Proposition 4.6.5. The family {σmi | i < ω} of strategies can be massaged
so that there exists a �nite bound kmax < ω such that no σmi-play π ∈ B
contains more than kmax modal moves.

Before proving the above proposition, let us demonstrate how it implies
(?). Put:

κϕ = kmax +N + 1

where kmax is the bound from Proposition 4.6.5. We show that ni ∈ JϕK for
every i > κϕ. To this end, consider the strategy σi with above+1(σmi , σi),
i.e. the strategy 1-above σmi which exists by Proposition 2.2.4. In the pre-
modal phase of the evaluation game from (ni, ϕ), use σi (recall that we
identify pre-modal plays starting in di�erent (mi, ϕ) and (ni, ϕ) if they are
equal up to swapping positions (mi, θ) and (ni, θ) for all θ). Since mi and
ni have the same

a→-successors, if a play visits 〈a〉 or [a], ∃ve may continue

with σi and win. The same is true for [b], as every
b→-successor of ni is also

a
b→-successor of mi.
The only interesting case is when a play reaches 〈b〉 and σi chooses mj′

which cannot be chosen from i, i.e. j′ ≥ i (if j′ < i then mj′ is a
b→-successor

of ni, so ∃ve may use σi). In this case, ∃ve may choose mj where j = kmax+N
and play maintaining the invariant that for the current play π, as long as it
belongs to B, there is a σi-play π′ in B such that:

1. all subformulae and ordinals are the same in π and π′,

2. for the last points mj and mj′ of π and π′, respectively, we have:

k +N ≤ j ≤ j′ and j < i

where k is the bound on the number of modal moves that can be made
in a σi-play extending π′ without leaving B.
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It is straightforward to maintain the invariant on ε-transitions and when
counter values are updated. If π ends with a visit to 〈a〉 (so ∃ve has to pick
an

a→-successor of mj) and σi(π
′) dictates the choice of mj′′ for some j′′ < ω

then either:

� j > j′′, hence mj
a→ mj′′ and ∃ve wins using πρ 7→ σi(π

′ρ), or

� j ≤ j′′, which combined with item (2) of the invariant gives:

k +N ≤ j ≤ j′′.

Since π′ extended with the choice of mj′′ ends with a modal move, we
are left with at most k− 1 possible modal moves in B, so the choice of
mj−1 preserves the invariant, as k−1+N ≤ j−1 ≤ j′′ and j−1 < j < i.

Since ϕ is guarded, the maximal number of consecutive ε-transitions in a
play is bounded by |SubFor(ϕ)| (which corresponds to 2 · |SubFor(ϕ)| moves,
including the countdown and the positional ones). Since the number of
modal moves before the end of B is bounded by kmax, after at most:

2 · kmax · |SubFor(ϕ)| < ω

moves either the game ends in B or eventually visits (i) [a], [b] or 〈b〉 or (ii)
a rank seen in the pre-modal phase. If the game ends in B then thanks to
item (1) of the invariant ∃ve wins (as the strategy σi is winning).

In the other case with (i) or (ii), the invariant implies that for the current
play π there is a σi-play π

′ satisfying (1) and (2).
When (i) the play visits [a], [b] or 〈b〉, ∃ve may continue as with σi, i.e.

using σ′i de�ned as:
σ′i(πρ) = σi(π

′ρ)

for all ρ. If π leads to [a] then σ′i is legal due to monotonicity of
a→ and

inequality j ≤ j′ guaranteed by item (2) of the invariant. Similarly, since mj

and mj′ have the same
b→-successors, σ′i is legal also if the play leads to 〈b〉

or [b]. Since σ′i-plays di�er from σi-plays only by a �nite pre�x π, ∃ve wins.
The remaining case (ii) is when the game moves to a subformula ψ such

that rank(ψ) = r was visited in the pre-modal phase. Since ϕ is scalar
(and so by Proposition 4.6.1 injectively ranked when seen as an automaton),
this implies that actually the same formula ψ must have been visited in the
pre-modal phase.

Denote by πψ and π′ψ the pre-modal pre�xes of π and π′, respectively,
ending just after the counter update corresponding to the �rst visit in ψ (in
particular, πψ and π′ψ end with a positional con�guration). By item (1) of the
invariant, the plays π and π′ (πψ and π′ψ) lead to the same counter assignment
ctr (ctrψ, respectively). Since π′ψ is a σi-play leading to ((mi, ψ), ctrψ, psn)

and by de�nition σi is a strategy 1-above σmi , there exists a σmi-play π
−
ψ
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leading to ((mi, ψ), ctr−ψ , psn) with above+1(ctr−ψ , ctrψ). Clearly, ∃ve can win

from ((mi, ψ), ctr−ψ , psn) by just continuing the σmi-play, i.e. using σ de�ned
as:

σ(ρ) = σmi(π
−
ψ ρ)

for all ρ. We claim that also:

∃ve wins from ((mj , ψ), ctr−ψ , psn) (4.17)

for every N ≤ j < i. Indeed, she can use the same σ:

1. In the pre-modal phase σ is legal, as both games start with the same
subformula ψ.

2. We justify that σ is valid also when after a pre-modal play ρ the game
reaches a formula θ that begins with a modal operator. Observe that
since ρ is pre-modal it does not change the point, meaning that it leads
from (mj , ψ) to (mj , θ) and from (mi, ψ) to (mi, θ). Consider cases:

� If θ begins with 〈b〉 or [b] then the possible moves from the position
(mj , θ) are the same as from (mi, θ). This is because the points mi

and mj have the same
b→-successors. Therefore, ∃ve can continue

from (mj , θ) as if she started from (mi, θ).

� Similarly, j ≤ i implies that every
a→-successor of mj is an

a→-
successor of mi. Hence, if θ begins with [a] then σmi can be used

to win against every ∀dam's choice of an
a→-successor of mj .

� The remaining case is when θ begins with 〈a〉. By Proposi-
tion 4.6.4, if in the �rst modal step of a σmi-play ∃ve has to

provide an
a→-successor mk of mi, then σmi chooses some mk with

k < N . By de�nition of σ (as π−ψ is pre-modal) the same is true
for σ. It follows from N ≤ j that the choice given by σ is legal
from mj .

This proves (4.17).

Note that since by de�nition the end of π (and π′) is the �rst time when
the game revisits some rank seen in the pre-modal phase, we have:

ctrψ(r′) = ctr(r′) (4.18)

for every nonstandard rank r′ ≥ r where r is the rank of ψ. If there was
r′ ≥ r with ctrψ(r′) 6= ctr(r′) this would mean that the the counter for r′ was
either decremented or reset between πψ and π. A reset is only possible upon
a visit to an even more important r′′ > r′ and a decrement upon a visit to
r′.

Consider two cases. First, if r = r′ and the corresponding counter gets
decremented then there must be a visit to ψ between πψ and π. This is
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because ϕ is scalar and thus injectively ranked, so the only possibility to
visit r is by visiting ψ. However, since ϕ is guarded it is not possible to visit
ψ twice in the pre-modal phase. And since the end of π is the �rst time
when r is visited in the post-modal phase, the post-modal part of the play
between πψ and π does not visit r either.

In the remaining case a rank strictly greater than r must have been visited
between πψ and π. Since no subformula of ψ has a rank greater than r this
requires a visit to some formula that is not a subformula of ψ. But the only
way to leave SubFor(ψ) is to unravel a variable bound in some superformula
θ of ψ. This, however, could not happen. Since ψ was visited in the pre-
modal phase, so was every its superformula, including θ. The rest of the
argument is the same as in the previous case: guardedness of ψ implies that
θ could not have been revisited in the pre-modal phase. And if θ was visited
in some strict post-modal pre�x of π this would contradict the assumption
that the end of π is the �rst time when a rank seen in the pre-modal phase
is revisited: rank(θ) would be revisited earlier. This completes the proof of
(4.18).

To �nish the proof of (?) we need to show how ∃ve can win once π has
been played and the game reached a countdown con�guration ((mj , ψ), ctr, cdn).
By item (2) of the invariant, N ≤ j < i. We show how ∃ve can guarantee
that for every result ctr′ of the upcoming counter update from ctr:

ctr−ψ 4better ctr′ (4.19)

which implies:

((mj , ψ), ctr−ψ , psn) 4better ((mj , ψ), ctr′, psn).

so that she can win after the update thanks to (4.17).
Note that in the update from ctr to ctr′ counters for all the ranks r′ < r

are reset to their initial values (as they were reset when moving to ctrψ) and
counters for all r′ > r are not changed (and by (4.18) their values will be
equal to the ones in ctrψ). That is:

ctr′(r′) = ctrψ(r′)

for all r′ 6= r, i.e. the only possible di�erence between ctr′ and ctrψ is in the
value for r. On the other hand recall that by de�nition above+1(ctr−ψ , ctrψ)
and so in particular:

ctr−ψ 4better ctrψ.

Consider cases:

� If r is standard it has no corresponding counter and so the update
deterministically leads to ctr′ with:

ctr−ψ 4better ctrψ = ctr′

which implies (4.19).
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� If r is nonstandard and belongs to ∀dam, he has to pick ctr′(r) < ctr(r)
and all the other counters in ctr′ will be the same as in ctrψ. Since by
(4.18) ctr(r) = ctrψ(r) it follows that:

ctr−ψ 4better ctrψ 4better ctr′

(and hence (4.19)) for every possible ctr′.

� If r is nonstandard and belongs to ∃ve, we need to provide her with a
valid choice of ctr′. De�ne:

ctr′(r′) =


ctrψ(r′) if r′ > r,

ctr−ψ (r) if r′ = r,

ctrψ(r′) if r′ < r.

Such ctr′ is a legal update from ctr, because:

ctr(r) = ctrψ(r) = ctr−ψ (r) + 1.

The �rst equality is (4.18). The second follows from above+1(ctr−ψ , ctrψ)
and the observation that ctrψ(r) 6= ctrI(r) because ctrψ is the counter
assignment immediately after an update corresponding to ψ (which
has rank r). It follows from the de�nition that:

ctr−ψ 4better ctr′.

That is, we get (4.19).

This completes the proof of (?) from Proposition 4.6.5.

It remains to prove Proposition 4.6.5, i.e. to re�ne strategies σmi to obtain
a �nite bound kmax < ω on the number of modal moves in a play in the
phase B. We will show a stronger fact: no play π ∈ B visits the same
formula of shape 〈a〉ψ twice. Then, Proposition 4.6.5 follows with the bound
kmax = |SubFor(ϕ)| because a visit to any of the other modal operators ([a],
〈b〉 or [b]) ends B.

Before we go into the somewhat technical details, let us sketch the core
idea of the proof which splits into two steps. First, we show that if instead
of updating the counters during B the players postpone the updates and
only decrement the counters once, upon leaving B, this does not change the
winner of the game. Second, we use this equivalence to massage σmi so that
instead of performing a sequence:

(mj , 〈a〉ψ)→ (mj′ , ψ)→ ... → (ml, 〈a〉ψ)→ (ml′ , ψ) ∈ V +

of modal moves corresponding to 〈a〉ψ, ∃ve immediately goes to the last
point (mj , 〈a〉ψ)→ (ml′ , ψ). This is possible thanks to transitivity and well-

foundedness of
a→ and avoids repetitions of 〈a〉ψ.
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To prove the claim, it is enough if for every minimal (and therefore
necessarily ending with a �rst modal move, corresponding to 〈b〉) πI ∈ B we
re�ne σmi to a strategy σπI so that:

1. σπI does not allow to visit any 〈a〉ψ twice in any play ρ ∈ BπI and

2. the behavior on all other plays is not changed, meaning that σπI (ρ) =
σmi(ρ) for every ρ without πI as a pre�x.

