Countdown logic, games and automata

bisimulation-invariant approach to (un)boundedness

Jędrzej Kołodziejski
(\& Bartek Klin)

4 VII 2023
eTokio

μ-calculus $=$ modal logic + fixpoints

Syntax:

Syntax:

$$
\varphi::=\top|\perp| \varphi \vee \varphi|\varphi \wedge \varphi|\langle\mathrm{a}\rangle \varphi|[\mathrm{b}] \varphi| x|\mu x . \varphi| \nu x . \varphi
$$

Syntax:

boolean

$$
\varphi::=\top|\perp| \varphi \vee \varphi|\varphi \wedge \varphi|\langle\mathrm{a}\rangle \varphi|[\mathrm{b}] \varphi| x|\mu x . \varphi| \nu x . \varphi
$$

Syntax:

Syntax:

$$
\varphi::=\top|\perp| \varphi \vee \varphi|\varphi \wedge \varphi|\langle\mathrm{a}\rangle \varphi|[\mathrm{b}] \varphi| x|\mu x . \varphi| \nu x . \varphi
$$

Syntax:

:sכ!łuewas

Syntax:

- interpreted in points of a modal model \mathcal{M}
:ș!quewəs

Syntax:

- interpreted in points of a modal model \mathcal{M}

directed graph $\left(M,\left({ }^{a}\right)_{\mathrm{a} \in A c t}\right)$, edges labelled with Act
:sכ!łuewəs

Syntax:

- interpreted in points of a modal model \mathcal{M}

directed graph $\left(M,(\xrightarrow{a})_{a \in A c t}\right)$, edges labelled with Act
- " $\langle a\rangle \varphi$ " means "there exists an a-child satisfying φ "
:ș!̣uewəs

Syntax:

if trivial Act $=\{a\}$, denote

- interpreted in points of a modal model \mathcal{M}

directed graph $\left(M,\left({ }^{a}\right)_{\mathrm{a} \in A c t}\right)$, edges labelled with Act
- " $\langle a\rangle \varphi$ " means "there exists an a-child satisfying φ "
:ș!̣uewəs

Syntax:

if trivial Act $=\{a\}$, denote

- interpreted in points of a modal model \mathcal{M}

directed $\operatorname{graph}\left(M,(\xrightarrow{\mathrm{a}})_{\mathrm{a} \in \mathrm{Act}}\right)$, edges labelled with Act

$$
\longrightarrow \text { plus val : Var } \rightarrow \mathcal{P}(M)
$$

- " $\langle a\rangle \varphi$ " means "there exists an a-child satisfying φ "
:ș!quewəs
- $\diamond x$ induces an operation $F: \mathcal{P}(M) \rightarrow \mathcal{P}(M)$:

$$
S \stackrel{F}{\mapsto} \llbracket \diamond x \rrbracket^{x::=S}=\left\{\mathrm{m} \mid \exists_{\mathrm{m} \rightarrow \mathrm{n}} \mathrm{n} \in S\right\}
$$

- $\diamond x$ induces an operation $F: \mathcal{P}(M) \rightarrow \mathcal{P}(M)$:

$$
S \stackrel{F}{\mapsto} \llbracket \diamond x \rrbracket^{x::=S}=\left\{\mathrm{m} \mid \exists_{\mathrm{m} \rightarrow \mathrm{n}} \mathrm{n} \in S\right\}
$$

- since x appears only positively in $\diamond x, F$ is monotone...
- $\diamond x$ induces an operation $F: \mathcal{P}(M) \rightarrow \mathcal{P}(M)$:

$$
S \stackrel{F}{\mapsto} \llbracket \diamond x \rrbracket^{\rrbracket::=S}=\left\{\mathrm{m} \mid \exists_{\mathrm{m} \rightarrow \mathrm{n}} \mathrm{n} \in S\right\}
$$

- since x appears only positively in $\diamond x, F$ is monotone...

$$
S \subseteq S^{\prime} \Longrightarrow F(S) \subseteq F\left(S^{\prime}\right)
$$

- $\diamond x$ induces an operation $F: \mathcal{P}(M) \rightarrow \mathcal{P}(M)$:

$$
S \stackrel{F}{\mapsto} \llbracket \diamond x \rrbracket^{\rrbracket::=S}=\left\{\mathrm{m} \mid \exists_{\mathrm{m} \rightarrow \mathrm{n}} \mathrm{n} \in S\right\}
$$

- since x appears only positively in $\diamond x, F$ is monotone...

$$
S \subseteq S^{\prime} \Longrightarrow F(S) \subseteq F\left(S^{\prime}\right)
$$

- ...and so F has the greatest and the least fixpoint!
- $\diamond x$ induces an operation $F: \mathcal{P}(M) \rightarrow \mathcal{P}(M)$:

$$
S \stackrel{F}{\mapsto} \llbracket \diamond x \rrbracket^{\rrbracket::=S}=\left\{\mathrm{m} \mid \exists_{\mathrm{m} \rightarrow \mathrm{n}} \mathrm{n} \in S\right\}
$$

- since x appears only positively in $\diamond x, F$ is monotone...

$$
S \subseteq S^{\prime} \Longrightarrow F(S) \subseteq F\left(S^{\prime}\right)
$$

- ...and so F has the greatest and the least fixpoint!
$\llbracket \nu x . \Delta x \rrbracket=$ GFP. F
- $\diamond x$ induces an operation $F: \mathcal{P}(M) \rightarrow \mathcal{P}(M)$:

$$
S \stackrel{F}{\mapsto} \llbracket \diamond x \rrbracket^{\rrbracket::=S}=\left\{\mathrm{m} \mid \exists_{\mathrm{m} \rightarrow \mathrm{n}} \mathrm{n} \in S\right\}
$$

- since x appears only positively in $\diamond x, F$ is monotone...

$$
S \subseteq S^{\prime} \Longrightarrow F(S) \subseteq F\left(S^{\prime}\right)
$$

- ...and so F has the greatest and the least fixpoint!
$\llbracket \nu x . \Delta x \rrbracket=$ GFP.F $\quad \llbracket \mu x . \Delta x \rrbracket=$ LFP..$>$

Knaster-Tarski Theorem:

Knaster-Tarski Theorem:

Every monotone map $F: \mathcal{P}(M) \rightarrow \mathcal{P}(M)$ has the least and the greatest (w.r.t. \subseteq) fixpoint LFP.F and GFP.F.

Knaster-Tarski Theorem:

Every monotone map $F: \mathcal{P}(M) \rightarrow \mathcal{P}(M)$ has the least and the greatest (w.r.t. \subseteq) fixpoint LFP.F and GFP.F.

Both are computed as the limits of (transfinite) sequences:

Knaster-Tarski Theorem:

Every monotone map $F: \mathcal{P}(M) \rightarrow \mathcal{P}(M)$ has the least and the greatest (w.r.t. \subseteq) fixpoint LFP.F and GFP.F.

Both are computed as the limits of (transfinite) sequences:

$$
F_{\mu}^{\alpha}=\bigcup_{\beta<\alpha} F_{\mu}^{\beta} \quad \text { and } \quad F_{\nu}^{\alpha}=\bigcap_{\beta<\alpha} F_{\nu}^{\beta}
$$

with α ranging over ordinal numbers

Knaster-Tarski Theorem:

Every monotone map $F: \mathcal{P}(M) \rightarrow \mathcal{P}(M)$ has the least and the greatest (w.r.t. \subseteq) fixpoint LFP.F and GFP.F.

