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Abstract

We introduce and study the notion of bisimulational categoricity – the property of
having a unique model up to bisimulation. We show that: (1) a complete modal theory
(i.e. a maximal consistent set of formulae) t has a unique model up to bisimulation
iff it has an image-finite model.
We further prove two analogous characterisations: (2) a complete theory t in tran-
sitive modal logic (EF-logic) has a unique model up to transitive bisimulation (EF-
bisimulation) iff it has a finite model; and (3) a complete theory t in two-way modal
logic has a unique model up to two-way bisimulation iff it has a model where every
point has finite in- and out-degree.
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1 Introduction

One of the central notions of classical model theory is that of categoricity
– a theory is called categorical if it has a unique model up to isomorphism.
In the context of modal logic, bisimilarity seems more appropriate than the
isomorphism. One may therefore ask about bisimulational categoricity, i.e. the
property of having a unique model up to bisimulation. 2

It turns out that the notion of bisimulational categoricity for theories ex-
pressed in modal logic is indeed well-behaved and can be characterised in terms
of image-finiteness. 3 We show that a complete theory in modal logic has a
unique model up to bisimulation iff it has an image-finite model. While the
right-to-left implication is (an easy folklore strengthening of) the well-known

1 j.kolodziejski@mimuw.edu.pl
2 Somewhat similar idea of finding modal analogues of classical results can be found in
Chapter 6 of [12], where the author investigates the number of non-bisimilar models of a
given modal fixpoint formula – analogically to the result of [9], where the number of non-
isomorphic models of an MSO formula is considered. Nevertheless, both the result and the
involved tools of the mentioned dissertation are rather far from the content of this paper.
3 Note that, due to the obvious limitations given by the Skolem-Löwenheim Theorem, the
classical notion of categoricity of first-order theories is only interesting when models of fixed
cardinality are considered. However, unlike with isomorphism, structures of different sizes
may still be bisimilar – and so there is no need to relativise bisimulational categoricity.
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Hennessy-Milner Theorem [6], the left-to-right one requires adaptation of some
classical model-theoretic tools and a simple topological argument. As such, our
characterization can be thought of both as a completion of the Hennessy-Milner
Theorem and as a modal version of the Ryll-Nardzewski Theorem (proven in-
dependently by Ryll-Nardzewski [10] Svenonius [11] and Engeler [3]).

Apart from standard modal logic, we provide analogous characterisations
for two other interesting logics: transitive modal logic (sometimes known as
the EF-logic in the context of computer science) and two-way modal logic (i.e.
modal logic with both forward and backward modalities). We show that: (i)
a complete theory in two-way modal logic has a unique model up to two-way
bisimulation iff it has a model where every point has finite in- and out-degree
and (ii) a complete theory in the transitive modal logic has a model unique up
to transitive bisimulation (also called EF -bisimulation) iff it has a finite model.

In the proof we adapt standard model-theoretic tools to the modal frame-
work and introduce new concepts of induced modal logics and induced bisimu-
lations, which allow us to uniformly describe a wide range of modal-like logics
and their corresponding bisimulations. We also discuss a simple example show-
ing limitations of our method: modal logic enriched with the universal modality
fails to have analogous characterisation.

The paper is organised as follows. After this introduction, in Section 2
we recall the basic notions and facts of modal logic and state our first main
result, Theorem 2.8. Then, in Section 3 we formally introduce the notion of an
inducing assignment, establish some simple related facts and prepare model-
theoretic tools for the proof. Finally, in Section 4 we state the other two main
theorems – Theorem 4.1 and Theorem 4.2 – and give proofs for all three of
them. We conclude with a discussion of limitations of our method.

2 Modal Logic and Bisimulations

We assume the reader to be familiar with basic notions of modal logic ([1]
is a good reference). However, for the sake of completeness and to fix notation,
we recall the most basic definitions and facts.

Fix a finite set Σ of atomic propositions.

Definition 2.1 A (Kripke) model M for a signature R = {R1, R2, ..., Rl} of
binary relational symbols consists of: a universe M ; an interpretation RMk ⊆
M×M for every relation Rk ∈ R; and a valuation valM : Σ→ P(M). A pointed
model is a model with distinguished point – called its root. We will usually
abuse terminology and call both non-pointed and pointed models just models
whenever it does not lead to confusion. Moreover, following the notational
traditions of modal logic we will skip parentheses and denote pointed models
by M, p instead of (M, p).