If we do that for every minimal πI ∈ B, we may combine all such re�ned
strategies into one:

σB(ρ) =

{
σπI (ρ) if πI is the minimal pre�x of ρ from B,
σmi(ρ) ρ has no pre�x in B;

that avoids repetitions of each 〈a〉ψ in every π ∈ B.
Towards such a re�nement of σmi , �x a minimal πI ∈ B leading to a

winning countdown con�guration γ = ((mz, θz), ctrz, cdn). Denote vz =
(mz, θz) ∈ V and:

B◦ = {ρ | πIρ ∈ B}.

To get our desired σπI it su�ces to construct a winning strategy for G, γ
that avoids repetitions of each 〈a〉ψ in every π ∈ B◦ and behaves as σmi on
plays without πI as a pre�x.

Note that membership in B◦ only depends on the underlying positions.
Let V ◦ ⊆ V be the set of all the positions of shape (m, ξ) with ξ either (i)
beginning with [a], [b] or 〈b〉 or (ii) having a rank that was visited in a proper
pre�x of πI . If vz ∈ V ◦, then B◦ = {ε} and there is nothing to prove so let
us focus on the other case vz /∈ V ◦. Then:

π ∈ B◦ ⇐⇒ no proper pre�x of π visits V ◦

for all plays π in G, γ.
We want to consider partial functions f : V ∗ → V that are candidates

for a B◦-guide of some winning strategy σ in G, γ. In order to guide σ in B◦,
f needs to satisfy some basic conditions, e.g. if it allows to traverse vertices
v = v1...vk ∈ (V − V ◦)∗ and vk belongs to ∃ve then f dictates a legal move
vk+1 = f(v). To capture such conditions formally, consider the simple parity
game G̃ = (V,E, rank) obtained from G by making all the ranks standard.
To avoid confusion, we will call simple parity plays v ∈ V ∗ in G̃ paths and
reserve the term plays for G.

Note that since G̃ is obtained from G by forgetting the counters, if a play
π ∈ B◦ visits positions pos(π) = v then v is a path in G̃, vz not visiting V ◦,
with a possible exception for the last position. We also have the opposite.
That is, for every v ∈ V ∗:

v is a path in G̃|V ◦, vz ⇐⇒ v ∈ pos[B◦]. (4.20)
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For the missing left to right implication consider a path v in G̃|V ◦, vz. We
need to extend v to a play in G, γ, i.e. provide consistent choices of counter
values for both players. It su�ces if whenever the owner of rank r has to
pick value α, (s)he chooses the number of the remaining visits to r in v (so
that (s)he is not stuck before traversing v). Such number is not greater than
|v| and hence �nite. Therefore, to show that the above strategy is legal it is
enough to prove that the value before the �rst update (i.e. in ctrz) is a limit
one. Since v ∈ (V − V ◦)∗(V ◦ + ε), no position in v other than the last one
(for which we do not need to update the counter to prove the claim) has a
rank that was visited in πI . It follows that all the counters to be updated
have initial, and hence limit values in ctrz.

Since every modal move over
b→ leaves B◦, it follows that all the positions

visited in π ∈ B◦ are of the form (mk, ψ) for k ≤ z (because
a→ only leads

to points with a strictly smaller index and πI leads to (mz, θz)) and no such
position repeats in B◦ (by guardedness of ϕ and acyclicity of

a→). It follows
that the set pos[B◦] is �nite:

|pos[B◦]| < ω (4.21)

and in particular plays in B◦ have length bounded by a �nite constant.
Combining (4.20) and (4.21) we get:

The set of paths in G̃|V ◦, vz is �nite. (4.22)

We call a partial function f : V ∗ → V , thought of as a candidate for a
B◦-guide of a winning strategy for G, γ, a proto-strategy if f is a non-loosing
strategy in G̃|V ◦, vz. Every f that is a B◦-guide for some winning σ in G, γ
is a proto-strategy. Observe that for every f -path v ∈ (V − V ◦)∗ starting
from vz there exists a σ-play πv ending in positional mode with pos(πv) = v.
To construct such πv it su�ces for ∀dam to (i) follow v in positional mode
(since f guides σ, the choices σ dictates to ∃ve will stay in v as well) and
(ii) whenever he needs to decrement a counter for r, pick the number of
remaining visits to r in v (as in the proof of (4.20)). It follows that for every
f -path v from vz to some v controlled by ∃ve, f(v) = σ(πv) is de�ned and
dictates a legal move. This proves that f is a proto-strategy, because by
(4.22) there are no in�nite paths in G̃|V ◦, vz and so trivially ∃ve wins in all
in�nite f -paths.

We prove that for every proto-strategy f the following are equivalent:

1. ∃ve has a winning strategy σ for G, γ guided by f in B◦.

2. ∃ve wins in the following game:

(i) ∀dam picks an f -path vv starting at vz and ending in v ∈ V ◦;
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(ii) ∃ve and ∀dam play a usual countdown game from γ but on arena
restricted to v (i.e. we only update the counters and deterministically
follow v);

(iii) ∃ve wins i� the resulting con�guration (v, ctr, cdn) is winning for
∃ve in G.

3. ∃ve wins in the following game:

(i) ∀dam picks an f -path vv starting at vz and ending in v ∈ V ◦;
(ii) the owner of each r ∈ Dv (starting from more important ranks)
picks a �nal counter value ctr(r) < ctrz(r), for all other r ∈ D−Dv we
put ctr(r) = ctrI(r) if r was reset in v and ctr(r) = ctrz(r) otherwise;

(iii) ∃ve wins i� the con�guration (v, ctr, cdn) is winning for ∃ve in G.

The set Dv ⊆ D of nonstandard ranks in (3) contains rank r i� r appears
in v and no higher rank appears after the last occurrence of r. These are
the ranks for which there is a point in v when the corresponding counter is
decremented and not reset to the initial value any more in v. Since we are
dealing with a game corresponding to a scalar formula ϕ, Dv only depends
on the last formula in v: nonstandard r belongs to Dv i� it is a rank of some
θ which is (i) a subformula of θz and (ii) a superformula of the last formula
in v.

The implication (1) =⇒ (2) is straightforward. Once ∀dam picked vv,
∃ve simply uses σ until v is traversed. This way, ∃ve preserves the invariant
that the play belongs to B◦ (because v ∈ (V − V ◦)∗) and is consistent with
σ (because σ is guided by f in B◦ and hence ∃ve's positional moves dictated
by f are consistent with σ). Since σ is winning, it only leads to winning
con�gurations and therefore ∃ve wins (2).

To prove (2) =⇒ (1), assume that for every f -path vv ∈ (V − V ◦)∗V ◦
starting at vz ∃ve has a strategy σvv winning in the second stage of (2) after
∀dam picked vv in the �rst stage. Our goal is to provide her with σ for (1).
When during B◦ she has to pick an edge, she uses:

σ(ρ) = f(pos(ρ))

so that σ is guided by f . For choosing ordinals, observe that thanks to (4.22)
for every countdown play ρ guided by f there are only �nitely many f -paths
extending pos(ρ). Hence, for every play ρ ending in ∃ve's choice of a counter
for rank r, she takes the ordinal:

σ(ρ) = max{σvv(ρ)(r) | vv ∈ (V − V ◦)∗V ◦ is an f -path extending pos(ρ)}

which is legal, since the longer ρ is, the fewer paths extend pos(ρ). This way,
she either wins before B◦ ends, or leave it in a winning con�guration, and in
the later case she may continue with any winning strategy.
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It remains to prove that (2)⇐⇒ (3). Note that in (2), once the path vv
is chosen, the only nontrivial choice of a value for r is upon the �rst visit
to r such that no greater rank will be visited further in v. If a greater rank
will be visited somewhere further in v, the counter for r will be reset and
thus it su�ces for its owner to choose the number k < ω of visits to r before
the closest reset. Since v ∈ (V − V ◦)∗, r was not present in the pre-modal
phase and the corresponding counter must have an initial (and hence limit)
value in ctrz so this is legal. Among positions in v where r will not be reset
any more, the only nontrivial choice is in the �rst one: in order to end the
game with ctr(r) = α it su�ces to choose α + k where k is the number of
remaining visits to r before the end of v. This is legal for the same reasons
as in the previous case.

It follows that these nontrivial choices in (2) are precisely the choices for
Dv and the order of the choices is precisely the (decreasing) order on Dv.
This establishes an equivalence between (2) and (3), therefore completing
the proof of equivalence of games (1), (2) and (3).

Let σ be a winning strategy for G, γ. To complete the proof of Propo-
sition 4.6.5 it su�ces to upgrade such σ so that no formula component of
shape 〈a〉θ repeats in B◦. Thanks to (4.21) we may apply Proposition 4.3.4
and assume that σ is guided by σB

◦
in B◦. As discussed, such σB◦ is a legal

proto-strategy.
Enumerate all the subformulae 〈a〉ψ1, ..., 〈a〉ψn of ϕ of shape 〈a〉θ. We

construct, by induction on i ≤ n, a sequence f0, ..., fn : V ∗ → V of proto-
strategies such that:

1. f0 = σB
◦
,

2. whenever i < j and v ∈ V ∗ is an fj-path, there exists an fi-path
w ∈ V ∗ ending with the same position,

3. fi avoids repetitions of {〈a〉ψ1, ..., 〈a〉ψi}.

Assume we already have fi and want to construct fi+1. For every fi-path
v ∈ V ∗ ending in a visit in 〈a〉ψi+1 consider the set:

Hv = {w ∈ V ∗ | w is a fi-path, has v as a pre�x and ends with 〈a〉ψi+1}

and �x some v̂ maximal in Hv (Hv is nonempty as it contains v and must
contain a maximal path because the length of paths is bounded).

Our new strategy fi+1 acts like fi until the �rst visit in 〈a〉ψi+1 and
then, instead of making multiple

a→-moves for 〈a〉ψi+1, immediately jumps
to a last choice, i.e. a choice from a maximal v̂ extending the current path
v:

fi+1(w) =

{
fi(w) if w does not visit 〈a〉ψi+1,

fi(v̂ · u) if w = v · u and v ends with the �rst visit in 〈a〉ψi+1.
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Such fi+1 is a legal proto-strategy. Indeed, the new moves are allowed thanks
to transitivity of

a→ and fi+1 is winning in G̃, vz, because positions accessible
via fi+1 are a subset of the ones accessible by fi (and by (4.22) there are
no in�nite paths to worry about). This also implies the second property,
whereas the third one follows from the fact that each v̂ is maximal in Hv
(which means that no fi-path properly extending v̂ visits 〈a〉ψi+1).

Since by scalarity of ϕ the set Dv in the third variant of the game (3)
depends only on the last formula in v and ∃ve wins (3) with f = f0, thanks
to the second property she also wins (3) with f = fn. By equivalence of
(3) and (1), this means that some strategy σπI winning G, γ is guided by fn
in B◦. Moreover, the third property implies that σπI avoids repetitions of
all 〈a〉ψ1, ..., 〈a〉ψn in B◦, thus proving Proposition 4.6.5 and completing the
proof of Theorem 4.6.2.

