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The proof - some insights

• given a point r with infinitely many children (p1, p2, ...) satisfying pairwise

different theories (t1, t2, ...)...
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• ...we find a theory t∞ that is a limit of (t1, t2, ...)...

p∞ |= t∞

t∞ can be approximated by ti ’s with
arbitrary precision, i.e. for every ϕ ∈ t∞,

ϕ ∈ ti for some i

• ...and include/exclude it, obtaining

equivalent, but non-bisimilar models
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Other inherently modal logics

• using the same techniques, one can prove that a complete theory t expressed in:

• two-way modal logic has a unique model up to two-way bisimulation iff
t has a model with finite in- and outdegree

• logic EF has a unique model up to EF-bisimulation iff t has a finite model

replace "child" with "descendant" in the
definitions of semantics and bisimulation

• the non-trivial step in generalizing the theorem is omitting limit theories...
...and sometimes it just does not work:

consider modal logic with universal
modality “〈∃〉ϕ” meaning “there
exists a point satisfying ϕ”

ω 0 1 2 3 · · ·

different theories t0, t1, ...

ω has infinitely many 〈∃〉-children with
different theories t1, t2, ..., but their only limit

is tω – the theory of ω which cannot be omitted!
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• the proof relies on compactness and uses good model-theoretic properties of
first-order logic

• modal µ-calculus seems challenging, as not much is known about (infinitary)
model theory for MSO

• it may be hard, as already PDL is highly non-compact (i.e. not κ-compact
for every cardinal κ provably existing in ZFC)
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