Both are computed as the limits of (transfinite) sequences:

$$
F_{\mu}^{\alpha}=\bigcup_{\beta<\alpha} F_{\mu}^{\beta} \quad \text { and } \quad F_{\nu}^{\alpha}=\bigcap_{\beta<\alpha} F_{\nu}^{\beta}
$$

with α ranging over ordinal numbers

$$
\text { (note: } F_{\mu}^{0}=\bigcup \emptyset=\emptyset \text { and } F_{\nu}^{0}=\bigcap \emptyset=M \text {) }
$$

- we compute fixpoints by (transfinite) iteration of F :
- we compute fixpoints by (transfinite) iteration of F :

$$
S \stackrel{F}{\mapsto} \llbracket \diamond x \rrbracket^{x:=S}=\left\{m \mid \exists_{m \rightarrow n} n \in S\right\}
$$

- we compute fixpoints by (transfinite) iteration of F :

$$
S \stackrel{F}{\mapsto} \llbracket \diamond x \rrbracket^{x:=S}=\left\{m \mid \exists_{m \rightarrow n} n \in S\right\}
$$

- we compute fixpoints by (transfinite) iteration of F :

$$
S \stackrel{F}{\mapsto} \llbracket \diamond x \rrbracket^{x:=S}=\left\{m \mid \exists_{m \rightarrow n} n \in S\right\}
$$

- we compute fixpoints by (transfinite) iteration of F :

$$
S \stackrel{F}{\mapsto} \llbracket \diamond x \rrbracket^{x:=S}=\left\{m \mid \exists_{m \rightarrow n} n \in S\right\}
$$

- we compute fixpoints by (transfinite) iteration of F :

$$
S \stackrel{F}{\mapsto} \llbracket \diamond x \rrbracket^{x:=S}=\left\{m \mid \exists_{m \rightarrow n} n \in S\right\}
$$

- we compute fixpoints by (transfinite) iteration of F :

$$
S \stackrel{F}{\mapsto} \llbracket \diamond x \rrbracket^{x:=S}=\left\{m \mid \exists_{m \rightarrow n} n \in S\right\}
$$

$F_{\nu}^{0}=M$

$F_{\nu}^{1}=F\left(F_{\nu}^{0}\right)=" \exists$ a child" $\quad F_{\nu}^{\omega}=$ "arbitrarily long paths"

$F_{\nu}^{\omega+1}=F_{\nu}^{\omega+2}=$ GFP.F

- we compute fixpoints by (transfinite) iteration of F :

$$
S \stackrel{F}{\mapsto} \llbracket \diamond x \rrbracket^{x::=S}=\left\{m \mid \exists_{m \rightarrow n} n \in S\right\}
$$

$F_{\nu}^{0}=M$

$F_{\nu}^{1}=F\left(F_{\nu}^{0}\right)=" \exists$ a child" $\quad F_{\nu}^{\omega}=$ "arbitrarily long paths"

$$
F_{\nu}^{\omega+1}=F_{\nu}^{\omega+2}=\text { GFP.F }
$$

11
$\llbracket \nu x . \diamond x \rrbracket$

$\underline{\mu \text {-calculus }=\text { modal logic }+ \text { fixpoints }}$

$$
\varphi::=\top|\perp| \varphi \vee \varphi|\varphi \wedge \varphi|\langle\mathrm{a}\rangle \varphi|[\mathrm{b}] \varphi| x|\mu x . \varphi| \nu x . \varphi
$$

$$
\mu \text {-calculus }=\text { modal logic }+ \text { fixpoints }
$$

$$
\varphi::=\top|\perp| \varphi \vee \varphi|\varphi \wedge \varphi|\langle\mathrm{a}\rangle \varphi|[\mathrm{b}] \varphi| x|\mu x . \varphi| \nu x . \varphi
$$

$$
\mu \text {-calculus }=\text { modal logic }+ \text { fixpoints }
$$

$$
\llbracket T \rrbracket^{v a l}=M \text { and } \llbracket \|^{v^{v a l}}=\emptyset
$$

$$
\varphi::=\mathrm{T}|\perp| \varphi \vee \varphi|\varphi \wedge \varphi|\langle\mathrm{a}\rangle \varphi|[\mathrm{b}] \varphi| x|\mu x . \varphi| \nu x . \varphi
$$

$$
\mu \text {-calculus }=\text { modal logic }+ \text { fixpoints }
$$

$$
\begin{gathered}
\llbracket 丁 \rrbracket^{\text {val }}=M \text { and } \llbracket \perp \rrbracket^{\text {val }}=\emptyset \\
\llbracket \varphi_{1} \vee \varphi_{2} \rrbracket^{\text {val }}=\llbracket \varphi_{1} \rrbracket^{\text {val }} \cup \llbracket \varphi_{2} \rrbracket^{\text {val }} \text { and } \llbracket \varphi_{1} \wedge \varphi_{2} \rrbracket^{\text {val }}=\llbracket \varphi_{1} \rrbracket^{\text {val }} \cap \llbracket \varphi_{2} \rrbracket^{\text {val }}
\end{gathered}
$$

$$
\varphi::=\top|\perp| \varphi \vee \varphi|\varphi \wedge \varphi|\langle\mathrm{a}\rangle \varphi|[\mathrm{b}] \varphi| x|\mu x . \varphi| \nu x . \varphi
$$

$\underline{\mu \text {-calculus }=\text { modal } \operatorname{logic}+\text { fixpoints }}$

$$
\llbracket \subset \rrbracket^{\text {val }}=M \quad \text { and } \quad \llbracket \perp \rrbracket^{\text {val }}=\emptyset
$$

$$
\llbracket \varphi_{1} \vee \varphi_{2} \rrbracket^{\text {val }}=\llbracket \varphi_{1} \rrbracket^{\text {val }} \cup \llbracket \varphi_{2} \rrbracket^{\text {val }} \text { and } \llbracket \varphi_{1} \wedge \varphi_{2} \rrbracket^{\text {val }}=\llbracket \varphi_{1} \rrbracket^{\text {val }} \cap \llbracket \varphi_{2} \rrbracket^{\text {val }}
$$

$$
\varphi::=\top|\perp| \varphi \vee \varphi|\varphi \wedge \varphi|\langle\mathrm{a}\rangle \varphi|[\mathrm{b}] \varphi| x|\mu x . \varphi| \nu x . \varphi
$$