4.7 Automata with Stacked Counters

A countdown automaton stores a tuple of ordinals α1, ..., αd (correspond-
ing to nonstandard ranks r1 < ... < rd) modi�ed along the play. The mod-
i�cations are restricted in two ways. First, the memory structure is hierar-
chical, meaning that the modi�cations must respect the order in the tuple.
For example, decrementing α3 requires α1 and α2 to be reset. Second, the
counters are inherently entangled with ranks: α3 is decremented i� the play
visits rank r3.

In this section we show that the second restriction can be dropped. That
is, we introduce an equivalent model of automata where the counters are
hierarchical but independent from the ranks. Such automata modify its
counters C1, ..., Cd using explicit operations incorporated into the transition
function (e.g. �decrement Ci�, �reset Cj�).

To make the counters hierarchical one could impose a syntactic require-
ment on the automaton: whenever Ci is modi�ed, all Cj with j < i are reset.
Instead of doing that, we choose a slightly di�erent structure which is hier-
archical by design: a stack. The stack stores ordinals β1...βl with βl on top.
Only the topmost βl can be decremented. Apart from that, the automaton
can pop the topmost counter (which results in the stack β1...βl−1) or push
an ordinal βl+1 (obtaining β1...βlβl+1). The intuition is that a con�guration
of a countdown automaton with ordinals α1...αd is represented as a stack
αd...α1 (i.e. with values for greater ranks being closer to the bottom of the
stack). To avoid di�erent players manipulating the same counter, we will as-
sume that each βi on the stack comes with an owner Pi ∈ {∃,∀} controlling
it. Thus, formally the stack content will be of shape (P1, β1)...(Pl, βl).

De�nition 4.7.1. An automaton with a stack of counters A consists of:

� a �nite set of states Q = Q∃ tQ∀ divided between two players;
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� an initial state qI ∈ Q;

� a transition function:

δ : Q→ P(Q t Lit t Var) t (Act×Q) t (Ops×Q)

where the set:

Ops = {push(P, α) | P ∈ {∃,∀}, α ∈ Ord} t {pop, dec}

is called stack operations;

� a ranks function rank : Q→ R.

That is, A is a parity automaton (as de�ned in Subsection 2.4.3) except that
it can additionally perform stack-transitions, i.e. transitions labelled with
stack operations.

The semantics of an automaton with a stack of counters A is de�ned by
a parity game similarly to parity automata. The only di�erence is that now
con�gurations of the game contain a stack of ordinal counters updated along
the play.

De�nition 4.7.2. Fix a modelM. A con�guration of an automaton consists
of a point m ∈ M , a state q ∈ Q and a stack content Υ = (P1, α1)...(Pl, αl)
where l < ω, αi ∈ Ord and Pi ∈ {∃,∀} is the owner of the i-th counter. The
operations op ∈ Ops have the following meaning:

� push(P, α) puts (P, α) at the top of the stack;

� pop removes the topmost counter from the stack;

� dec, which is the only nondeterministic operation, means that we look
at the topmost counter (P, α), player P picks some β < α and the
new stack is the old one with the topmost counter (P, α) replaced with
(P, β)

If at any moment one of the players has to decrement 0, he or she looses
immediately. It will be less important what happens when we try to pop or
decrement an empty stack: assume by convention that in such a situation
nothing happens. Formally:

Conf = M ×Q t ×({∃, ∀} × Ord)∗.

There are no moves from con�gurations of shape γ = (m, z,Υ) with z being
a literal or a variable. From (m, q,Υ) with Υ = (P1, α1)...(Pl, αl):

� if δ(q) ⊆ Q t Lit t Var, outgoing moves lead to:

{(m, z,Υ) | z ∈ δ(q)},
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� if δ(q) = (a, p), outgoing moves lead to:

{(n, p,Υ) | m
a→ n}.

� if δ(q) = (op, p) de�ne the set H of possible new contents of the stack:

� if op = push(P, α):

H = {(P1, α1)...(Pl, αl)(P, α)}

� if op = pop:
H = {(P1, α1)...(Pl−1, αl−1)}

(or H = {ε} if Υ = ε)

� if op = dec, then:

H = {(P1, α1)...(Pl−1, αl−1)(Pl, β) | β < αl}

and the outgoing moves lead to:

{(m, p,Υ′) | Υ′ ∈ H}.

The ownership of positions is the same as with simple parity automata except
for con�gurations of shape (m, q,Υ) with δ(q) = (p, op) which belong to
player Pl from the top of the stack Υ (or any player if the stack is empty).
The rank function rank : Conf → R is inherited from the states of A. The
default initial con�guration contains the initial state qI and an empty stack.

The following example demonstrates that arbitrary automata with stacked
counters have expressive power strictly greater than countdown automata
from Section 4.4. This is because the stack structure can be exploited in
order to de�ne context-free languages.

Example 4.7.3. Consider the following automaton:

q0 q1

q′1

q2

q′2

q3

q′3

push(α,∀)

push(α,∃) a
b

pop b

ε
dec

a b

The only state q3 controlled by ∀dam is depicted with a square and all the
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other states are controlled by ∃ve and depicted with circles; q0 is initial.
There is only one rank, belonging to ∃ve, and the value α ∈ Ord is irrele-
vant. For clarity of presentation we allow for multiple transitions other than
ε-ones to originate in the same state (e.g. in q1 ∃ve can choose either an
a→- or

b→- transition). Such a more liberal syntax is equivalent to our more
rigorous one: to �t to the original syntax it su�ces to introduce additional
states (e.g. qa1 and qb1 such that in q1 �rst ∃ve chooses an ε-move to one of

them and then from qc1 �res an
c→-transition).

We viewA as a device accepting �nite words over the alphabet Γ = {a, b}.
A word a1...al ∈ Γ∗ of length l is encoded as a model with edges labelled
with Γ. The encoding is the same as in Example 4.2.5 except that the words
are �nite so in place of ω we take {0, ..., l} to be the universe.

We claim that for every word w ∈ Γ∗:

A accepts w ⇐⇒ w = anbn for some n < ω.

The corresponding semantic game can be divided into 5 stages:

1. The stack is initialized with (∀, α) and the automaton moves to q1.

2. As long as there are no b's, the automaton stays in q1 and for each a
one counter (∃, α) is pushed to the stack.

3. Upon reaching the �rst b the state changes to q2 and each b pops one
counter from the stack (if at this stage a is visited, ∃ve gets stuck).

4. At some point ∃ve decides to move from q2 to q3. Note that she looses
immediately in q′3 and if the current position is not the last position l
of the word w = a1...al then ∀dam can move from q3 to q′3 and win.
Therefore, without loosing generality we may assume that she decides
for this ε-move only at the end of the word.

5. The state q3 is reached at the end of the word and ∀dam has no choice
but to loop inde�nitely decrementing the topmost counter on the stack
(meaning that he wins if the topmost counter belongs to ∃ve or the
stack is empty).

The only way ∃ve can win the game is by forcing ∀dam to decrement his
counter inde�nitely until he gets stuck. For that, she needs to reach (5) with
∀dam's counter on the top of the stack. Since the only time when his counter
is pushed to the stack is at the beginning of the game, it follows that ∃ve
wins i� w is of shape anbn for some n < ω.

On the other hand, the language of A cannot be recognized by a count-
down automaton. Since countdown automata are equivalent to µ<∞-ML and
in �nite models all �xpoints are reached after �nitely many steps, it follows
that countdown automata only de�ne regular languages of �nite words, i.e.
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languages de�nable in µ-ML. The language L(A) = {anbn | n < ω} is a pro-
totypical example of a language that is not regular (as can be shown using
standard techniques) and hence cannot be de�ned in µ<∞-ML.

The above example exploits the fact that the stack can have unbounded
height. However, if we require that every automaton has a �nite bound k
on the maximal height of its stack, then the resulting model turns out to
be equivalent to countdown automata. From now on we tacitly assume that
every automaton with stacked counters comes with a bound k on the height
of its stack and never pops or decrements an empty stack. In Subsection 4.7
we will see that such k is a good measure of expressive power. Before that,
let us prove that countdown automata and automata with stacked counters
are indeed equivalent.

Theorem 4.7.4. Countdown automata and automata with stacked counters
de�ne the same languages.

Proof. The direction from countdown automata to automata with stacked
counters is rather straightforward and so we only give a sketch. Observe that
using a stack we may represent the con�guration of any given countdown
automaton A. The counter values:

ctr : D → Ord

for D = {r1 < ... < rd} are represented as a stack:

Υ = (Pd, ctr(rd))...(P1, ctr(r1))

where Pi is the owner of ri. In A, whenever the counter for rank ri is
decremented, counters for all the less important ranks are reset. Thus, we
may pop (Pi−1, ctr(ri−1))...(P1, ctr(r1)) from the stack, ask the owner Pi
of ri to decrement the counter representing ctr(ri), and then push initial
values (Pi−1, ctrI(ri−1)...(P1, ctrI(r1)) to the stack. Such simulation requires
a stack of height equal to the number of nonstandard ranks |D| of the original
automaton.

For the more demanding direction, take an automatonA = (Q, qI , δ, rank)
with stacked counters and stack bounded by k. For simplicity, assume that
there is only one ordinal κI that can be pushed to the stack (the general case
is not harder and we will comment on that at the end of the proof). Given a
stack content Υ = (P1, α1)...(Pl, α) of A, we call the sequence of ownerships
P1...Pl the shape of Υ. Let us start with the following lemma.
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Lemma 4.7.5. The automaton A can be always modi�ed so that:

1. A remembers the current shape of the stack in its state.

2. Denote the states in which the stack has height i by Qi and their ranks
rank[Qi] by Ri. For all i < j:

Ri > Rj

where by X > Y we mean that x > y for all x ∈ X and y ∈ Y .
In words: the higher the stack, the lower the rank.

Proof. The �rst item (1) is immediate. The shape of the stack is a �nite
information that can be easily updated. We assume an additional property
(which will be lost in further modi�cations of the automaton): if q is a target

of a dec-transition p
dec→ q then no other transition has q as its target and q

has the irrelevant lowest rank 0. This can be easily obtained by adding more

states: replace every p
dec→ q with p

dec→ p′
ε→ q with p being a fresh state of

rank 0.

Assuming the above we massage the automaton so that it satis�es the
second item (2). We do so by de�ning a new rank function rank′ : Q→ R′.
Take k + 1 copies:

R′ = R0 t ... tRk

of the original set R of ranks, one for each stack height. The ownership in
R′ is inherited from R. The new order <′ is the same as < inside each copy
and orders the copies descendingly:

R0 > ... > Rk.

A naïve solution would be to assign the i-th copy ri of r to q i� rank(q) = r
and q ∈ Qi. In plays π where the height of the stack is eventually constant,
this modi�ed rank function would then give the same winner as the original
rank. This is because all but �nitely many states in such π belong to the
same Qi and hence from some point in π the new rank would be equal ri i�
the original equals r.