The class of all models over signature R will be denoted Krip(R). We will
typically identify a model with its universe and write p ∈ M instead of p ∈
M . Moreover, for the sake of simplicity we write Rk and val, skipping the
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superscripts whenever the model M is clear from the context.

Recall the standard syntax and semantics of (poly)modal logic ML(R) over
signature R.

Definition 2.2 The set of formulae of modal logic ΦR for binary signature R
is given by the following grammar:

ϕ 7→ ϕ ∨ ϕ | ¬ϕ | 3kϕ | a

for a ∈ Σ and k such that Rk ∈ R. We use the standard syntactic sugar:
2kϕ = ¬3k¬ϕ and ϕ∧ψ = ¬(¬ϕ∨¬ψ). The modal depth of a formula is the
maximal nesting of (possibly different) “3k” operators. In case there is only
one operator in R, we skip the subscript and write “3” instead of “31”.

Definition 2.3 Given a model M ∈ Krip(R), the semantics map
J KM : ΦR → P(M) is defined inductively as follows:

JaKM = valM(a);

Jϕ ∨ ψKM = JϕKM ∪ JψKM;

J¬ϕKM = M − JϕKM;

J3kϕKM = {p ∈M | ∃q∈JϕKMpRMk q}.

Definition 2.4 A bisimulation between two (not necessarily distinct) models
M,M′ ∈ Krip(R) is a relation Z ⊆ M ×M ′ that satisfies, for every a ∈ Σ,
Rk ∈ R and pZp′:

• (base condition) p ∈ val(a) ⇐⇒ p′ ∈ val(a);

• (forth condition) if pRkq then there exists q′ s.t. p′Rkq
′ and qZq′;

• (back condition) if p′Rkq
′ then there exists q s.t. pRkq and qZq′.

Pointed modelsM, p andM′, p′ are said to be bisimilar if there exists a bisim-
ulation Z between them s.t. pZp′ (notation M, p - M′, p′). A functional
bisimulation is a function whose graph is a bisimulation. We will also use
the standard characterization of bisimilarity in terms of a bisimulation game
between players ∃ve and ∀dam.

It is widely known that modal logic is invariant under bisimulation, i.e.
bisimilar points are always logically indistinguishable. The converse may re-
quire an additional assumption of image-finiteness.

Definition 2.5 A model M ∈ Krip(R) is image-finite if every point p ∈ M
has only finitely many Rk-children for every Rk ∈ R.

The classical result of Hennessy and Milner [6] states that, in image-finite
models, points that are logically indistinguishable have to be bisimilar. The
following example shows that without the assumption of image-finiteness this
does not have to be the case.
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Example 2.6 The Hedgehogs: H, rootH and H′, rootH′ 4 :

· · ·

H

· · ·

· ·
·

H′
same as H, excep

t that there

is an extra
infinite

path

The two models are not bisimilar, as one of them is well-founded but the
other is not. However, it is easy to show that they cannot be distinguished by
ML formulae. 5

As it turns out, the above example is an illustration of a general phe-
nomenon, which is that among infinitely many behaviours one can always find
a limit one that: (i) can be either included or removed from the model but
(ii) our local logical means are too weak to tell the difference. This will be
the key intuition underlying our characterisation of bisimulational categoricity
(i.e. the property of having a unique model up to bisimulation). Roughly, the
characterization says that the requirement of image-finiteness – treated up to
bisimulation – is not only sufficient but also necessary.

In order to formulate the theorem, we first formally introduce the notion of
a type – i.e. a maximal consistent set of formulae – analogous to types in first-
order model theory (here by type we always mean a complete one). For the sake
of simplicity, let us confine ourselves to the case when the signature consists
of a single relation “→” (the symbol should not be confused with implication:
“⇒”).

Definition 2.7 Given a point p ∈ M ∈ Krip({→}), its modal type – denoted
tpM(p) – is the set {ϕ ∈ Φ{→} | p ∈ JϕKM} of all modal formulae it satisfies.
The set of all modal types will be denoted T.

We are now ready to formulate our first main theorem.

Theorem 2.8 For every type t ∈ T, the following are equivalent:

(1) t has a unique model up to -;

(2) every model of t is bisimilar to an image-finite model;

(3) t has a model which is image-finite.