$\underline{\mu \text {-calculus }=\text { modal logic }+ \text { fixpoints }}$

$$
\llbracket \subset \rrbracket^{\text {val }}=M \quad \text { and } \quad \llbracket \perp \rrbracket^{\text {val }}=\emptyset
$$

$$
\llbracket \varphi_{1} \vee \varphi_{2} \rrbracket^{\text {val }}=\llbracket \varphi_{1} \rrbracket^{\text {val }} \cup \llbracket \varphi_{2} \rrbracket^{\text {val }} \text { and } \llbracket \varphi_{1} \wedge \varphi_{2} \rrbracket^{\text {val }}=\llbracket \varphi_{1} \rrbracket^{\text {val }} \cap \llbracket \varphi_{2} \rrbracket^{\text {val }}
$$

$$
\llbracket\langle a\rangle \varphi \rrbracket^{\text {val }}=\left\{m \in M \mid \exists_{m a_{\mathrm{n}}} n \in \llbracket \varphi \rrbracket^{\text {val }}\right\} \quad \text { and } \quad \llbracket[a] \varphi \rrbracket^{\text {val }}=\left\{m \in M \mid \forall_{m \rightarrow \mathrm{a}} n \in \llbracket \varphi \rrbracket^{\text {val }}\right\}
$$

$$
\llbracket x \rrbracket^{\text {val }}=\operatorname{val}(x)
$$

$$
\varphi::=\mathrm{T}|\perp| \varphi \vee \varphi|\varphi \wedge \varphi|\langle\mathrm{a}\rangle \varphi|[\mathrm{b}] \varphi| x|\mu x . \varphi| \nu x . \varphi
$$

$\underline{\mu \text {-calculus }=\text { modal logic }+ \text { fixpoints }}$

$$
\llbracket \subset \rrbracket^{\text {val }}=M \quad \text { and } \quad \llbracket \perp \rrbracket^{\text {val }}=\emptyset
$$

$$
\llbracket \varphi_{1} \vee \varphi_{2} \rrbracket^{\text {val }}=\llbracket \varphi_{1} \rrbracket^{\text {val }} \cup \llbracket \varphi_{2} \rrbracket^{\text {val }} \text { and } \llbracket \varphi_{1} \wedge \varphi_{2} \rrbracket^{\text {val }}=\llbracket \varphi_{1} \rrbracket^{\text {val }} \cap \llbracket \varphi_{2} \rrbracket^{\text {val }}
$$

$$
\llbracket\langle a\rangle \varphi \rrbracket^{\text {val }}=\left\{\mathrm{m} \in M \mid \exists_{\mathrm{m} \mathrm{a}_{\mathrm{n}}} \mathrm{n} \in \llbracket \varphi \rrbracket^{\text {val }}\right\} \quad \text { and } \quad \llbracket[\mathrm{a}] \varphi \rrbracket^{\text {val }}=\left\{\mathrm{m} \in M \mid \forall_{\left.\mathrm{m}{\underset{\mathrm{a}}{\mathrm{n}}} \mathrm{n} \in \llbracket \varphi \rrbracket^{\text {val }}\right\}, 0 \text {. }}\right.
$$

$$
\llbracket x \rrbracket^{\text {val }}=\operatorname{val}(x)
$$

$$
\llbracket \mu x . \varphi \rrbracket^{\text {val }}=\text { LFP.F } \quad \text { and } \llbracket \nu x . \varphi \rrbracket^{\text {val }}=\text { GFP.F }
$$

$$
\varphi::=\top|\perp| \varphi \vee \varphi|\varphi \wedge \varphi|\langle\mathrm{a}\rangle \varphi|[\mathrm{b}] \varphi| x|\mu x . \varphi| \nu x . \varphi
$$

$\underline{\mu \text {-calculus }=\text { modal logic }+ \text { fixpoints }}$

$$
\llbracket \subset \rrbracket^{\text {val }}=M \quad \text { and } \quad \llbracket \perp \rrbracket^{\text {val }}=\emptyset
$$

$$
\llbracket \varphi_{1} \vee \varphi_{2} \rrbracket^{\text {val }}=\llbracket \varphi_{1} \rrbracket^{\text {val }} \cup \llbracket \varphi_{2} \rrbracket^{\text {val }} \text { and } \llbracket \varphi_{1} \wedge \varphi_{2} \rrbracket^{\text {val }}=\llbracket \varphi_{1} \rrbracket^{\text {val }} \cap \llbracket \varphi_{2} \rrbracket^{\text {val }}
$$

$$
\llbracket\langle a\rangle \varphi \rrbracket^{\text {val }}=\left\{\mathrm{m} \in M \mid \exists_{\mathrm{m} \mathrm{a}_{\mathrm{n}}} \mathrm{n} \in \llbracket \varphi \rrbracket^{\text {val }}\right\} \quad \text { and } \quad \llbracket[\mathrm{a}] \varphi \rrbracket^{\text {val }}=\left\{\mathrm{m} \in M \mid \forall_{\left.\mathrm{m}{\underset{\mathrm{a}}{\mathrm{n}}} \mathrm{n} \in \llbracket \varphi \rrbracket^{\text {val }}\right\}, 0 \text {. }}\right.
$$

$$
\llbracket x \rrbracket^{\text {val }}=\operatorname{val}(x)
$$

$$
\llbracket \mu x . \varphi \rrbracket^{\text {val }}=\text { LFP.F } \quad \text { and } \llbracket \nu x . \varphi \rrbracket^{\text {val }}=\text { GFP. } F
$$

$$
\text { with } F(S)=\llbracket \varphi \rrbracket^{v a l}[x:=S]
$$

Why we like it so much?

Why we like it so much?
μ-calculus \sim parity games

Why we like it so much?

μ-calculus \sim parity games

- algorithmicaly feasible \& expressive

Why we like it so much?

μ-calculus \sim parity games

- algorithmicaly feasible \& expressive
- equivalent to automata (of various types),

Why we like it so much?

μ-calculus \sim parity games

- algorithmicaly feasible \& expressive
- equivalent to automata (of various types), monadic second-order logic MSO, algebras...

Why we like it so much?

μ-calculus \sim parity games

- algorithmicaly feasible \& expressive
- equivalent to automata (of various types), monadic second-order logic MSO, algebras...

> regular languages

Why we like it so much?

μ-calculus \sim parity games

- algorithmicaly feasible \& expressive
- equivalent to automata (of various types), monadic second-order logic MSO, algebras...

regular languages

(of finite/infinite words, trees... or up to bisimulation)

Parity Games:

Parity Games:

$\underline{V, E, \text { rank }: V \rightarrow \mathcal{R}}$

Parity Games:

$$
V_{\exists} \sqcup V_{\forall}
$$

$$
\
$$

$$
V, E, \text { rank }: V \rightarrow \mathcal{R}
$$

Parity Games:

$$
\begin{aligned}
& V_{\exists} \sqcup V_{\forall} \quad V \times V \\
& \quad \cup \quad \cup I \\
& \quad V, E, \text { rank }: V \rightarrow \mathcal{R} \\
& \hline
\end{aligned}
$$

Parity Games:

$$
\begin{gathered}
V_{\exists} \sqcup V_{\forall} \quad V \times V \quad \mathcal{R}_{\exists} \sqcup \mathcal{R}_{\forall} \\
\forall \cup / \\
V, E, \text { rank }: V \rightarrow \mathcal{R}
\end{gathered}
$$

Parity Games:

$$
\begin{gathered}
V_{\exists} \sqcup V_{\forall} \quad V \times V \quad \mathcal{R}_{\exists} \sqcup \mathcal{R}_{\forall} \\
\forall \cup / \\
V, E, \text { rank }: V \rightarrow \mathcal{R}
\end{gathered}
$$

- $\exists \mathrm{ve}$ and \forall dam move between positions, round by round

Parity Games:

$$
\begin{gathered}
V_{\exists} \sqcup V_{\forall} \quad V \times V \quad \mathcal{R}_{\exists} \sqcup \mathcal{R}_{\forall} \\
\cup_{\|} \\
V, E, \text { rank }: V \rightarrow \mathcal{R}
\end{gathered}
$$