However, an issue could arise if the height of the stack changes in�nitely
often in π. Whenever i < j, the copies ri0 and rj1 of ranks r0 < r1 have

swapped order ri1 >
′ rj0. This could change the winner of the play, e.g. if r0

is only visited with a stack of height i and r1 only with height j and these
are the only ranks seen in�nitely often in π. To address that, we assume that
for each 0 ≤ i ≤ l the automaton stores in its state the rank since(i) ∈ R:

since(q, i) =
the greatest value of rank visited after the last
time when the stack had height i.

125



We want the new automaton A′ to be the same as A except that upon each
p

pop→ q of the stack from height i + 1 to i, the new automaton additionally
passes through the i-th copy (since(p, i))i ∈ R′ of since(p, i). Formally, the
new rank function rank′ : Q→ R′ is given as:

rank′(q) =

{
(since(p, i))i if q is a target of some p

pop→ q,

ri otherwise with rank(q) = r

for every q ∈ Qi. The resulting automaton A′ has both the desired properties
(1) and (2) so it remains to prove that it is equivalent to the original A. Fix a
modelM and a valuation val. The arenas of the semantic games Gval(A) and
Gval(A′) are identical, so we only need to check that the winner of any in�nite
play π is the same with rank and rank′. Let r and r′ be the most important
ranks appearing in�nitely often in rank[π] and rank′[π], respectively. We
claim that r′ is the i-th copy of r:

r′ = ri (4.23)

which implies equivalence of the two games because ri has the same owner
as r.

Let i be the smallest stack height present in�nitely often in π. The case
when the height of the stack is eventually constant is already discussed: if
this happens then after some �nite pre�x of π rank′ always returns the i-th
copy of the rank returned by rank. Otherwise, π can be decomposed into:

π = π0π1π2...

such that (i) π0 contains all the con�gurations with rank greater than r and
stack smaller than i and (ii) for every 0 < n < ω, the fragment πn visits r
and ends with a pop from height i+1 to i. It follows that the most important
rank in πn, denoted rn = max(rank[πn]), equals r for all n. It su�ces to prove
that r′n = max(rank′[πn]) equals ri. Observe that at the beginning of πn the
stack has height i, so since(p, i) ≤ r for all p in πn. Any q in πn is a target

of some p
pop→ q i� it is preceded by p also belonging to πn. It follows that no

state q visited in πn could have rank′(q) > ri, as this would require either a
stack smaller than i or rank(q) > r , both of which contradict (i). Hence, it
su�ces to show that ri does appear in rank′[πn].

By (ii), some state s in πn has rank(s) = r. By de�nition of 0, 0 < r
and hence s is not a target of a pop-transition. Therefore, if s is visited with
stack of height i then rank′(s) = ri and we are done. Otherwise, s is visited
with stack of height j > i. Let π′n be the pre�x of πn ending with the �rst
pop of the stack from height i + 1 to i after a visit to s. The fragment π′n
ends with a transition p

pop→ q for some p and q. It follows that the value
since(p, i) equals r and consequently rank′(q) = ri.
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With the above lemma, we prove Theorem 4.7.4. We assume that the
automaton with stacked counters A = (Q, qI , δ, rank) has properties:

1. A remembers the shape of the stack in its state.

2. Whenever p ∈ Qi −QOps and q ∈ Qj −QOps with i < j:

rank(p) > rank(q)

and:
rank(q) = 0

whenever q ∈ QOps, where QOps = {q | δ(q) ∈ Ops × Q} is the set of
all the states that are sources of stack-transitions.

That is: sources of stack-transitions have rank 0; and for all the other
states the higher the stack the lower the rank.

3. A never �res two stack-operations p
op→ q

op′→ s in a row.

The �rst property (1) is (1) from Lemma 4.7.5. The second (2) and third
(3) can be easily obtained from (2) in the lemma by adding more states to

A, without breaking (1): replace every p
op→ q with p

op→ p′
ε→ q for a fresh

p′, assign rank(p) to p′ and 0 to p.
We de�ne a countdown automaton A′ = (Q, δ′, qI , rank′, ctrI) equivalent

to A. The new δ′ is obtained from δ by replacing all the stack-transitions
with ordinary ε-transitions. The codomain R′ of rank′ : Q→ R′ extends R:

R′ = RtD

by nonstandard:
D = {ti∃, ti∀ | 1 ≤ i ≤ k}

with each tiP put between Ri−1 and Ri:

R0 >′ {t1∃, t1∀} >′ R1 >′ ... >′ {tk∃, tk∀} >′ Rk

(the order between ti∃ and t
i
∀ does not matter). The new rank function is:

rank′(p) =


tlPl if p

dec→ q for some q, with stack of shape P1...Pl;

rank(p) if p
op→ q for some q and op 6= dec;

rank(q) otherwise

for every p. That is, for every stack-transition p
op→ q we replace the irrel-

evant rank(p) = 0 with (i) appropriate tiP if op = dec or (ii) rank of the
target rank(q) if op 6= dec. On all the states which are not sources of stack-
transitions, rank′ and rank are the same. The initial ctrI : D → Ord is the
constant function equal κI .
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The semantic games G = Gval(A) and G′ = Gval(A′) for a �xed modelM
and valuation val are almost the same. For a stack content Υ = (P1, α1)...(Pl, αl),
de�ne a counter assignment ctrΥ : D → Ord:

ctrΥ(r) =

{
αi if r = tiPi with i ≤ l
κI otherwise.

It follows that:

ctrΥ(r) 6= κI =⇒ r ∈ {t1P1
, ..., tlPl} (4.24)

for every r ∈ D. Consider the relation ∼ between all the con�gurations of G
and countdown con�gurations of G′:

(m, p,Υ) ∼ (m, p, ctrΥ, cdn)

for every point m, stack content Υ and state p and consistent with the shape
of Υ. We claim that ∼ is a bisimulation between G and G′, up to identifying
moves γ0 → γ1 in G with pairs of moves γ′0 → γ′1

2

→ γ′1 in G′. That is,

whenever γ0 ∼ γ′0:

� (forth) for every move γ0 → γ1 in G then there are γ′0 → γ′1
2

→ γ′1 in G′

with γ1 ∼ γ′1,

� (back) for every γ′0 → γ′1
2

→ γ′1 in G′ then there is γ0 → γ1 in G with

γ1 ∼ γ′1.

In both cases, only one move in G′ is nondeterministic and the same player
makes the nontrivial choice in G and G′. Moreover, ∼ preserves victory in a
sense that will be explained later.

Towards the back and forth conditions, take con�gurations:

γ0 = (m, p,Υ) ∼ (m, p, ctrΥ, cdn) = γ′0

as above. Since the stack has height l, the next visited state after p must
have stack height at least l − 1. It follows that if p ∈ QOps then rank′(p) ∈
Rl−1t{tlPl}tR

l+1 (or rank′(p) ∈ Rl+1 if l = 0) and otherwise rank′(p) ∈ Rl.
In the presence of (4.24) this means that in the upcoming counter update
γ′0 → γ′1

2

in G′ the only counter value that can change is the one for tlPl , and

it only changes if rank′(p) ≥′ tlPl .

� If δ(p) /∈ QOps is not a source of a stack-transition then rank′(p) =
rank(p) ∈ Rl. Hence, the update γ′0 → γ′1

2

does not change the counters

at all: deterministically γ′1
2

= (m, p, ctrΥ, psn). By de�nition of δ′, the

owner of p has a move from γ′1
2

to γ′1 = (n, q, ctrΥ, cdn) in G′ i� (s)he

has a move from γ0 to γ1 = (n, q,Υ) in G. Clearly, γ1 ∼ γ′1.
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� On the other hand, if δ(p) = (op, q) then the choice of ctr 1
2
in γ′0 → γ′1

2

may be nontrivial. Consider cases:

� If op = push(P, κI) then rank′(p) = rank(q) ∈ Rl+1 is standard
and by (4.24) smaller than all r for which ctrΥ(r) 6= κI . Thus,
deterministically:

ctr 1
2

= ctrΥ = ctrΥ′

where Υ′ = (P1, α1)...(Pl, αl)(P, κI).

� If op = pop then rank′(p) = rank(p) ∈ Rl−1 is also standard and
smaller than all tiPi with i < l but greater than tlPl (whose value
is therefore reset). It follows that deterministically:

ctr 1
2

= ctrΥ[tlPl 7→ κI ] = ctrΥ′

where Υ′ = (P1, α1)...(Pl−1, αl−1).

� If op = dec then rank′(p) = tlPl is nonstandard. Thus, the player

Pl has to decrement ctrΥ(tlPl) = αl by choosing β < αl, as in G.

In either case, Pl can choose ctr 1
2
in G′ i� (s)he can choose Υ′ in G′

such that ctr 1
2

= ctrΥ′ . Such choice of ctrΥ′ in (m, p, ctrΥ′ , psn) = γ′1
2

is followed by a deterministic ε-move leading to γ′1 = (m, q, ctrΥ′ , cdn).
Again, denoting γ1 = (m, q,Υ′) we have γ1 ∼ γ′1.

This completes the proof of the back and forth conditions. Let us show that
∼ is victory-preserving in a suitable sense. Take in�nite plays π = γ0γ1γ2...
in G and π′ = γ′0γ

′
1
2

γ′1γ
′
1 1
2

γ2... in G′ with γi ∼ γ′i for all integer i. We claim

that the most important ranks r and r′ appearing in�nitely often in rank[π]
and rank′[π′], respectively, are the same. Every countdown con�guration in
a countdown game has the same rank as the next positional con�guration.
Hence, to determine r′ it su�ces to look at the con�gurations γ′1, γ

′
2... with

integer indices in π′. We only have rank(q) 6= rank′(q) if q ∈ QOps so it
su�ces to prove that the visits to QOps can be ignored while determining
r and r′. This is clearly true for r, because q ∈ QOps implies rank(q) = 0.

Assume q
op→ p for some p. If op 6= dec then rank′(q) = rank(p) = rank′(p).

Since every visit to q is followed by a visit to p, we may ignore visits to q
while computing r′. Otherwise op = dec and rank′(q) is nonstandard. As
such, it cannot be seen in�nitely often without in�nitely many visits to a
more important rank, meaning that rank′(q) <′ r′. It follows that visits to
QOps can be indeed ignored when it comes to computing r′ and so r = r′.

The above observations about ∼ can be used to translate strategies be-
tween G and G′. To be fully formal, we may apply the Decomposition
Lemma 2.2.5 with S+ equal to ∼ and S = ∅. The above discussion can
be summarized as exit-equivalence G|S+, γ ./S+ G′|S ′+, γ′ for all γ ∼ γ′ and
victory-dominance of ∼ between G|S+ and G′|S ′+.
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Remark 4.7.6. The above proof assumes that the countdown always starts
from a �xed κI , but this assumption can be easily dropped. With several
possible initial values κ1, ..., κn it su�ces for A to remember, for each counter
(Pi, αi) on the stack, the initial κj with which it was pushed. Then, in place
of the nonstandard ranks ti∃ and t

i
∀ the constructed countdown automaton

A′ has ti∃,κ1 , ..., t
i
∃,κn and ti∀,κ1 , ..., t

i
∀,κn . Upon each dec-transition of A, the

new A′ visits appropriate tiPi,κj (instead of tiPi).