4 Here the valuation is not important – for the sake of this example assume Σ = ∅.
5 In fact, even the full first-order logic cannot distinguish the models, as can be shown using
Ehrenfeucht-Fräıssé games.
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We will moreover show two analogous characterisations involving two other
logics and their corresponding equivalence relations. In order to neatly extract
the common part of the structure of the logics we investigate, and because
it is interesting in its own right, we formally introduce the notion of induced
relations.

3 Induced Relations

Various modal-like logics and bisimilarity-like congruences can be obtained
by considering some relation induced by the original accessibility relation.

Definition 3.1 Given two binary signatures S,R (source and result), an in-
ducing assignment is an assignment

ind : Krip(S)→ Krip(R)

such that everyM∈ Krip(S) has the same universe and valuation as its image
ind(M).

3.1 Induced Logic and Bisimulations

Every inducing assignment gives rise to the induced logic.

Definition 3.2 Given an inducing assignment ind : Krip(S) → Krip(R), we
define the induced modal logic MLind interpreted over Krip(S). Formulae
Φind = ΦR are standard modal formulae over signature R. The semantics
map J KMind : Φind → P(M) is defined with respect to the induced model – on
every M∈ Krip(S) we put:

JϕKMind = JϕKind(M)

We say that model M, p satisfies formula ϕ (notation: M, p |= ϕ) if
ϕ ∈ JϕKMind. Models M, p and N , q are equivalent (denoted M, p ≡MLind

N , q)
if they satisfy the same MLind formulae.

Similarly to the induced logic, we also define an induced bisimulation, where
we ignore the original relations and only take the induced ones into account.

Definition 3.3 Given an assignment ind : Krip(S) → Krip(R), a relation
Z ⊆ M × N between models M,N ∈ Krip(S) is an ind-bisimulation if it is
a bisimulation between ind(M) and ind(N ). Induced bisimilarity is defined
accordingly and denoted -ind.

The standard characterization of bisimilarity in terms of a two-player game
carries over to the induced setting. Moreover, it follows immediately from
invariance of modal logic under bisimulation that for any ind, MLind is invariant
under -ind:

Proposition 3.4 For any pair of models M,N ∈ Krip(S), if M, p -ind N , q
then M, p ≡MLind

N , q.
As it was mentioned, several interesting logics and bisimilarity relations fit

well into our induced framework. Let us show a few examples.
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Example 3.5 A trivial example is the identity assignment Id. Logic induced
by Id : Krip(R) → Krip(R) is the same as the original one, i.e. MLId = ML(R).
Likewise, -Id equals -.

Example 3.6 Let ind� : Krip({→})→ Krip({→,←}) be the assignment that
keeps the relation “→” unchanged and additionally introduces its inverse (i.e.
a fresh relation “←” s.t. p ← q iff p → q for any two points p and q in the
model). Then, MLind� is the modal logic with forward and backward (or future
and past) modalities and -ind� is a two-way bisimilarity – where a two-way
bisimulation is a relation that is a bisimulation w.r.t. both the accessibility
relation and its converse.

Example 3.7 Consider the assignment ind+ : Krip({→})→ Krip({→+}) that
maps a relation to its transitive closure. That way we obtain the transitive
modal logic MLind+ and transitive bisimilarity -ind+ – also known as EF-logic
and EF-bisimilarity in the context of computer science (see e.g. [2]).

Example 3.8 Let ind∀ : Krip({→})→ Krip({→, 〈∃〉}) be the assignment that
keeps “→” and adds a new relation “〈∃〉” which is the full relation on the
model’s universe. This gives raise to logic MLind∀ being the modal logic with
universal modalities and to -ind∀ being global bisimilarity.

It is worth to emphasize that the term “logic” as we use it denotes a set of
formulae together with an appropriate satisfaction relation between formulae
and models. In particular, it is something different from what is known as
normal modal logic which is just a sets of formulae. For example, the set of all
tautologies of the transitive modal logic MLind+ is precisely the normal modal
logic K4.

The next example shows that one has to be careful, as in general ind could
encode an oracle for arbitrary class of models:

Example 3.9 Let C be an arbitrary class of pointed models over signature S.
The assignment indC : Krip(S) → Krip(S ∪ {RC}) takes a model M ∈ Krip(S),
keeps all the relations from S unchanged and sets pRCq iff p = q andM, p ∈ C
– i.e. indC adds a self-loop labelled by “C” to precisely these points p for which
M, p ∈ C. Then, the formula 3C> is true in M, p iff M, p ∈ C.