- $\exists \mathrm{ve}$ and \forall dam move between positions, round by round
- from position v its owner chooses $v E w$ \& the game moves to w

Parity Games:

$$
\begin{gathered}
V_{\exists} \sqcup V_{\forall} \quad V \times V \quad \mathcal{R}_{\exists} \sqcup \mathcal{R}_{\forall} \\
\forall \cup / \\
V, E, \text { rank }: V \rightarrow \mathcal{R}
\end{gathered}
$$

- $\exists \mathrm{ve}$ and \forall dam move between positions, round by round
- from position v its owner chooses $v E w$ \& the game moves to w
- if a player is stuck (has no legal move) looses immediately

Parity Games:

$$
\begin{gathered}
V_{\exists} \sqcup V_{\forall} \quad V \times V \quad \mathcal{R}_{\exists} \sqcup \mathcal{R}_{\forall} \\
\quad \cup / \\
V, E, \text { rank }: V \rightarrow \mathcal{R}
\end{gathered}
$$

- ヨve and \forall dam move between positions, round by round
- from position v its owner chooses $v E w$ \& the game moves to w
- if a player is stuck (has no legal move) looses immediately
- otherwise an infinite play π : look at the greatest rank r appearing infinitely often in $\pi \quad-\quad$ the owner of r looses

Parity Games:

$$
\begin{gathered}
V_{\exists} \sqcup V_{\forall} \quad V \times V \quad \mathcal{R}_{\exists} \sqcup \mathcal{R}_{\forall} \\
\quad \cup / \\
V, E, \text { rank }: V \rightarrow \mathcal{R}
\end{gathered}
$$

- ヨve and \forall dam move between positions, round by round
- from position v its owner chooses $v E w$ \& the game moves to w
- if a player is stuck (has no legal move) looses immediately
- otherwise an infinite play π : look at the greatest rank r appearing infinitely often in $\pi \quad-\quad$ the owner of r looses
(strategies, winning strategies, etc. defined as usual)

Game Semantics:

Game Semantics:

- given \mathcal{M} and φ, positions $V=M \times \operatorname{SubFor}(\varphi)$

Game Semantics:

- given \mathcal{M} and φ, positions $\underline{V}=M \times \operatorname{SubFor}(\varphi)$
\exists ve wins from $(\mathrm{m}, \varphi) \Longleftrightarrow \mathrm{m} \in \llbracket \varphi \rrbracket$

Game Semantics:

- given \mathcal{M} and φ, positions $\underline{V}=M \times \operatorname{SubFor}(\varphi)$

$\exists \mathrm{ve}$ wins from $(\mathrm{m}, \varphi) \Longleftrightarrow \mathrm{m} \in \llbracket \varphi \rrbracket$

- possible moves E depend on the topmost connective:

Game Semantics:

- given \mathcal{M} and φ, positions $\underline{V}=M \times \operatorname{SubFor}(\varphi)$
$\exists \mathrm{ve}$ wins from $(\mathrm{m}, \varphi) \Longleftrightarrow \mathrm{m} \in \llbracket \varphi \rrbracket$
- possible moves E depend on the topmost connective:
- in $\left(\mathrm{m}, \psi \vee \psi^{\prime}\right) \exists \mathrm{ve}$ chooses (m, ψ) or $\left(\mathrm{m}, \psi^{\prime}\right)$,

Game Semantics:

- given \mathcal{M} and φ, positions $\underline{V=M \times \operatorname{SubFor}(\varphi)}$

$\exists \mathrm{ve}$ wins from $(\mathrm{m}, \varphi) \Longleftrightarrow \mathrm{m} \in \llbracket \varphi \rrbracket$

- possible moves E depend on the topmost connective:
- in $\left(\mathrm{m}, \psi \vee \psi^{\prime}\right) \exists \mathrm{ve}$ chooses (m, ψ) or $\left(\mathrm{m}, \psi^{\prime}\right)$,
- in $(\mathrm{m},\langle\mathrm{a}\rangle \psi) \exists$ ve chooses (n, ψ) with $\mathrm{m} \xrightarrow{\mathrm{a}} \mathrm{n}$,

Game Semantics:

- given \mathcal{M} and φ, positions $\underline{V=M \times \operatorname{SubFor}(\varphi)}$

$\exists \mathrm{ve}$ wins from $(\mathrm{m}, \varphi) \Longleftrightarrow \mathrm{m} \in \llbracket \varphi \rrbracket$

- possible moves E depend on the topmost connective:
- in $\left(\mathrm{m}, \psi \vee \psi^{\prime}\right) \exists$ ve chooses (m, ψ) or $\left(\mathrm{m}, \psi^{\prime}\right)$,
- in $(\mathrm{m},\langle\mathrm{a}\rangle \psi) \exists$ ve chooses (n, ψ) with $\mathrm{m} \xrightarrow{\mathrm{a}} \mathrm{n}$,
- with \wedge and [a] in place of \vee and $\langle a\rangle$: same but \forall dam chooses

Game Semantics:

- given \mathcal{M} and φ, positions $\underline{V=M \times \operatorname{SubFor}(\varphi)}$

$\exists \mathrm{ve}$ wins from $(\mathrm{m}, \varphi) \Longleftrightarrow \mathrm{m} \in \llbracket \varphi \rrbracket$

- possible moves E depend on the topmost connective:
- in $\left(\mathrm{m}, \psi \vee \psi^{\prime}\right) \exists \mathrm{ve}$ chooses (m, ψ) or $\left(\mathrm{m}, \psi^{\prime}\right)$,
- in $(\mathrm{m},\langle\mathrm{a}\rangle \psi) \exists$ ve chooses (n, ψ) with $\mathrm{m} \xrightarrow{\mathrm{a}} \mathrm{n}$,
- with \wedge and [a] in place of \vee and $\langle a\rangle$: same but \forall dam chooses
- from (m, $\mu x . \psi$) and ($\mathrm{m}, \nu x . \psi$) to (m, ψ)

Game Semantics:

- given \mathcal{M} and φ, positions $\underline{V=M \times \operatorname{SubFor}(\varphi)}$

$\exists \mathrm{ve}$ wins from $(\mathrm{m}, \varphi) \Longleftrightarrow \mathrm{m} \in \llbracket \varphi \rrbracket$

- possible moves E depend on the topmost connective:
- in $\left(\mathrm{m}, \psi \vee \psi^{\prime}\right) \exists \mathrm{ve}$ chooses (m, ψ) or $\left(\mathrm{m}, \psi^{\prime}\right)$,
- in $(\mathrm{m},\langle\mathrm{a}\rangle \psi) \exists$ ve chooses (n, ψ) with $\mathrm{m} \xrightarrow{\mathrm{a}} \mathrm{n}$,
- with \wedge and [a] in place of \vee and $\langle a\rangle$: same but \forall dam chooses
- from (m, $\mu x . \psi$) and (m, $\nu x . \psi)$ to (m, ψ)
- plus \times unfolds!
- operators μx. and νx. bind variable x
- operators μx. and νx. bind variable x
- from (m,x) with x bound in $\mu x . \psi$ or $\nu x . \psi$ the game moves to (m, ψ)
- operators μx. and νx. bind variable x
- from (m,x) with x bound in $\mu x . \psi$ or $\nu x . \psi$ the game moves to (m, ψ)