4.7.1 Stack Bound = Nesting = Countdown Depth

The maximal height k of the stack re�ects how many ordinals need to
be remembered at once. The same automaton with stack of height one can
keep either (∃, α) or (∀, α) in its memory. Hence, it can describe boolean
combinations of boundedness and unboundedness conditions such as:

�There are arbitrarily long
a→-paths and no arbitrarily long

b→-paths.�

It can be easily shown that any countdown formula describing such property
needs to have at least two countdown operators: νω and µω. The operators
need not be nested, though, as witnessed by the formula:

(νωx.〈a〉x) ∧ (µωy.[b]y)

expressing the property. Nesting of the countdown operators (being the
maximal length k of a chain of its distinct subformulae θ1, ..., θk, each be-
ginning with a countdown operator) is a more �ne-grained parameter than
their overall number. For instance, the above formula has nesting 1 despite
using two countdown operators. It is the nesting of the operators, not their
number, that corresponds to the number of ordinals remembered at once.

Similarly, a naïve approach to the complexity of countdown automata
would be to restrict the number of non-standard ranks. However, this does
not faithfully capture the intuition that at most k numbers need to be re-
membered at once. Every automaton recognizing the discussed language has
at least one nonstandard rank for each player. The corresponding counters,
thought, need not be used simultaneously. To capture that, we introduce
the following parameter.

De�nition 4.7.7. Consider a countdown A automaton with nonstandard
ranks D. The countdown depth of A is the least k < ω for which D can
be divided into disjoint sets D1, ...,Dk such that whenever a path π in the
automaton visits two di�erent ranks r, r′ ∈ Di from the same set, then
between these visits π passes through a (possibly standard) rank r′′ greater
than both r and r′.

The de�nition implies that at most one rank in each Di has a counter with
non-initial value. Consequently, at most k counters in total have non-initial
values.
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The next theorem says that the three measures of complexity coincide.
Countdown formulae with nesting of the countdown operators at most k,
countdown automata of countdown depth k and automata with stacked coun-
ters with stack height k are equivalent.

Theorem 4.7.8. For every k < ω and language L of modal models, it is
equivalent for L to be recognized by:

1. a countdown sentence with nesting of the countdown operators k;

2. a countdown automaton of countdown depth k;

3. an automaton with stacked counters with stack height bounded by k.

Proof. In the proof we provide translations between automata of both types
and logic. In each case, the translation maps a language-de�ning object (a
sentence or an automaton) with respective parameter k to one with param-
eter at most k.

(1) =⇒ (2)
Take a sentence ϕ ∈ µ<∞-ML with nesting of the countdown operators equal
k. We claim that ϕ seen as an automaton Aϕ has countdown depth k. To
show that, we need to decompose nonstandard ranks D of Aϕ into disjoint
D1, ...,Dk satisfying the de�nition. Let Y ⊆ SubFor(ϕ) be all the subformulae
of ϕ that begin with a countdown or �xpoint operator and X ⊆ Y be the
ones that begin with a countdown (but not �xpoint) operator. Assume that
the rank function rank : SubFor(ϕ)→ R assigns di�erent nonstandard ranks
whenever possible: ψ and ψ′ have the same nonstandard rank only if they
are both immediate subformulae of the same θ ∈ X. This allows to identify
nonstandard ranks with elements of X (each ξ ∈ X corresponds to the
rank of its immediate subformulae). Hence, it su�ces to decompose X into
disjoint X1, ..., Xk such that for every distinct ξ, ξ′ belonging to the same
Xi any path between its respective immediate subformulae ψ and ψ′ passes
through a rank greater than both rank(ψ) and rank(ψ′).

Denote the subformula order on SubFor(ϕ) by �, i.e. ψ � ψ′ i� ψ ∈
SubFor(ψ′). This � is a linear order on superformulae of any given formula.
We claim that in Aϕ, for every path π leading from ψ to ψ′ either:

(i) ψ′ � ψ or

(ii) there is θ ∈ Y and its immediate subformula χ ≺ θ such that ψ ≺ θ,
ψ′ � χ and π passes through χ.

We prove the above by induction on the length of π. For |π| = 1 the claim
is obvious with ψ = ψ′. Assume it is true for paths of length n and consider
π of length n + 1. Decompose π = π0ψ

′′ with π0 of length n leading from
ψ to ψ′. If ψ′′ � ψ′ then the claim follows immediately from the induction
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hypothesis applied to π0. Otherwise, ψ
′ must be a variable y ∈ BoundVar(ϕ)

bound in some its superformula θ′ ∈ Y having ψ′′ ≺ θ′ as an immediate
subformula.

Note that if ψ and θ′ are �-comparable then we are done. On the one
hand, θ′ � ψ implies ψ′′ � θ′ � ψ so π satis�es the �rst item (i) of the
claim. On the other hand, ψ ≺ θ′ implies that both ψ and ψ′′ are proper
subformulae of θ′ ∈ Y and π ends in ψ′′. Thus, π satis�es the second item
(ii) witnessed by θ′ in place of θ and ψ′′ in place of χ.

Applying the induction hypothesis to π0 we get two cases.

(a) If y � ψ, then ψ and θ′ are both superformulae of y. Hence, they are
�-comparable and we are done.

(b) Otherwise assume θ ∈ Y with an immediate subformula χ such that
ψ ≺ θ, y � χ and π0 passes through χ. Since both θ and θ′ are
superformulae of y, they are �-comparable. If θ ≺ θ′ then we get �-
comparability of ψ and θ′: ψ ≺ θ ≺ θ′. In the remaining case θ′ � θ
implies ψ′′ ≺ θ′ � θ. This means that π satis�es the second item (ii)
of the claim, witnessed by the same θ and χ.

This completes the proof of the claim about paths in Aϕ, so let us use it.
If ξ, ξ′ ∈ X are �-incomparable then any two their respective immediate
subformulae ψ and ψ′ are �-incomparable as well. Hence, the claim implies
that every path π from ψ to ψ′ must pass through an immediate subformula χ
of some θ ∈ Y with ψ ≺ θ and ψ′ � χ. Since ξ is the immediate superformula
of ψ, every proper superformula of ψ is (not necessarily proper) superformula
of ξ. In particular, ψ ≺ θ implies ξ � θ. Symmetrically, we get ξ′ � θ. By
�-incomparability of ξ and ξ′ the inequalities are strict: ξ, ξ′ ≺ θ. This
means that rank(χ), through which π passes, is greater than both rank(ψ)
and rank(ψ′). It follows that in order to prove that Aϕ has countdown depth
k it su�ces to decompose X into disjoint X1, ..., Xk such that no Xi contains
a pair of �-comparable formulae. De�ne:

Xi = {ψ ∈ X | nesting of countdown operators in ψ equals i}

for every 1 ≤ i ≤ k. This exhausts the entire X: each ψ ∈ X begins with a
countdown operators (so the nesting is at least one) and ϕ (and hence also
its subformulae) have nesting at most k. Clearly no two formulae in Xi can
be �-comparable, so this proves (1) =⇒ (2).

(2) =⇒ (1)
Given a countdown automaton A of countdown depth k, we construct an
equivalent formula of µ<∞-ML with nesting of the countdown operators at
most k. The translation A 7→ ϕA presented in Subsection 4.4.2 is not su�-
cient: the output formula ϕA is equivalent to A but can have nesting greater
than the countdown depth of A. We illustrate this issue with the following
toy example.
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Example 4.7.9. Consider the following automaton A:

0 1

with two states 0 and 1, and 0 being the initial one. The automaton only has
ε-transitions. Both states are equal to their ranks R = D = {0 < 1}, which
are nonstandard with some �xed initial counter value α ∈ Ord. Although the
language of the automaton is empty and can be described with the trivial
formula ⊥, the translation from Subsection 4.4.2 gives a formula ϕA:

ϕA = µαx0.µ
αx1.µ

αx0.x1.

The nesting of the µα operators in ϕA equals 3 and is therefore greater than
the countdown depth of A (which is 2).

The reason why the formula ϕA has nesting greater than the countdown
depth of A is the use of substitutions. We now introduce a re�ned version
A 7→ ϕ′A of the translation A 7→ ϕA that avoids that issue. Assume the
same setting and notation as in the proof of Theorem 4.4.5. Additionally,
assume that A has countdown depth k witnessed by the decomposition D =
D1 t ... t Dk of its nonstandard ranks. The original construction proceeds
by induction on the ranks of A: for each r ∈ R and q ∈ Q we have an
appropriate formula ψr,q so that at the end ψrmax,qI = ϕA is equivalent to A.
Let us construct an enhanced ψ′r,q as follows.

� The base case is not changed:

ψ′0,q = ψ0,q

for all q ∈ Q.

� In the inductive step for rank r + 1 denote the states with rank r by
Qr. For q ∈ Qr, instead of:

ψr+1,q = ηαq (xp)p∈Qr .(ψr,p)p∈Qr

we take:
ψ′r+1,q = ηαq (xp)p∈Qr,q .(ψ

′
r,p)p∈Qr,q

where Qr,q ⊆ Qr is the least set such that (i) q ∈ Qr,q and (ii) for every
p, p′ ∈ Qr, if p ∈ Qr,q and xp′ ∈ FreeVar(ψ′r,p) then p′ ∈ Qr,q. The
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intuition is that we only take the coordinates which are reachable from
the initial q. For q /∈ Qr, instead of:

ψr+1,q = ψr,q[xp1 7→ ψr+1,p1 , ..., xpd 7→ ψr+1,pd ]

we take:

ψ′r+1,q = µ∞y 〈y, xs1 , ..., xsl〉.〈ψ
′
r,q, ψ

′
r+1,s1 , ..., ψ

′
r+1,sd

〉

where xs1 , ..., xsl ⊆ xq1 , ..., xqd are those variables xqi which actually
appear in ψ′r,q, meaning that xqi ∈ FreeVar(ψ′r,q), and y is a fresh
variable not used anywhere else.

We put ϕ′A = ψ′rmax,qI
, analogously to the original construction.

Let us prove that the enhanced construction does the job: it produces a
formula equivalent to the automaton but with low nesting of the countdown
operators. Denote:

Y = {ψ′r+1,q | rank(q) = r}.

It is an invariant of the re�ned construction that for every r ∈ R and q ∈ Q,
the formula ξ = ψ′r,q has the following properties.

1. For every θ ≺ ξ with either θ = ψ′r′,q′ or θ = xq′ ∈ FreeVar(ξ) there is

a path q
π→ q′ in A not visiting ranks greater than:

max{rank(q), rank(q′), r − 1}.

2. For every θ ≺ ξ with θ = ψ′r′,q′ :

r′ ≤ r

and the inequality is strict whenever ξ ∈ Y .

3. The formulae ψ′r,q and ψr,q are equivalent.

In the above, all the equalities between formulae are understood up to iso-
morphism.

The invariant is clearly true for the base case r = 0 so consider the
inductive step for r + 1.

The Case with q ∈ Qr. Let us �rst inspect the situation when q ∈ Qr and
thus:

ξ = ψ′r+1,q = ηαq (xp)p∈Qr,q .(ψ
′
r,p)p∈Qr,q .

Consider θ ≺ ξ and hence θ � ψ′r,p for some p ∈ Qr,q.
Towards (1) for ξ assume that either θ = ψ′r′,q′ or θ = xq′ ∈ FreeVar(ξ).