3.2 Model Theory – The Space of Types

The notion of modal type can be adapted to the induced setting in a natural
way.

Definition 3.10 Given a logic MLind, we define an MLind-type of a point p ∈
M ∈ Krip(S) – denoted tpM(p) – to be the set {ϕ ∈ MLind | M, p |= ϕ}. The
set of all MLind-types will be denoted Tind.

Along the same lines as in the classical model theory for first-order logic,
our types can be equipped with a topology turning it into a Hausdorff space.

Definition 3.11 For any ϕ ∈ MLind, we take the set 〈ϕ〉 = {t ∈ Tind | ϕ ∈ t}
of all types containing it. Then, the set {〈ϕ〉 | ϕ ∈ MLind} is a basis of clopen
sets generating a topology on Tind.
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Alternatively, one could obtain the same topology by first picking any enu-
meration of MLind formulae and then defining a metric d(t, t′) = 1

n for n being
the number of the first formula on which t and t′ differ (and 0 if t = t′). The
underlying intuition is that types which are similar – i.e. hard to distinguish –
should be close to each other.

Proposition 3.12 Analogously to the first-order case, we have that:

• the space Tind is always Hausdorff;

• the logic MLind is compact (i.e. if any finite fragment of a set of formulae
t is satisfiable, then so is the entire t) ⇐⇒ the space Tind is compact;

• given T ⊆ Tind, t ∈ Tind is isolated in T ⇐⇒ there exists a single MLind
formula ϕ ∈ t s.t. ϕ /∈ t′ for every other t′ ∈ T .

Proof. Observe that by identifying a type with its characteristic function, we
can view the space Tind as a subspace of 2Φind . Since the later is Hausdorff, so
is Tind. Moreover, a subspace of a compact Hausdorff space is compact iff it is
closed – and it is easy to check that closedness of Tind is the same as logical
compactness of MLind. The last item follows from the observation that in any
topological space, a point is isolated iff it is isolated by a basic open set. 2

An important notion that can be generalised to the induced setting is that
of modal saturation (also called m-saturation). Our topology on types allows
us to capture it in an elegant way.

Definition 3.13 We say that a point p in a model M ∈ Krip(S) is MLind-
saturated if for every Rk ∈ R, the set of types of its Rk-children {tpM(q)| pRkq}
is closed. We call M MLind-saturated if all its points are MLind-saturated.

In more concrete terms (the way modal saturation is usually defined):
MLind-saturation means that if any finite fragment of t is realised in some Rk-
child of p, then there exists a p’s Rk-child realising the entire t. The following is
an immediate consequence of an analogous fact for the standard case of ML(R)
and -:

Theorem 3.14 Given any two MLind-saturated models M,M′ ∈ Krip(S):

M, p ≡MLind
M′, p′ implies M, p -indM′, p′

for any p ∈M, p′ ∈M′.

Note that it is immediate that MLind-saturation generalises the notion of
image-finiteness (w.r.t. the induced relations), as in a Hausdorff space finite
sets are always closed.

4 The Main Theorem: Bisimulational Categoricity

After collecting all the necessary notions and tools, we are now ready to
state and prove three theorems being the main contribution of this paper (in-
cluding the already mentioned Theorem 2.8).
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Theorem 2.8 For every type t ∈ T, the following are equivalent:

(1) t has a unique model up to -;

(2) every model of t is bisimilar to an image-finite model;

(3) t has a model which is image-finite.

Theorem 4.1 For every type t ∈ Tind� , the following are equivalent:

(1) t has a unique model up to -ind� ;

(2) every model of t is ind�-bisimilar to a model where every point has finite
in- and out-degree;

(3) t has a model where every point has finite in- and out-degree.

Theorem 4.2 For every type t ∈ Tind+ , the following are equivalent:

(1) t has a unique model up to -ind+ ;

(2) every model of t is ind+-bisimilar to a finite model;

(3) t has a finite model.

Note that in light of Proposition 4.9, the last theorem implies that when it
comes to defining models up to transitive bisimulation, the expressive power of
the transitive modal logic does not increase when we move from single formulae
to entire theories.

Let us now prove the theorems. Most of the proof is the same in all three
cases of Theorems 2.8, 4.1 and 4.2.

4.1 (2)⇒ (3)

In all the three cases, the implication (2) ⇒ (3) is immediate, as by
definition every type has a model.