- operators μx. and νx. bind variable x
- from (m,x) with x bound in $\mu x . \psi$ or $\nu x . \psi$ the game moves to (m, ψ)

- operators μx. and νx. bind variable x
- from (m,x) with x bound in $\mu x . \psi$ or $\nu x . \psi$ the game moves to (m, ψ)

- operators μx. and νx. bind variable x
- from (m,x) with x bound in $\mu x . \psi$ or $\nu x . \psi$ the game moves to (m, ψ)

- unfolding may lead to infinite plays:
- operators μx. and νx. bind variable x
- from (m,x) with x bound in $\mu x . \psi$ or $\nu x . \psi$ the game moves to (m, ψ)

- unfolding may lead to infinite plays:
- ヨve looses if the outermost operator unfolded infinitely often is μ
- operators μx. and νx. bind variable x
- from (m,x) with x bound in $\mu x . \psi$ or $\nu x . \psi$ the game moves to (m, ψ)
- rank compatible with subformula order

- unfolding may lead to infinite plays:
- ヨve looses if the outermost operator unfolded infinitely often is μ
- operators μx. and νx. bind variable x
- from (m,x) with x bound in $\mu x . \psi$ or $\nu x . \psi$ the game moves to (m, ψ)
- rank compatible with subformula order
- rank(m, ψ) for immediate subformula ψ of $\mu x . \psi$ belongs to $\exists \mathrm{ve}$

- unfolding may lead to infinite plays:
- ヨve looses if the outermost operator unfolded infinitely often is μ
- operators μx. and νx. bind variable x
- from (m,x) with x bound in $\mu x . \psi$ or $\nu x . \psi$ the game moves to (m, ψ)
- rank compatible with subformula order
- rank (m, ψ) for immediate subformula ψ of $\mu x . \psi$ belongs to $\exists \mathrm{ve}$
- symmetrically with ν and \forall dam

- unfolding may lead to infinite plays:
- ヨve looses if the outermost operator unfolded infinitely often is μ

Example: $\nu x . \Delta x$

Example: $\nu x . \diamond x$

Example: $\nu x . \diamond x$

$\exists \mathrm{ve}$ chooses successor in the model
$\nu x . \nabla x$

Example: $\nu x . \diamond x$

$\exists \mathrm{ve}$ chooses successor in the model

Example: $\nu x . \Delta x$

$\exists \mathrm{ve}$ chooses successor in the model

- ヨve wins all infinie plays

Example: $\nu x . \diamond x$

$\exists \mathrm{ve}$ chooses successor in the model

- ヨve wins all infinie plays
- initially a deterministic move from $(\mathrm{m}, \nu x . \diamond x)$ to $(\mathrm{m}, \diamond x)$; then

Example: $\nu x . \diamond x$

$\exists \mathrm{ve}$ chooses successor in the model

- ヨve wins all infinie plays
- initially a deterministic move from ($\mathrm{m}, \nu x . \diamond x$) to $(\mathrm{m}, \diamond x)$; then
- $(\mathrm{m}, \diamond x) E\left(\mathrm{~m}^{\prime}, x\right) E\left(\mathrm{~m}^{\prime}, \diamond x\right) E\left(\mathrm{~m}^{\prime \prime}, x\right) \ldots$, every second deterministic and $\mathrm{m} \rightarrow \mathrm{m}^{\prime} \rightarrow \mathrm{m}^{\prime \prime} \ldots$ chosen by $\exists \mathrm{ve}$

As desired:

As desired:
$\exists \mathrm{ve}$ wins from $(\mathrm{m}, \varphi) \Longleftrightarrow \mathrm{m} \in \llbracket \varphi \rrbracket$

As desired:
$\exists \mathrm{ve}$ wins from $(\mathrm{m}, \varphi) \Longleftrightarrow \mathrm{m} \in \llbracket \varphi \rrbracket$
works for every \mathcal{M} and φ !

Parity Automata:

Parity Automata:

$\underline{Q, q_{I}, \text { rank }: Q \rightarrow \mathcal{R}}$

Parity Automata:

$Q_{\exists} \sqcup Q_{\forall}$
$\$
Q, q_{I}, rank: $Q \rightarrow \mathcal{R}$

Parity Automata:

$$
\begin{aligned}
& Q_{\exists} \sqcup Q_{\forall} \quad Q \\
& \quad \backslash \\
& \quad \begin{array}{l}
U \\
Q, q_{l}, \text { rank }: Q \rightarrow \mathcal{R} \\
\hline
\end{array}
\end{aligned}
$$

Parity Automata:

$$
\begin{aligned}
& Q_{\exists} \sqcup Q_{\forall} \quad Q \\
& \left.\quad \ \quad \begin{array}{l}
U \\
\\
\\
\\
Q, q_{l}, \text { rank }: Q \rightarrow \mathcal{R} \\
\hline
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
\delta: & Q \rightarrow \mathcal{P}(Q) \cup(\text { Act } \times Q) \\
& \text { and a transition function }
\end{aligned}
$$

Parity Automata:

$$
\begin{aligned}
& Q_{\exists} \sqcup Q_{\forall} \quad Q \\
& \quad \backslash \\
& \quad \begin{array}{l}
U \\
Q, q_{l}, \text { rank }: Q \rightarrow \mathcal{R} \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\delta: Q & \rightarrow \stackrel{\epsilon \text {-transitions }}{\mathcal{P}(Q)} \cup(\text { Act } \times Q) \\
& \text { and a transition function }
\end{aligned}
$$

Parity Automata:

$$
\begin{aligned}
& Q_{\exists} \sqcup Q_{\forall} \quad Q \\
& \quad \backslash \\
& \quad \begin{array}{l}
U \\
Q, q_{I}, \text { rank }: Q \rightarrow \mathcal{R} \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\delta: Q & \rightarrow \overbrace{\mathcal{P}(Q)}^{\epsilon \text {-transitions }} \cup \overbrace{(\text { Act } \times Q)}^{\text {modal transitions }} \\
& \text { and a transition function }
\end{aligned}
$$

Parity Automata:

$$
\begin{gathered}
Q_{\exists} \sqcup Q_{\forall} \quad Q \\
\quad \begin{array}{l}
\| \\
\\
\\
\\
Q, q_{I}, \text { rank }: Q \rightarrow \mathcal{R} \\
\hline
\end{array}
\end{gathered}
$$

the semantics of the automton \mathcal{A} defined by a game

$$
\begin{aligned}
\delta: Q & \rightarrow \overbrace{\mathcal{P}(Q)}^{\epsilon \text {-transitions }} \cup \overbrace{(\text { Act } \times Q)}^{\text {modal transitions }} \\
& \text { and a transition function }
\end{aligned}
$$

Semantic Game for automaton \mathcal{A} and model \mathcal{M} :

Semantic Game for automaton \mathcal{A} and model \mathcal{M} :

- positions $V=M \times Q$

Semantic Game for automaton \mathcal{A} and model \mathcal{M} :

- positions $V=M \times Q$
- from (m, q) moves to:

Semantic Game for automaton \mathcal{A} and model \mathcal{M} :

- positions $V=M \times Q$
- from (m,q) moves to:
- (m,p) with $p \in \delta(q)$ if $\delta(q) \subseteq Q$,

Semantic Game for automaton \mathcal{A} and model \mathcal{M} :

- positions $V=M \times Q$
- from (m,q) moves to:
- (m, p) with $p \in \delta(q)$ if $\delta(q) \subseteq Q$,
- (n, p) with $\mathrm{m} \xrightarrow{\mathrm{a}} \mathrm{n}$ if $\delta(q)=(\mathrm{a}, p)$.