By de�nition of Qr,q there are ψ
′
r,p1 , ..., ψ

′
r,pk

with p1 = q, pk = p and xpi+1 ∈
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FreeVar(ψ′r,pi) for each i < k. Hence, (1) applied to each ψ′r,pi gives us paths
in A:

p1
π1→ p2

π2→ ...
πk−2→ pk−1

πk−1→ pk,

each without ranks greater than max{rank(pi), rank(pi+1), r − 1} = r. If
θ = ψ′r,p then the composition π1...πk−1 leading from q to q′ witnesses (1) for

ξ and θ. Otherwise θ ≺ ψ′r,p and again by (1) we get a path p
π′→ q′ without

ranks greater than max{rank(p), rank(q′), r−1} = max{r, rank(q′)}. Together
the paths compose into π1...πk−1π

′ from q to q′, therefore witnessing (1) for
ξ and θ.

For (2) assume θ = ψr′,q′ . Since ξ ∈ Y we need to prove r′ < r + 1.
If θ = ψ′r,p then r = r′. Otherwise θ ≺ ψ′r,p and r′ ≤ r by the induction
hypothesis.

For (3) observe that ψ′′r+1,q = ηαq (xp)p∈Qr .(ψ
′
r,p)p∈Qr (i.e. the same as

ψ′r+1,q except that with full Qr and not Qr,q) is equivalent to ψr+1,q thanks
to (3) applied to all ψ′r,p. Whenever ψ′r,p is reachable from the root in ψ′′r+1,q,
then p ∈ Qr,q. It follows that the reachable parts of ψ′′r+1,q and ψ′r+1,q are
isomorphic and so the formulae are equivalent.

The Case with q /∈ Qr. Let us have a look at the other case q /∈ Qr which
implies:

ξ = ψ′r+1,q = µ∞y 〈y, xs1 , ..., xsl〉.〈ψ
′
r,q, ψ

′
r+1,s1 , ..., ψ

′
r+1,sd

〉

with xs1 , ..., xsl = Varr ∩ FreeVar(ψ′r,q). Assume θ ≺ ξ. Similarly to the
previous case, either θ � ψ′r,q or θ � ψ′r+1,p for some xp ∈ Varr∩FreeVar(ψ′r,q).

To prove (1) for ξ assume θ = ψ′r′q′ or θ = xq′ ∈ FreeVar(ξ). We need
a path from q to q′ without ranks greater than max{rank(q), rank(q′), r}.
If θ � ψ′r,q then either θ = ψr,q and we are done with the trivial path
π = q or θ ≺ ψ′r,q and the induction hypothesis for ψ′r,q gives us the desired

q
π→ q′. The remaining case is when θ � ψ′r+1,p for xp ∈ Varr ∩FreeVar(ψ′r,q).

Since xp is free in ψ′r,q, (1) gives us q
π→ p with ranks not greater than

max{rank(q), rank(p), r − 1}. If θ = ψ′r+1,p and consequently q′ = p we

are done. Otherwise θ ≺ ψ′r+1,p and again by (1) we get p
π′→ q′ with

ranks at most max{rank(p), rank(q′), r}. Since rank(p) = r it follows that

the composition q
π→ p

π′→ q′ has ranks at most max{rank(q), rank(q′), r}, as
desired.

For (2) assume that θ = ψ′r′q′ . Since ξ /∈ Y , we only need r′ ≤ r + 1.
Either θ � ψ′r,q or θ � ψ′r+1,p. If θ = ψ′r,q or θ = ψ′r+1,p we are done.
Otherwise θ is a proper subformula θ ≺ ψ′r,q or θ ≺ ψ′r+1,p and we get the
claim from the induction hypothesis or the previous case (i.e. with q ∈ Qr),
respectively.

Towards (3) consider ψ′′r+1,q = ψr,q[xp1 7→ ψ′r+1,p1
, ..., xpd 7→ ψ′r+1,pd

]. By
the induction hypothesis, ψ′′r+1,q and ψr+1,q are equivalent. The equivalence
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of ψ′′r+1,q and ξ follows by a straightforward analysis of the induced semantic
games (a formalist reader could invoke Proposition 2.2.2). This completes
the proof of the invariant (1), (2) and (3).

To complete the proof of the implication (2) =⇒ (1) we show that
ϕ′A has nesting of the countdown operators at most k. Assume towards
contradiction that there are:

θ1 ≺ θ2 ≺ ... ≺ θk+1 � ϕ′

with each θi beginning with a countdown operator. Every subformula θi of
ϕ′A beginning with a countdown operator must be isomorphic to ψ′ri+1,qi

∈ Y
with nonstandard ri = rank(qi). Thus, for every i ≤ k (2) implies ri < ri+1.
By the pigeonhole principle some ri < ri′ belong to the same Dn. By (1),
there is a path in A from qi to qi′ not visiting ranks greater than ri and ri′ ,
which is a contradiction.

(2) =⇒ (3)
In the proof of Theorem 4.7.4 we translated a countdown automaton A with
nonstandard ranks D = {r1, ..., rl} to an automaton with stacked counters
A′ storing the counter values ctr(r1), ..., ctr(rl) of any counter assignment
ctr : D → Ord on its stack. The height of the stack of A′ was therefore
bounded by |D|. However, instead of keeping all the counter values on the
stack it su�ces if A′ only stores the counters with non-initial values. If
A has countdown depth k, then in any its accessible con�guration at most
k counters have non-initial values. As a consequence, such more succinct
representation of the counter assignments of A requires a stack of height at
most k.

(3) =⇒ (2)
This case is even easier than the previous one. The translation from automa-
tonA with stacked counters to countdown automatonA′ given in the proof of
Theorem 4.7.4 does not require any modi�cation: ifA has a stack bounded by
k then the constructed A′ has countdown depth at most k. This is witnessed
by the decomposition of the nonstandard ranks D = {ti∃, ti∀ | 1 ≤ i ≤ k} of
A′ into disjoint D1, ...,Dk with:

Di = {ti∃, ti∀}

for all 1 ≤ i ≤ k. Any nonstandard rank tiP in A′ can only be visited if
the current state of the automaton remembers a stack shape of height i with
P on top. Thus, every path between ti∃ and ti∀ must pass through an ε-

transition p
ε→ q in A′ corresponding to a pop-transition p

pop→ q in A poping
the stack from height i to i − 1. The state q is not a source of a stack-
transition in A (for it is a target of such a transition and A does not �re two
stack-transitions in a row) and so r = rank′(q) = rank(q). Since q ∈ Qi−1,
the rank r ∈ Ri−1 is greater than both ti∃ and t

i
∀. This completes the proof

of Theorem 4.7.8.
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4.8 Strictness of the Countdown Complexity Hier-

archy

The three formalisms: countdown logic, countdown automata and au-
tomata with stacked counters, are equivalent. In the previous section we
introduced a measure of complexity for each: nesting of the countdown op-
erators, countdown depth and maximal height of the stack, respectively.
Theorem 4.7.8 establishes equivalence of the measures: restricting any of the
formalisms by only considering its instances of complexity k results in the
same expressive power as the restriction of any other with the same k. This
induces a natural strati�cation of languages into classes. Given a language
L we de�ne its countdown complexity to be the least k < ω such that L is
de�ned by a µ<∞-ML sentence with nesting of the countdown operators k
(or ∞ if no sentence de�nes L).

Such countdown complexity is an arguably robust measure. So far we
have not shown, however, that it is substantial in the sense that the hierarchy
of languages with greater and greater complexity does not collapse. We now
prove that under mild assumptions the hierarchy is strict. For the rest of
this section assume that the only ordinal appearing in formulae is ω (we will
discuss how this assumption can be weakened in Remark 4.8.4 at the end of
the section).

The existence of languages not de�nable in µ<∞-ML is immediate: if we
restrict our attention to �nite models, µ<∞-ML and µ-ML have the same
expressive power and clearly not all languages of �nite models are de�nable
in the later. The following theorem expresses the non-trivial content of the
mentioned strictness.

Theorem 4.8.1. For every k < ω, there are languages of countdown com-
plexity k.

Proof. For all k, we provide examples of languages de�nable with countdown
nesting k + 1 but not k. In order to prove strictness, it su�ces to prove it
on a restricted class of models. From now on, focus on the monomodal case
with no colors (i.e. |Act| = 1 and Prop = ∅). In this setting models consist
of universe with a single binary relation. We will show that the hierarchy is
strict already on the class of transitive, linear, well-founded models. Up to
isomorphism, these are just ordinals and hence we con�ne our attention to
ordinal models, as de�ned in De�nition 3.2.1 (with the special case Prop = ∅).

Since κ is an induced submodel of κ′ whenever κ ≤ κ′, we can con-
sider a single ordinal model with κ big enough. For our purposes, the �rst
uncountable ordinal ω1 is su�cient.

We call a subset S ⊆ ω1 stable on an interval I ⊆ ω1 if either S ∩ I = I
or S ∩ I = ∅. S is stable above α if it is stable on the interval [α, ω1). A
stabilization point of a valuation val : Var → P(ω1) is the least α ≤ ω1 such
that interpretations of all the variables are stable above α.
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Observe that the set [ωk, ω1) ⊆ [0, ω1) can be de�ned by the following
sentence with countdown nesting k:

[ωk, ω1) = Jνωx1...ν
ωxk.3(

∧
i≤k xi)K. (4.25)

Indeed, the semantic game can be decomposed into two alternating steps:
(i) ∀dam chooses a tuple of �nite ordinals (α1, ..., αk) ∈ ωk and (ii) ∃ve
responds with a successor in the model. Since at each step ∀dam has to pick
a lexicographically smaller tuple (and he starts by picking any tuple) it is
easy to see that he wins i� the initial point is at least ωk. We will show that
for all k > 0, countdown nesting k is necessary to de�ne this language. The
proof relies on the following lemma.

Lemma 4.8.2. For every k < ω and a formula ϕ with countdown nesting
k, there exists an ordinal αϕ < ωk+1 such that ϕ stabilizes αϕ above the
valuation, meaning that for every valuation val stabilizing at β, JϕKval is
stable above β + αϕ.

From this the theorem follows immediately, as the sentence ϕ has no free
variables and thus it stabilizes at αϕ < ωk+1 regardless of the valuation.
Hence, let us prove the lemma.

Proof. We start with the following proposition.

Proposition 4.8.3. For every countdown formula ϕ there is a �nite constant
tϕ < ω such that for every valuation val stable above κ, in the part [κ, ω1) of
the model above κ, ϕ changes its truth value at most tϕ times.

Proof. Since without loss of generality the formula is guarded (see Proposi-
tion 4.5.3), by Proposition 4.5.4 we may assume that in the semantic game
∃ve always uses a pre-modally counter-independent strategy. But the num-
ber z of possible pre-modal components for such strategies is �nite, so if
ϕ changed its value more than tϕ = 2z + 1 times above κ, there would be
κ ≤ α < ζ < β such that ∃ve wins from α and β with the same pre-modal
component, but loses from ζ in between, which is impossible by Proposi-
tion 4.5.6.

We prove Lemma 4.8.2 by induction on the complexity of the formula ϕ.
The base case is immediate, as for every x ∈ Var it su�ces to take αx = 0. For
propositional connectives and modal operators we take αψ1∨ψ2 = αψ1∧ψ2 =
max(αψ1 , αψ2) and α3ψ = α2ψ = αψ + 1. The remaining non-trivial cases
are countdown and �xpoint operators.