4.2 (3)⇒ (1)

Let us now prove a generalisation of the Hennessy-Milner Theorem [6] for
MLind. It strengthens the standard formulation of Hennessy-Milner-like results
in that we only require one of the models to be image-finite (which, in the
context of usual modal logic ML, is a well-known folklore strengthening of the
original Hennessy-Milner Theorem). It does not require any assumptions on
ind and the proof is essentially the same as in the standard case.

Theorem 4.3 (à la Hennessy-Milner) Assume M ∈ Krip(S) and the in-
duced model ind(M) is image-finite. Then, for every M′ ∈ Krip(S) and every
p ∈M, p′ ∈M′:

M, p ≡MLind
M′, p′ implies M, p -indM′, p′.

Proof. It suffices to show that the relation ≡ML⊆M×M ′ of modal equivalence
is itself an ind-bisimulation. The base condition is immediate.

For the back and the forth conditions, let us take q ≡MLind
q′, and any

Rk ∈ R. By our assumption, q can only have a finite number of Rk-children (in
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ind(M)). In particular, they have only a finite number of distinct modal types
t1, ..., tn – and since Tind is a Hausdorff space, we can find pairwise mutually
exclusive formulae ϕ1, ..., ϕn s.t. ϕi ∈ ti but ϕi /∈ tj for i 6= j. Both q – and by
equivalence also q′ – satisfy:

2k(
∨

i∈{1,...,n}

ϕi);
∧

i∈{1,...,n}

3kϕi; 2k(ϕi ⇒ ψ) for any ψ ∈ ti

It follows that the types of Rk-children of q′ are exactly t1, ..., tn. But this
implies both the forth and the back conditions, as it means that for every Rk-
child of q (or q′, respectively) there exists an equivalent Rk-child of q′ (resp.
q). 2

4.3 (1)⇒ (2)

The last (and hardest to prove) implication is from (1) to (2). Before we
proceed, let us recall an elementary topological fact. Since any infinite compact
space has to contain a non-isolated point and closed subspaces of a compact
space are always compact, it follows that:

Lemma 4.4 If Y is a closed infinite subset of a compact topological space X,
then it contains a point y ∈ Y that is not isolated in Y .

As in the classical model theory, we would like to use some good properties
based on compactness of the considered logic. However, as shown by Example
3.9, an inducing assignment can encode arbitrary properties and thus in general
the logic MLind does not have to be compact. Fortunately, we may overcome this
difficulty thanks to additional good properties of the considered assignments.

Lemma 4.5 Assume that the image of ind is axiomatized by a set of sentences
A expressed in first-order logic, i.e.:

ind[Krip(S)] = {M ∈ Krip(R) | M satisfies A}.

Then:

• the logic MLind is compact;

• every t ∈ Tind has an MLind-saturated model M, r |= t.

Proof. For the first item, take any set of formulae t ⊆ MLind and translate
it to equivalent set tFO of formulae in first-order logic over the signature R ∪
{a(x) | a ∈ Σ}. Observe that t is satisfiable w.r.t. the induced semantics iff
A ∪ tFO is satisfiable in Krip(R) in the standard sense. Hence, compactness of
MLind follows from compactness of the first-order logic.

The second item can be proven in a similar way, using the model-theoretic
method of elementary saturated extensions. The proof is just a straightforward
modification of the standard one (e.g. in [1]) and as such is skipped. 6 2

6 In fact, if one defines induced first-order logic FOind analogously to the induced modal logic
– by interpreting it via ind – the assumption of first-order axiomatizability of ind[Krip(S)]
allows for a generalisation of van Benthem’s theorem saying that MLind is precisely the -ind-
invariant fragment of FOind.
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Note that all the assignments Id, ind�, ind+ and ind∀ satisfy the assump-
tions of the above lemma.

Before we proceed, let us adapt two basic constructions related to the no-
tion of a bisimulation to our context – generated submodels and bisimulation
quotients (also called bisimulation contractions):

Proposition 4.6 (generated submodels) Let ind be either Id, ind� or
ind+. Given a model M ∈ Krip(S) and a point p ∈ M, the model generated by
p, denoted 〈p〉M, is just the submodel of M consisting of points reachable from
p by a finite path in ind(M) (including p itself). Then, M, q -ind 〈p〉M, q for
any q ∈ 〈p〉M.