Semantic Game for automaton \mathcal{A} and model \mathcal{M} :

- positions $V=M \times Q$
- from (m,q) moves to:
- (m,p) with $p \in \delta(q)$ if $\delta(q) \subseteq Q$,
- (n, p) with $\mathrm{m} \xrightarrow{\mathrm{a}} \mathrm{n}$ if $\delta(q)=(\mathrm{a}, p)$.
- ownership and ranks inherited from Q

Semantic Game for automaton \mathcal{A} and model \mathcal{M} :

- positions $V=M \times Q$
- from (m,q) moves to:
- (m, p) with $p \in \delta(q)$ if $\delta(q) \subseteq Q$,
- (n, p) with $\mathrm{m} \xrightarrow{\mathrm{a}} \mathrm{n}$ if $\delta(q)=(\mathrm{a}, p)$.
- ownership and ranks inherited from Q
- $V_{\exists}=M \times Q_{\exists}, V_{\forall}=M \times Q_{\forall}$

Semantic Game for automaton \mathcal{A} and model \mathcal{M} :

- positions $V=M \times Q$
- from (m,q) moves to:
- (m, p) with $p \in \delta(q)$ if $\delta(q) \subseteq Q$,
- (n, p) with $\mathrm{m} \xrightarrow{\mathrm{a}} \mathrm{n}$ if $\delta(q)=(\mathrm{a}, p)$.
- ownership and ranks inherited from Q
- $V_{\exists}=M \times Q_{\exists}, V_{\forall}=M \times Q_{\forall}$
- $\operatorname{rank}(\mathrm{m}, q)=\operatorname{rank}(q)$

Semantic Game for automaton \mathcal{A} and model \mathcal{M} :

- positions $V=M \times Q$
- from (m,q) moves to:
- (m,p) with $p \in \delta(q)$ if $\delta(q) \subseteq Q$,
- (n, p) with $\mathrm{m} \xrightarrow{\mathrm{a}} \mathrm{n}$ if $\delta(q)=(\mathrm{a}, p)$.
- ownership and ranks inherited from Q
- $V_{\exists}=M \times Q_{\exists}, V_{\forall}=M \times Q_{\forall}$
- $\operatorname{rank}(\mathrm{m}, q)=\operatorname{rank}(q)$
language of \mathcal{A} :
\mathcal{A} accepts $\mathrm{m} \in M=\exists \mathrm{ve}$ wins the game from $\left(\mathrm{m}, q_{l}\right)$

game semantics

$$
Q=\operatorname{SubFor}(\varphi)
$$

parity automata

game semantics

$$
Q=\operatorname{SubFor}(\varphi)
$$

$\underline{\mu \text {-ML describes arbitrary automata }}$

game semantics

$$
Q=\operatorname{SubFor}(\varphi)
$$

$\underline{\mu \text {-ML describes arbitrary automata }}$

Limitations:

Limitations:

- μ-ML has the finite model property: if a formula φ is true in a point m of some model \mathcal{M}, then it is true in some point n of a finite model \mathcal{N}

Limitations:

- μ-ML has the finite model property: if a formula φ is true in a point m of some model \mathcal{M}, then it is true in some point n of a finite model \mathcal{N}
- in general this is a good thing, but limits expressive power

Limitations:

- μ-ML has the finite model property: if a formula φ is true in a point m of some model \mathcal{M}, then it is true in some point n of a finite model \mathcal{N}
- in general this is a good thing, but limits expressive power
- for instance, (un)boundedness properties such as:
"there exist arbitrarily long paths originating in a given point"
cannot be defined

Limitations:

- μ-ML has the finite model property: if a formula φ is true in a point m of some model \mathcal{M}, then it is true in some point n of a finite model \mathcal{N}
- in general this is a good thing, but limits expressive power
- for instance, (un)boundedness properties such as:
"there exist arbitrarily long paths originating in a given point"
cannot be defined
- well-foundedness definable with φ_{WF}, so if there was φ_{U} defining the above prope then $\varphi_{\mathrm{WF}} \wedge \varphi_{\mathrm{U}}$ would be satisfiable but not in a finite model (König's Lemma)

Limitations:

- μ-ML has the finite model property: if a formula φ is true in a point m of some model \mathcal{M}, then it is true in some point n of a finite model \mathcal{N}
- in general this is a good thing, but limits expressive power
- for instance, (un)boundedness properties such as:
"there exist arbitrarily long paths originating in a given point"
cannot be defined
- well-foundedness definable with φ_{WF}, so if there was φ_{U} defining the above prope then $\varphi_{\mathrm{WF}} \wedge \varphi_{\mathrm{U}}$ would be satisfiable but not in a finite model (König's Lemma)
we want to extend μ-ML!!!
- we compute fixpoints by (transfinite) iteration of F :
- we compute fixpoints by (transfinite) iteration of F :

- we compute fixpoints by (transfinite) iteration of F :

- we compute fixpoints by (transfinite) iteration of F :

- we compute fixpoints by (transfinite) iteration of F :

- we compute fixpoints by (transfinite) iteration of F :

- we compute fixpoints by (transfinite) iteration of F :

- we compute fixpoints by (transfinite) iteration of F :
add countdown operator $\nu^{\omega} x . \Delta x$ to the syntax!

$F_{\nu}^{0}=M$

$F_{\nu}^{1}=F\left(F_{\nu}^{0}\right)=" \exists$ a child" $\quad F_{\nu}^{\omega}=$ "arbitrarily long paths"

$$
F_{\nu}^{\omega+1}=F_{\nu}^{\omega+2}=\text { GFP.F }
$$

11
$\llbracket \nu x . \diamond x \rrbracket$

- we compute fixpoints by (transfinite) iteration of F :
add countdown operator $\nu^{\omega} x . \Delta x$ to the syntax!

$\underline{\mu \text {-calculus }+ \text { countdown operators } \mu^{\omega}, \nu^{\omega}}$

μ-calculus + countdown operators $\mu^{\omega}, \nu^{\omega}$

$=$
countdown μ-calculus

Syntax:

extended with μ^{ω} and ν^{ω}

$\underline{\mu \text {-calculus }+ \text { countdown operators } \mu^{\omega}, \nu^{\omega}}$
$=$
countdown μ-calculus

Syntax:

extended with μ^{ω} and ν^{ω}

$\underline{\mu \text {-calculus }+ \text { countdown operators } \mu^{\omega}, \nu^{\omega}}$

$=$
 countdown μ-calculus

$$
\llbracket \mu^{\omega} x \cdot \varphi \rrbracket^{\text {val }}=F_{\mu}^{\omega} \quad \text { and } \quad \llbracket \nu^{\omega} x . \varphi \rrbracket^{\text {val }}=F_{\nu}^{\omega}
$$

:sכ!?uewə

μ-calculus \sim parity games

\int equivalent to alternating parity automata μ-calculus \sim parity games
\int equivalent to alternating parity automata μ-calculus \sim parity games wining regions definable in logic countdown μ-calculus \sim parity games wining regions definable in logic
\int equivalent to alternating parity automata countdown!
countdown μ-calculus \sim parity games countdown!
wining regions definable in logic