� Assume ϕ = ηωi x.ψ with x = 〈x1, ..., xd〉 and ψ = 〈ψ1, ..., ψd〉. Let
Φ = {θ1, ..., θl} be the set of all maximal subformulae of ψ not using
any variable from x. For each θ, pick a fresh variable yθ and put:

ψ′j = ψj [θ1 7→ yθ1 ...θl 7→ yθl ]
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i.e. starting from the root ψj , we replace every subformula θ that
has no variables from x with a fresh variable yθ.

2 Observe that ψj =
ψ′j [yθ1 7→ θ1...yθl 7→ θl], so:

ηωi x.ψ ≡ (ηωi x.ψ
′)[yθ1 7→ θ1...yθl 7→ θl].

Note that if ϕ has countdown nesting at most k then each ψ′j and each θ
has countdown nesting less than k. Thus, by the induction hypothesis
there exist αψ′j < ωk and αθ < ωk s.t. ψ′j and θ stabilize αψ′j and αθ
above the valuation, respectively. Denote αψ′ = max{αψ′1 , ..., αψ′d}.

Form < ω, consider them-th unfolding given by ψ′0j = xj and ψ
′m+1
j =

ψ′j [x1 7→ ψ′m1 ...xd 7→ ψ′md ]. It follows by a straightforward induction on
m that each ψ′mj is stable αψ′ ×m above the valuation. Moreover, for
any valuation val we have:

Jµωj x.ψ′K
val =

⋃
m<ωJψ′mj Kval and Jνωj x.ψ′K

val =
⋂
m<ωJψ′mj Kval

so ηωj x.ψ
′ is stable αψ′×ω above the valuation. Finally, we obtain that

ϕ = (ηωj x.ψ
′)[θ1 7→ yθ1 ...θl 7→ yθl ] is stable αϕ above valuation with:

αϕ = max{αθ1 , ..., αθl}+ αψ′ × ω.

Since αψ′×ω < ωk+1 and for each θ, αθ < ωk it follows that αϕ < ωk+1.

� Assume ϕ = η∞i x.ψ with x = 〈x1, ..., xd〉 and ψ = 〈ψ1, ..., ψd〉. Note
that we give a proof for the general, vectorial case. Although η∞ is
a �xpoint operator and so it could be replaced with scalar ones using
the Beki¢ principle (2.9), such rewriting could increase the nesting of
the countdown operators.

The countdown nesting of each ψj is not greater than that of ϕ. For
each j ≤ d, let tη∞j x.ψ < ω be the constant from Proposition 4.8.3 and

αψj < ωk+1 the constant that exists by the inductive hypothesis. Put
αψ = maxj≤d(αψj ), tmax = maxj≤d(tη∞j x.ψ

). We de�ne:

αϕ = αψ × tmax × d.

Clearly αϕ < ωk+1, as αψ < ωk+1 and tmax < ω. It therefore su�ces to

show that JϕKval stabilizes above αϕ above val. De�ne the valuation:

valϕ = val[x1 7→ η∞1 x.ψ
val
... xd 7→ η∞d x.ψ

val
]

2Recall that we do not identify isomorphic subformulae, and so there are no substitu-

tions inside the θ's. In particular, the order of substitutions does not matter.
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and let κ be the stabilization point of val. It su�ces to prove that valϕ
is stable above κ+ αϕ. For y not in x, val(y) and thus also valϕ(y) is
already stable above κ. For j ≤ d, valϕ(xj) changes value above κ at
most tmax times. Together this means that valϕ changes its value at
most tmax × d times above κ.

On the other hand, if valϕ does not change its value for at least αψ
steps, it remains stable forever, i.e. if for some κ ≤ α < ω1 we have
that valϕ is stable on the interval [α, α + αψ], then it is stable on the
entire [α, ω1) (i.e. stable above α). Once we prove this, correctness of
αϕ follows: after at most tmax × d blocks, each of length at most αψ,
the valuation valϕ stabilizes.

Assume that valϕ is stable on [α, α+ αψ]. We prove:

valϕ is stable on [α, β) =⇒ valϕ is stable on [α, β] (4.26)

for all β > α+αψ. Given the above, we get by induction on β > α+αψ
that valϕ is stable on [α, β).

Since αψj ≤ αψ, the semantics JψjKvalϕ is stable αψ over valϕ. Since
modal formulae do not look backwards, we can strengthen this:

valϕ is stable on [α, β] =⇒ JψjKvalϕ is stable on [α+ αψ, β].

for every β > α + αψ. Moreover, since all x are guarded in ψj and
for y /∈ x the valuation valϕ(y) is stable already above κ ≤ α, we can
further strengthen the implication by weakening the premise:

valϕ is stable on [α, β) =⇒ JψjKvalϕ is stable on [α+ αψ, β].

for every β > α+ αψ. For each j ≤ d we have:

valϕ(xj) = Jη∞j x.ψKval

= Jη∞j x.ψKvalϕ

= JψjKvalϕ

The �rst equality is the de�nition of valϕ. The second one follows from
the observation that the valuation for x is irrelevant for the semantics
of η∞j x.ψ. The third one is due to η∞ being a �xpoint operator.

Combining the equality and the last implication we get:

valϕ(xj) is stable on [α, β) =⇒ valϕ(xj) is stable on [α+ αψ, β].

for all β > α+αψ. Since [α, β) and [α+αψ, β] overlap, stability on both
implies stability on their union [α, β]. Because xj above is arbitrary
and valϕ(y) is already stable above α for y /∈ x we obtain (4.26).
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This �nishes the proof of Lemma 4.8.2 and Theorem 4.8.1.

Remark 4.8.4. Above we assumed that the only ordinal appearing in for-
mulae is ω. However, the proof works under a weaker assumption: there is a
maximal ordinal α used in formulae and this α is additively indecomposable
(meaning that if β, β′ < α then β + β′ < α). Every cardinal number is
additively indecomposable. Another example could be ωk for natural k.

4.9 Decidability Issues

In this section we discuss decidability issues in the countdown µ-calculus.
Note that in a �nite model every monotone map reaches its �xpoints in
�nitely many steps. Hence, if we replace every ηα in ϕ with η∞ and denote
the resulting formula by ϕst, then in every �nite model JϕK = JϕstK. It
immediately follows that:

Proposition 4.9.1. The model checking problem for the µ<∞-ML, i.e. the
problem: �Given ϕ ∈ µ<∞-ML and a point m in a (�nite) model M, does
m |= ϕ?� is decidable.

Note that as a corollary we get that deciding the winner of a given (�nite)
countdown game G is also decidable, as the set of positions where ∃ve wins
can be easily de�ned in µ<∞-ML.

A more interesting problem is satis�ability : �Given ϕ ∈ µ<∞-ML, is
there a modelM and a point m such that m |= ϕ?�. Satis�ability is closely
related to validity, the question whether a given formula is satis�ed in all
models. A formula is satis�able i� its negation is not valid. We conjecture
that satis�ability (and therefore also validity) is decidable for the full logic.

Conjecture 4.9.2. The satis�ability problem for µ<∞-ML is decidable.

Conjecture 4.9.2 seems challenging. For now, we present some of its
special cases.

Proposition 4.9.3. A formula ϕ ∈ µ<∞-ML has positive countdown if it
does not use να with α 6=∞. The satis�ability problem is decidable for such
formulae.

Proof. Observe that for ϕ with positive countdown, in every model we have
JϕK ⊆ JϕstK. Hence, if ϕ is satis�able, then so is ϕst. But since µ-ML has a
�nite model property, this means that ϕst has a �nite model, where ϕst and
ϕ are equivalent. Thus, ϕ is satis�able i� ϕst is, and the problem reduces to
µ-ML satis�ability.
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The negation of a formula with positive countdown has negative count-
down, i.e. α = ∞ for every µα. Thus, dualizing the above we get that the
validity problem is decidable for such formulae.

The �nite model property of positive formulae makes the satis�ability
problem easier to solve but also less interesting. On the contrary, Exam-
ple 4.2.4 demonstrates that formulae using να with α 6= ∞ lack the �nite
model property. The next subsection is devoted to solving a fragment of the
logic that allows for some negative countdown: the Büchi fragment.

4.9.1 Büchi Countdown Automata over In�nite Words

In the classical setting (as found in [25]), a simple parity game or au-
tomaton is called Büchi if it has only two ranks r∃ < r∀, the most important
r∀ belonging to ∀dam and the other r∃ belonging to ∃ve. We extend that
de�nition directly to the countdown setting. We call a countdown game or
a countdown automaton Büchi if they have only two such ranks r∃ < r∀.

We solve the satis�ability problem for Büchi countdown automata over
in�nite words (seen as monomodal models the same way as in Example 4.2.5).
The case when r∀ is standard is already covered by Proposition 4.9.3. We
therefore only consider the case when r∀ is nonstandard. Moreover, for
simplicity we assume that the initial counter value for r∀ equals ω. On the
other hand, the next remark says that in the case of in�nite words it does
not matter if r∃ is standard or not. Hence, for the sake of simpler notation
we assume that r∃ is standard.

Remark 4.9.4. If the models under consideration are �nitely branching, so
are the arenas of the corresponding semantic games. In such case it does not
matter whether r∃ is standard or not so we assume it is standard.

To see that standardness of r∃ does not matter we show that if ∃ve
has a winning strategy σ with standard r∃ then she may use this σ to win
in the harder case with nonstandard r∃. Without loosing generality, σ is
con�gurational (i.e. dictates the same move after plays leading to the same
con�guration). This implies that in any σ-reachable con�guration γ there is
a �nite bound kγ < ω on the lengths of σ-plays from γ that only contain r∃

but not r∀. Otherwise, the tree of all such plays would be an in�nite but
�nitely branching tree and so by König's Lemma it would contain an in�nite
σ-play containing only r∃, which contradicts that σ is winning from γ.

Using these bounds kγ , ∃ve may win in the harder case with nonstandard
r∃: she makes the same positional moves as originally and whenever in a
con�guration γ she needs to pick a value for the counter corresponding to r∃

she chooses kγ .

Satis�ability of Büchi automata over in�nite words is the most technically
involved special case for which we managed to prove Conjecture 4.9.2.
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Theorem 4.9.5. The satis�ability problem for countdown Büchi automata
over in�nite words is decidable.

Proof. In [8] the author introduce a fragment of the MSO + U logic called S-
formulae. This is the least subset of MSO + U containing all MSO formulae
and closed under ∨,∧,∃,∀ and U. The satis�ability problem for S-formulae
over in�nite words is decidable [9]. Therefore, Theorem 4.9.5 follows from
the following proposition.

Proposition 4.9.6. Every language of in�nite words recognized by a Büchi
countdown automaton A is recognized by an S-formula computable from A.

We will �rst show some useful properties of the Büchi countdown games.
We start with a limited form of positionality. Since there is only one non-
standard rank, we simplify the notation and identify the counter assignment
ctr : {r∀} → Ord with the only value ctr(r∀). For every ordinal α, denote
the set of all the winning con�gurations with counter value at most α by
Confα. The next proposition says that positional strategies are su�cient
against �nite counter values.

Proposition 4.9.7. Assume a Büchi countdown game. For every α < ω
there is a positional strategy σα for ∃ve winning from every con�guration in
Confα.