Proposition 4.7 (quotients) Let ind be either Id, ind� or ind+. For an ind-
bisimulation Z ⊆M×M being an equivalence relation, there is a model struc-
ture on the set of all equivalence classes of Z s.t. the projection map p

πZ7−→ [p]/Z
is a functional ind-bisimulation. We call that model a quotient of M by Z –
and denote it M/Z . 7

Proof. Both constructions are the same as in the standard case – except for
quotients by transitive bisimulations.

Given a model M and a transitive bisimulation Z being an equivalence
relation on M , we can first take the modelM+ = (M,→M+

, valM) with→M+

being the transitive closure of →M.
Observe that ind+(M) = ind+(M+) and hence: (*) the identity map

Id : M →M can be seen as a functional transitive bisimulation Id :M→M+.
Moreover, transitivity of →M+

implies that: (**) on M+, transitive bisimula-
tions are the same as standard bisimulations.

Since (transitive) bisimulations are closed under compositions, (*) implies
that Z is a transitive bisimulation not only on M, but also on M+ – and so
by (**) it is also a standard bisimulation on M+. This allows us to quotient
(in the standard sense) M+ by Z obtaining (M+)/Z . Since the natural pro-
jection πZ :M+ → (M+)/Z is a functional bisimulation and bisimulations are
always instances of transitive bisimulations, the graph of the function πZ – and
therefore by (*) also πZ ◦ Id :M→ (M+)/Z – is a transitive bisimulation. 2

We are now ready for the proof.

Case 1: ind = Id
Let us take a model M, r that is not bisimilar to any image-finite model –
we will construct another model that is equivalent, but non-bisimilar to it. We
may combine: (i) Lemma 4.5 to obtain an equivalent model which is ML({→})-
saturated, (ii) Proposition 4.7 to take its quotient by - where (by Proposition
3.14) no two points satisfy the same formulae and finally (iii) apply Proposition
4.6 to take a submodel accessible from the root. If such model is not bisimilar

7 Note that in the case of ind+ such quotient does not have to be unique. Nevertheless, it is
unique up to -ind.
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toM, r, we are done – so the remaining case is whenM, r has all the properties
listed above.

Since by our assumption M, r is not image-finite, there must exist a point
p reachable from r by a finite path and having infinitely many children. The
set T = {tpM(q) | p → q} is an infinite closed subset of a compact space and
so by Lemma 4.4 it contains a non-isolated limit type tlim realised in some p’s
child plim.

Now, in order to construct another model for t we simply remove the arrow
leading from p to plim:

N = (M,→M −{(p, plim)}, valM)

We prove by induction on n that any point q ∈ M satisfies exactly the same
formulae of modal depth n in bothM and N (and thus in particular N , r |= t).
The base case is obvious. For the induction step, the only interesting case is
for p, as prima facie it could satisfy less sentences of the form 3ϕ. However,
since tlim is not isolated in T , for any ϕ ∈ tlim there must be t′ ∈ T s.t. ϕ ∈ t′.
By definition of T this means that there is a sibling s of plim s.t. M, s |= t′ –
and so in particular M, s |= ϕ. But modal depth of ϕ is smaller than that of
3ϕ – so we know by induction hypothesis thatN , s |= ϕ, and henceN , p |= 3ϕ.

On the other hand, we will show that M, r 6- N , r, as ∀dam has the
following winning strategy in the bisimulation game: (i) First follow the
path to the point p in M. If after that ∃ve responds with a point q ∈ N
other than p, we know that M, p 6≡ML N , q (as no two different points
are equivalent in N ) and so M, p 6- N , q – which means that ∀dam can
now win the game. (ii) If ∃ve responded with the same point p ∈ N ,
∀dam moves to plim in M. Now ∃ve has to respond with some point
q ∈ N – but by definition of N we know that she cannot choose plim, and so
againM, plim 6≡ML N , q, meaning that ∀dam can win the game from that point.

Case 2: ind = ind�
In this case, we need a slight modification of the previous construction due to
the fact that we deal with two-way modalities and removing an arrow q → q′

changes both sets: q’s successors and q′’s predecessors.

As in the previous case, we take an MLind�-saturated model of t ∈ Tind�

where any two different points have different types and any point is accessi-
ble by a finite path (possibly using forward and backward moves) from the
root – s.t. some point p ∈ M has infinitely many successors (the case with
infinitely many predecessors is entirely symmetric). We take the limit tlim of
T = {tpM(q) | p→ q} realised by some plim.