Game for $\nu x . \diamond x:$

Game for $\nu x . \diamond x:$

- \exists ve picks a path $\mathrm{m}_{1} \rightarrow \mathrm{~m}_{2} \rightarrow$... point by point

Game for $\nu x . \diamond x:$

- ヨve picks a path $\mathrm{m}_{1} \rightarrow \mathrm{~m}_{2} \rightarrow \ldots$ point by point
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)

Game for $\nu x . \diamond x:$

- ヨve picks a path $\mathrm{m}_{1} \rightarrow \mathrm{~m}_{2} \rightarrow \ldots$ point by point
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)

Game for $\nu x . \diamond x:$

- ヨve picks a path $\mathrm{m}_{1} \rightarrow \mathrm{~m}_{2} \rightarrow \ldots$ point by point
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)

Game for $\nu x . \diamond x:$

- ヨve picks a path $\mathrm{m}_{1} \rightarrow \mathrm{~m}_{2} \rightarrow \ldots$ point by point
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)

Game for $\nu x . \diamond x:$

- ヨve picks a path $\mathrm{m}_{1} \rightarrow \mathrm{~m}_{2} \rightarrow \ldots$ point by point
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)

Game for $\nu x . \diamond x:$

- ヨve picks a path $\mathrm{m}_{1} \rightarrow \mathrm{~m}_{2} \rightarrow \ldots$ point by point
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)

Game for $\nu x . \diamond x:$

- ヨve picks a path $\mathrm{m}_{1} \rightarrow \mathrm{~m}_{2} \rightarrow \ldots$ point by point
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)

Game for $\nu x . \diamond x:$

- \exists ve picks a path $\mathrm{m}_{1} \rightarrow \mathrm{~m}_{2} \rightarrow$... point by point
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
$\exists \mathrm{ve}$ wins $\mathcal{G}(\nu x . \diamond x)$ \Longleftrightarrow
\exists infinite path

Game for $\nu x . \diamond x:$

- ヨve picks a path $\mathrm{m}_{1} \rightarrow \mathrm{~m}_{2} \rightarrow \ldots$ point by point
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
\exists ve wins $\mathcal{G}(\nu x . \Delta x)$

\exists infinite path

Game for $\nu^{\omega} x . \diamond x:$

Game for $\nu x . \diamond x:$

- ヨve picks a path $\mathrm{m}_{1} \rightarrow \mathrm{~m}_{2} \rightarrow \ldots$ point by point
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
\exists ve wins $\mathcal{G}(\nu x . \Delta x)$

\exists infinite path

Game for $\nu^{\omega} x . \Delta x:$

- same as for $\nu x . \diamond x$ plus ordinal-valued counter C initialized to ω

Game for $\nu x . \diamond x:$

- ヨve picks a path $\mathrm{m}_{1} \rightarrow \mathrm{~m}_{2} \rightarrow \ldots$ point by point
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
$\exists \mathrm{ve}$ wins $\mathcal{G}(\nu x . \Delta x)$

\exists infinite path

Game for $\nu^{\omega} x . \diamond x$:

- same as for $\nu x . \diamond x$ plus ordinal-valued counter C initialized to ω
- In each round: (i) \forall dam decrements the counter (picks smaller value);
(ii) \exists ve picks an edge $m \rightarrow m^{\prime}$ to a new point m^{\prime}.

Game for $\nu x . \diamond x:$

- ヨve picks a path $\mathrm{m}_{1} \rightarrow \mathrm{~m}_{2} \rightarrow \ldots$ point by point
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
$\exists \mathrm{ve}$ wins $\mathcal{G}(\nu x . \Delta x)$

\exists infinite path

Game for $\nu^{\omega} x . \diamond x$:

- same as for $\nu x . \diamond x$ plus ordinal-valued counter C initialized to ω
- In each round: (i) \forall dam decrements the counter (picks smaller value);
(ii) \exists ve picks an edge $m \rightarrow m^{\prime}$ to a new point m^{\prime}.

Game for $\nu x . \diamond x:$

- ヨve picks a path $\mathrm{m}_{1} \rightarrow \mathrm{~m}_{2} \rightarrow \ldots$ point by point
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
$\exists \mathrm{ve}$ wins $\mathcal{G}(\nu x . \Delta x)$

\exists infinite path

Game for $\nu^{\omega} x . \Delta x$:

- same as for $\nu x . \diamond x$ plus ordinal-valued counter C initialized to ω
- In each round: (i) \forall dam decrements the counter (picks smaller value);
(ii) \exists ve picks an edge $m \rightarrow m^{\prime}$ to a new point m^{\prime}.

Game for $\nu x . \diamond x:$

- ヨve picks a path $\mathrm{m}_{1} \rightarrow \mathrm{~m}_{2} \rightarrow \ldots$ point by point
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
$\exists \mathrm{ve}$ wins $\mathcal{G}(\nu x . \diamond x)$

\exists infinite path

Game for $\nu^{\omega} x . \diamond x:$

- same as for $\nu x . \diamond x$ plus ordinal-valued counter C initialized to ω
- In each round: (i) \forall dam decrements the counter (picks smaller value);
(ii) \exists ve picks an edge $m \rightarrow m^{\prime}$ to a new point m^{\prime}.

Game for $\nu x . \diamond x:$

- ヨve picks a path $\mathrm{m}_{1} \rightarrow \mathrm{~m}_{2} \rightarrow \ldots$ point by point
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
$\exists \mathrm{ve}$ wins $\mathcal{G}(\nu x . \Delta x)$

\exists infinite path

Game for $\nu^{\omega} x . \diamond x$:

- same as for $\nu x . \diamond x$ plus ordinal-valued counter C initialized to ω
- In each round: (i) \forall dam decrements the counter (picks smaller value);
(ii) \exists ve picks an edge $m \rightarrow m^{\prime}$ to a new point m^{\prime}.

Game for $\nu x . \diamond x:$

- ヨve picks a path $\mathrm{m}_{1} \rightarrow \mathrm{~m}_{2} \rightarrow \ldots$ point by point
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
$\exists \mathrm{ve}$ wins $\mathcal{G}(\nu x . \diamond x)$

\exists infinite path

Game for $\nu^{\omega} x . \diamond x$:

- same as for $\nu x . \diamond x$ plus ordinal-valued counter C initialized to ω
- In each round: (i) \forall dam decrements the counter (picks smaller value);
(ii) \exists ve picks an edge $m \rightarrow m^{\prime}$ to a new point m^{\prime}.

Game for $\nu x . \diamond x:$

- ヨve picks a path $\mathrm{m}_{1} \rightarrow \mathrm{~m}_{2} \rightarrow \ldots$ point by point
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
$\exists \mathrm{ve}$ wins $\mathcal{G}(\nu x . \diamond x)$

\exists infinite path

Game for $\nu^{\omega} x . \diamond x$:

- same as for $\nu x . \diamond x$ plus ordinal-valued counter C initialized to ω
- In each round: (i) \forall dam decrements the counter (picks smaller value);
(ii) \exists ve picks an edge $m \rightarrow m^{\prime}$ to a new point m^{\prime}.