Proof. Fix α < ω and let σ be a con�gurational strategy winning from every
winning con�guration. We construct a positional σα winning from every
con�guration in Confα. For every position v appearing in some con�guration
in Confα consider all the counter values β such that (v, β, psn) ∈ Confα.
No such β is greater than α and so for each v there must be the greatest
βv ≤ α. Then, σα(v) = σ(v, βv, psn), i.e. in v ∃ve assumes the worst possible
scenario. Such σα is well-de�ned and always dictates legal moves, because all
the con�gurations reachable from Confα by a σα-play belong to Confα. This
is because r∀ is the most important rank and so the counter never increases
and in particular never gets bigger than α. Hence, no �nite σα-play is lost
by ∃ve.

It remains to prove that she also wins every in�nite σα-play π. By well-
foundedness of ω and since the counter never increases, after some �nite
pre�x π0 of π the counter does not change at all. This implies that after
that pre�x the worst possible values βv1 , βv2 , ... for the consecutive remaining
positions v1, v1, ... of π can only get bigger but not smaller. But these values
are never greater than α, so from some moment they are constant. However,
this implies that from some moment π is actually consistent with σ. Since
the later is winning, the parity condition is satis�ed and so ∃ve wins π.

Given a Büchi countdown game, Proposition 4.9.7 gives ∃ve an in�nite
sequence of positional strategies winning against greater and greater �nite
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counter values. Although the sequence is in�nite and so cannot be directly
encoded as a �nite labelling of the input, we use it to construct a �nitary
witness for ∃ve's victory.

De�nition 4.9.8. Assume a semantic game induced by a Büchi countdown
automaton over input word w ∈ Σω. A victory witnessing quadruple consists
of a pair of positional strategies σω and σ∞, a sequence l0 < l1 < ... = l of
indices in w and a subset W ⊆ V of positions such that:

1. If v ∈ W then either: v ∈ V∀ and all its successor positions E(v) are
in W ; or v ∈ V∃, σ∞(v) is de�ned and belongs to W .

2. For every maximal σω-play starting from a position in W with index
li: before reaching index li+1 the play either reaches ∀dam's deadlock
or visits r∀ more than i times.

Such quadruples witnesses that ∃ve wins fromW against all �nite counter
values.

Proposition 4.9.9. Let σω, σ∞, l,W be a victory witnessing quadruple in
G(A) for w. For every v ∈ W and counter value α < ω, ∃ve wins from
(v, α, cdn).

Proof. Let i be the least number such that the index of v is not greater
than li. ∃ve wins as follows. First, until reaching the index j = max(k, α),
play according to σ∞. The �rst item (1) guarantees that this way ∃ve does
not loose and all the visited positions belong to W . Then, upon reaching
index j, switch to σω. Thanks to the second item (2), the rest of the play
is guaranteed either to pass through r∀ more than j ≥ α times or to reach
∀dam's deadlock. In either case, ∃ve wins.

The key fact is that the existence of an appropriate quadruple is not only
su�cient but also necessary for ∃ve to win from a given v against all α < ω.
There exists a universal witness for all such positions.

Proposition 4.9.10. Assume a game G(A) for w as before. There exists a
victory witnessing quadruple σω, σ∞, l,W such that v ∈W i� ∃ve wins from
(v, α, cdn) for every α < ω.

Proof. Given W from which ∃ve wins against all �nite counter values, we
construct appropriate σω, σ∞ and l. Let S = (σα)α<ω be the in�nite sequence
of better and better positional strategies given by Proposition 4.9.7, with σα
winning against counter value α (and thus also against all the smaller counter
values) whenever possible. Observe that if we take any in�nite subsequence
S′ of S then it also does the job: for every counter value α it contains a
strategy σβ with β ≥ α.

A positional strategy for ∃ve is a partial map σ : V∃ → V ∪ {undefined}
from positions controlled by ∃ve to positions, subject to some conditions.
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If the arena is �nitely-branching we can always take a subsequence S′ of S
convergent to a limit strategy σ∞. In abstract terms, this means that we view
the set of all strategies as a topological space (with the standard, product
topology on functions) and derive its compactness from �nite branching of
the arena. Explicitly, convergence means that for every �nite V0 ⊆ V , all but
�nitely many strategies in the sequence agree with σ∞ on V0. Be warned that
although the limit strategy is well-de�ned, it does not have to be winning:
in�nite plays may be lost. Nonetheless, the set W together with σ∞ satisfy
the �rst condition (1) from the de�nition.

The other strategy σω and sequence l are de�ned inductively. In the i-th
step we want to have bounds l0 < ... < li and the part of σω on positions
before li (i.e. positions belonging to [0, li)×Q ⊆ V ) so that (2) is true for all
j < i. We start with l0 = 0 and σω unde�ned everywhere. Assume bounds
l0 < ... < li and the part of σω on positions before li. We de�ne li+1 and the
behavior of σω on [li, li+1). Consider all σi-plays starting in a position in W
with index li. Every such play π is won if the counter starts with value at
most i. This means that π ends with either i + 1-st visit to r∀ or ∀dam's
deadlock. Moreover, there must be a uniform bound l < ω on the length
of all such plays. Without such a bound, by the pigeonhole principle there
would be a single position v in which arbitrarily long such plays originate.
This would imply that the tree of all σi-plays starting at v is in�nite and
�nitely branching (the latter follows from �nite branching of the arena) and
so by König's Lemma contains an in�nite σi-play starting at v. This is not
possible because ∃ve looses all such plays and the strategy σi wins against
counter value i. Hence, putting li+1 = li + l and de�ning σω on [li, li+1) to
be equal to σi, we get our goal.

The phase of a Büchi countdown game before the �rst visit to r∀ is
a simple reachability game: the counter has value ω and ∃ve wins i� she
manages to arrive at a position of rank r∀ from which she wins against all
�nite counter values. It follows from Propositions 4.9.9 and 4.9.10 that she
wins from vI (against the initial counter value ω) i� there exist σI , σω, σ∞, l
and W such that (i) σω, σ∞, l,W is a victory witnessing quadruple and (ii)
σI is a positional strategy in the simple reachability game obtained from the
original G(A) by replacing W ∩ rank−1(r∀) and (V −W ) ∩ rank−1(r∀) with
positions where ∃ve immediately wins and looses, respectively.

Positional strategies σI , σω, σ∞, sets of positions W and indices l can be
encoded in a straightforward way as subsets of the universe (the number of
sets required to encode each object may be greater than one but depends only
on A and is �xed). Moreover the second condition (2) from the de�nition of a
victory witnessing quadruple is equivalent to saying that: for every sequence
π0, π1, ... of σω-plays, with each πi starting from W with index li, maximal
within interval [li, li+1) and not ending in ∀dam's deadlock, the numbers of
visits to r∀ in each πi are unbounded. Such sequence π can be encoded as a

145



single positional strategy for ∀dam. Hence, the fact that ∃ve wins the game
can be described by an S-formula of shape:

∃X1 ...∃Xm .∀Y1 ...∀YnUZ .ϕ

with ϕ being a plain MSO formula (with no U). This completes the proof of
Proposition 4.9.6 and therefore also Theorem 4.9.5.
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Chapter 5

Conclusions
We investigated logics invariant under bisimulation.

Bisimulation-invariant Model Theory. We looked at the classical model-
theoretic questions for theories expressed in modal logic. We characterized
bisimulational categoricity of modal theories over various classes of models.
All the obtained characterizations are simple and essentially equate bisimula-
tional categoricity with existence of an image-�nite model for the theory. The
proofs, however, require di�erent arguments and the presented counterexam-
ples show that the results cannot be easily generalized to a metatheorem.
This suggests several directions for further research.

1. Find a list of reasonable conditions and prove a metatheorem captur-
ing bisimulational categoricity over classes of models satisfying these
conditions. A good starting point could be to look at classes that
are FO-axiomatizable. Although our counterexamples show that this
condition is not su�cient, it helps a lot because it guarantees the exis-
tence of models that realize limit behaviors. The key di�culty is then
to construct models omitting such a limit behavior.

2. Find characterizations for chosen classes of interest. This is especially
challenging for classes that are not FO-axiomatizable and consequently
ML need not be compact, which in turn makes the very existence of
limit behaviors nontrivial. Nonetheless, the example of ordinal models
COrd shows that in some cases di�culties can be overcome.

3. Investigate bisimulational categoricity for bisimulation-invariant logics
other than ML, for instance µ-ML. Since such logics are rarely com-
pact even over arbitrary models, this leads to di�culties similar to the
ones mentioned in the previous item. Again, this is challenging but
not completely hopeless. For instance, one can use a game-theoretic
analysis to show that over COrd logics ML and µ-ML are equivalent.
Hence, over this class bisimulational categoricity for µ-ML is the same
as for the already tamed ML.

The above questions concern bisimulational categoricity, the topic we inves-
tigated the most in the model-theoretic part of this dissertation. However,
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bisimulation-invariant model theory is not limited to bisimulational cate-
goricity. Results such as compactness of ML (with �nite signature) over COrd

show that there are many other areas awaiting exploration.

Countdown µ-calculus. We introduced and investigated the countdown
µ-calculus µ<∞-ML. We extended the classical (e�ective) correspondence
between logic games and automata by introducing countdown games and
automata together with appropriate translations. The connection helped us
to establish several facts. Some of these generalize the classical results. For
example, formulae of µ<∞-ML can be always rewritten to a guarded form,
and greater nesting of the countdown operators leads to a greater expressive
power.

On the other hand, some things di�er from the classical case. The vec-
torial variant of the calculus is more expressive than its scalar fragment.
Moreover, our new games are not positional (or even memory-�nite) and
since the de�nable languages are provably not closed under projections no
simple nondeterministic automata can match the logic. Because of this, we
cannot simply use standard techniques and the conjecture:

Conjecture 4.9.2. The satis�ability problem for µ<∞-ML is decidable.

is left open. Nevertheless, our automata model allows us to prove the con-
jecture for some special cases. The most advanced one is the satis�ability of
the Büchi fragment over in�nite words.

Apart from decidability, the relations between µ<∞-ML and di�erent
logics deserve a deeper study. An interesting (although not included in this
dissertation nor published) result identi�es the fragment of µ-ML without
nesting of the countdown operators with a certain multi-valued modal �x-
point logic. The natural comparison with other (un)boundedness-related
logics: (fragments of) MSO + U, WMSO + U and cost logics, is less straight-
forward than it could seem and requires further study.

Another question is whether our results generalize to structures of di�er-
ent type than a Kripke model: ordered trees, weighted graphs etc. Here the
answer is simple and positive: under mild assumptions the results generalize.
This can be formally expressed using category-theoretic notion of a coalge-
bra, which o�ers a uniform point of view on such structures of various types.
The classical logic and automata have been successfully lifted to the coalge-
braic setting (see e.g. [36]). Interestingly, this extension of type turns out to
be orthogonal to our lifting of the classical constructions to the countdown
setting. The combination of these two extensions into coalgebraic countdown
logic and automata does not require any new ideas. In particular, nearly the
entire Chapter 4 could be rewritten into the coalgebraic framework.

Finally, due to the abstract nature of the countdown operators they are
well-de�ned in every complete lattice. Since complete lattices and �xpoints
are ubiquitous in logic and computer science, this opens a wide range of new,
possibly fruitful directions for research.
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