We define N as follows. First take the disjoint union N ′ =M1 +M2 +M3,
where eachMi is a copy ofM. We will denote the element ofMi corresponding
to q ∈M by qi. Let us also pick any child s ∈M of p different than plim. Then,
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our model N is just N ′ without the arrow p2 → plim
2 and with two additional

arrows p2 → s1 and p3 → plim
2 :

N = (N ′,→N
′
−{(p2, p

lim
2 )} ∪ {(p2, s1), (p3, p

lim
2 )}, valN

′
)

A picture of M, r and N , r1:

p

plim

s

p1

plim
1

s1

p2

plim
2

s2

p3

plim
3

s3

The rest of the proof is analogous to the previous case. We first prove
by induction on n that for every q ∈ M, M, q and N , qi satisfy the same
MLind� -formulae of modal depth n. This boils down to checking several
straightforward cases (the one in which we use the fact that tlim was not
isolated is that with p2’s successors).

The winning strategy for ∀dam witnessing M, r 6-ind� N , r1 is as follows:
(i) First follow the path from r1 to p2 ∈ N . 8 . In order not to loose, ∃ve has
to respond in M with the only point that is equivalent to p2, namely p. (ii)
Then, ∀dam moves to plim in M and ∃ve has to respond in N with a point
non-equivalent with it – thus loosing the game.

Case 3: ind = ind+

This is the most involved case. The key difficulty is that it does not suffice
to simply remove arrows from the model to remove them from its transitive
closure. Consider the following example.

8 Note that since in this context accessibility means two-way accessibility, after removing
the arrow p2 → plim2 , p2 does not have to be accessible from r2. Indeed, it could actually
happen that M, r -ind� N , r2. However, we know that s1 is accessible from r1 and from
there we can move backwards to p2.
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Example 4.8 In the model below, the rightmost blue point has a copy of ω
(with the reverse order as the accessibility relation) as its children.

· · ·
· ·
·

a
co

py
of

(ω
,>

)

One can check that the type tlim of the rightmost blue point is not isolated
among the types of its blue siblings. However, it is isolated from the perspective
of the yellow point – which in turn is isolated from the perspective of the root.
Basing on that observation, it is not hard to show that any model MLind+ -
equivalent to the one above must realise tlim in a descendant (not necessarily
a child) of its root. In particular, this demonstrates that not every isolated
type can be omitted. Nevertheless, we will show that in the presence of a non-
isolated type it is always possible to find some (possibly different) type that
can be omitted.

Let us start with recalling the following well-known fact:

Proposition 4.9 If M, r is a finite model, then it is definable in MLind+ up
to -ind+ , i.e. there is an MLind+-formula s.t. every its model is ind+-bisimilar
to M, r. In particular, finite models only realize types isolated in Tind+ .

Proof. Since M = q1, ..., qn is finite, it realises only finitely many types
t1, ..., tn (w.l.o.g. all distinct, as otherwise we may quotient the model). Since
Tind+ is a Hausdorff space, there are mutually exclusive sentences ϕi ∈ ti for
every i. First, define ψi to be the formula that describes which atomic propo-
sitions belong to ti and which other types it sees:

∧
{a ∈ Σ | a ∈ ti} ∧

2(
∨
{ϕj | qi →+ qj}) ∧∧
{3ϕj | qi →+ qj}

Then, we put:

θi = ψi ∧2(
∧

j∈{1,...,n}

{ϕj ⇒ ψj})
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It is straightforward that θi ∈ ti. On the other hand, if N , q |= θi, then
already N , q -ind+ M, qi. Indeed, w.l.o.g. we may assume that such N is
reachable from q and then it is easy to check that: (i) the types of all the
points of N are precisely {t1, ..., tn}, (ii) the map f : N → M sending a point
with type ti to qi is a functional bisimulation. It then follows that each type ti
is isolated by its basic neighbourhood 〈θi〉. 2

As in both previous cases, let us take a modelM, r that is infinite, MLind+ -
saturated, reachable and no two points realise different types – but the model
is not bisimilar to a finite one. It follows that the root has infinitely many
descendants. We will need the following fact:

Lemma 4.10 There exists a point p∞ ∈ M s.t. p∞ →+ p∞ and its type t∞
is a non-isolated element of {tpM(q) | p∞ →+ q}.
Proof. We will inductively construct a sequence of (not necessarily distinct)
points, indexed by countable ordinals (pα)α<ω1

⊆ M with the property
that for any α < β: (i) pα →+ pβ and (ii) tpM(pβ) is not isolated in
{tpM(q) | pα →+ q}.

For the induction base, we simply take the root p0 = r.
For α+ 1, we know by induction assumption that tpM(pα) is not isolated,

so by Lemma 4.9 we know that the model generated by pα has to be infinite
(except for the case α = 0 where we just know that r has infinitely many
descendants). Now we look at the infinite set Tα = {tpM(q)| pα →+ q}
and pick some its limit – a non-isolated type tα+1 ∈ Tind+ which, by MLind+ -
saturation, is realised in some descendant pα+1 of pα.

For a limit ordinal α, we fix a subsequence (αi)i∈ω ⊆ α of shape ω which
is cofinal with α (which exists as α is countable). Take any limit tα of the set
Tα = {tpM(pαi) | i ∈ ω}. Since tα is not isolated and Tind+ is Hausdorff, every
ϕ ∈ tα must belong to infinitely many types from Tα. It follows that there are
arbitrary big i s.t. ϕ ∈ tαi

, so every pαj
– and hence by cofinality also every pβ

– has a descendant satisfying ϕ. Hence, by MLind+ -saturation, each pβ has a
descendant realising tα – and by our assumptions onM this point pα is unique.

Now we claim that pα = pβ for some α 6= β. Indeed, observe that if p→+ q,
then q cannot satisfy more formulae of the form 3ϕ than p. Since there are
only countably many formulae, for sufficiently large α all tpM(pα) may only
differ on formulae equivalent to boolean combinations of Σ. But P(Σ) is finite,
so pα = pβ for some α < β and thus we put p∞ = pα. It then follows from
(i) that p∞ →+ p∞. Finally, (ii) implies that the type t∞ is not isolated in
{tpM(q) | p∞ →+ q}, as desired. 2

Now, we can define a new model by removing all the arrows leading to p∞:

N = (M,→ −{(q, p∞) | q ∈M}, valM).

Observe that t∞ is not isolated in {tpM(q) | p →+ q} for any ancestor p
of p∞. This allows us, as in the two previous cases, to prove by induction on
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modal depth that M, q ≡MLind+
N , q for every q ∈ M. On the other hand, p∞

is reachable from the root inM but not in N – which gives a winning strategy
for ∀dam in the bisimulation game. Q.E.D.

4.4 Limitations

We end with two examples illustrating limitations of our method. First of
all, let us emphasize that our proofs rely on compactness of the logic under
consideration – and it is not hard to come up with an example of a non-
compact logic which fails to have analogous characterisation. For instance,
consider the mix of ML and MLind+ – i.e. the logic having both the standard
and the transitive modalities. Such logic is not compact and can describe the
infinitely branching Hedgehog (Example 2.6) up to bisimulation – by extending
its ML-type with an additional sentence: 2(2⊥ ∨3+2⊥) (i.e. “every child of
the root either has no children or has a descendant with no children”).

Since non-compact logics seem out of our reach, a natural question is if
compactness is sufficient for analogous characterisation. Unfortunately, this is
not the case. The second example shows that even the stronger assumption
of first-order axiomatizability of ind[Krip(S)] (which implies compactness of
MLind by Lemma 4.5) is not sufficient to generalise our characterization to
MLind. Recall the universal modality induced by ind∀ (Example 3.8). The
class ind∀[Krip({→})] is definable by a single first-order sentence: ∀x,yx〈∃〉y.
However, consider the following model M∈ Krip({→}):
Example 4.11 M = ω + 1 = {0, 1, ..., ω}; p→M q iff p = q + 1 or p = q = ω.
As in Example 2.6 (The Hedgehogs), we assume Σ = ∅.

ω 0 1 2 3 · · ·

Observe that M, p 6≡MLind∀
M, q for all p 6= q – and so every point has

infinitely many pairwise non-equivalent 〈∃〉-children. However, it is not hard
to show that any model equivalent to M, ω must be ind∀-bisimilar to it. The
thing is that although the topological part of our reasoning still works and we
may find a limit of the types realised in M (in fact, in this situation there is
precisely one such limit type – the type of ω) – it is not possible to omit that
limit type.
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