Game for $\nu x . \diamond x:$

- ヨve picks a path $\mathrm{m}_{1} \rightarrow \mathrm{~m}_{2} \rightarrow \ldots$ point by point
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
$\exists \mathrm{ve}$ wins $\mathcal{G}(\nu x . \Delta x)$

\exists infinite path

Game for $\nu^{\omega} x . \diamond x$:

- same as for $\nu x . \diamond x$ plus ordinal-valued counter C initialized to ω
- In each round: (i) \forall dam decrements the counter (picks smaller value);
(ii) \exists ve picks an edge $m \rightarrow m^{\prime}$ to a new point m^{\prime}.

Game for $\nu x . \diamond x:$

- ヨve picks a path $\mathrm{m}_{1} \rightarrow \mathrm{~m}_{2} \rightarrow \ldots$ point by point
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
$\exists \mathrm{ve}$ wins $\mathcal{G}(\nu x . \Delta x)$

\exists infinite path

Game for $\nu^{\omega} x . \diamond x$:

- same as for $\nu x . \diamond x$ plus ordinal-valued counter C initialized to ω
- In each round: (i) \forall dam decrements the counter (picks smaller value);
(ii) \exists ve picks an edge $m \rightarrow m^{\prime}$ to a new point m^{\prime}.

Game for $\nu x . \diamond x:$

- ヨve picks a path $\mathrm{m}_{1} \rightarrow \mathrm{~m}_{2} \rightarrow \ldots$ point by point
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
$\exists \mathrm{ve}$ wins $\mathcal{G}(\nu x . \Delta x)$

\exists infinite path

Game for $\nu^{\omega} x . \diamond x:$

- same as for $\nu x . \diamond x$ plus ordinal-valued counter C initialized to ω
- In each round: (i) \forall dam decrements the counter (picks smaller value);
(ii) \exists ve picks an edge $m \rightarrow m^{\prime}$ to a new point m^{\prime}.

Game for $\nu x . \diamond x:$

- ヨve picks a path $\mathrm{m}_{1} \rightarrow \mathrm{~m}_{2} \rightarrow \ldots$ point by point
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
\exists ve wins $\mathcal{G}(\nu x . \diamond x)$

\exists infinite path

Game for $\nu^{\omega} x . \Delta x$:

- same as for $\nu x . \diamond x$ plus ordinal-valued counter C initialized to ω
- In each round: (i) \forall dam decrements the counter (picks smaller value);
(ii) \exists ve picks an edge $m \rightarrow m^{\prime}$ to a new point m^{\prime}.

Game for $\nu x . \diamond x:$

- ヨve picks a path $\mathrm{m}_{1} \rightarrow \mathrm{~m}_{2} \rightarrow \ldots$ point by point
- one rank r, belonging to \forall dam (meaning: he looses all infinite plays)
\exists ve wins $\mathcal{G}(\nu x . \Delta x)$

\exists infinite path

Game for $\nu^{\omega} x . \diamond x:$

- same as for $\nu x . \diamond x$ plus ordinal-valued counter C initialized to ω
- In each round: (i) \forall dam decrements the counter (picks smaller value);
(ii) \exists ve picks an edge $m \rightarrow m^{\prime}$ to a new point m^{\prime}.

$$
\mathcal{G}=(V, E, \text { rank }: V \rightarrow \mathcal{R}, \mathcal{D})
$$

countdown game $=$ parity game + subset $\mathcal{D} \subseteq \mathcal{R}$

$$
\begin{aligned}
& \mathcal{G}=(V, E, \text { rank }: V \rightarrow \mathcal{R}, \mathcal{D}) \\
& \frac{\text { countdown game }=\text { parity game }+ \text { subset } \mathcal{D} \subseteq \mathcal{R}}{\text { nonstandard ranks }}
\end{aligned}
$$

$$
\mathcal{G}=(V, E, \text { rank }: V \rightarrow \mathcal{R}, \mathcal{D})
$$

countdown game $=$ parity game + subset $\mathcal{D} \subseteq \mathcal{R}$

- counter $C_{r} \in\{0,1, \ldots \omega\}$ for each $r \in \mathcal{D}$

$$
\mathcal{G}=(V, E, \text { rank }: V \rightarrow \mathcal{R}, \mathcal{D})
$$

countdown game $=$ parity game + subset $\mathcal{D} \subseteq \mathcal{R}$

- counter $C_{r} \in\{0,1, \ldots \omega\}$ for each $r \in \mathcal{D}$
- initially all C_{r} equal ω

$$
\mathcal{G}=(V, E, \text { rank }: V \rightarrow \mathcal{R}, \mathcal{D})
$$

countdown game $=$ parity game + subset $\mathcal{D} \subseteq \mathcal{R}$

- counter $C_{r} \in\{0,1, \ldots \omega\}$ for each $r \in \mathcal{D}$
- initially all C_{r} equal ω
- from $\left(v, \overline{C_{r}}\right)$:

$$
\mathcal{G}=(V, E, \text { rank }: V \rightarrow \mathcal{R}, \mathcal{D})
$$

countdown game $=$ parity game + subset $\mathcal{D} \subseteq \mathcal{R}$

- counter $C_{r} \in\{0,1, \ldots \omega\}$ for each $r \in \mathcal{D}$
- initially all C_{r} equal ω
- from $\left(v, \overline{C_{r}}\right): \longleftarrow$ configuration nonstandard ranks

$$
\mathcal{G}=(V, E, \text { rank }: V \rightarrow \mathcal{R}, \mathcal{D})
$$

countdown game $=$ parity game + subset $\mathcal{D} \subseteq \mathcal{R}$

- counter $C_{r} \in\{0,1, \ldots \omega\}$ for each $r \in \mathcal{D}$
- initially all C_{r} equal ω
- from $\left(v, \overline{C_{r}}\right): \longleftarrow$ configuration nonstandard ranks
- first, counters are updated depending on $\operatorname{rank}(v)$:

$$
\mathcal{G}=(V, E, \text { rank }: V \rightarrow \mathcal{R}, \mathcal{D})
$$

countdown game $=$ parity game + subset $\mathcal{D} \subseteq \mathcal{R}$

- counter $C_{r} \in\{0,1, \ldots \omega\}$ for each $r \in \mathcal{D}$
- initially all C_{r} equal ω
- from $\left(v, \overline{C_{r}}\right): \longleftarrow$ configuration nonstandard ranks
- first, counters are updated depending on $\operatorname{rank}(v)$:

$$
\text { - } \mathrm{C}_{r}^{\prime}=\mathrm{C}_{r} \text { for } r>\operatorname{rank}(v),
$$

$$
\mathcal{G}=(V, E, \text { rank }: V \rightarrow \mathcal{R}, \mathcal{D})
$$

countdown game $=$ parity game + subset $\mathcal{D} \subseteq \mathcal{R}$

- counter $C_{r} \in\{0,1, \ldots \omega\}$ for each $r \in \mathcal{D}$
- initially all C_{r} equal ω
- from $\left(v, \overline{\mathrm{C}_{r}}\right): \longleftarrow$ configuration nonstandard ranks
- first, counters are updated depending on $\operatorname{rank}(v)$:

$$
\begin{aligned}
& -C_{r}^{\prime}=C_{r} \text { for } r>\operatorname{rank}(v), \\
& -C_{r}^{\prime}=\omega \text { for } r<\operatorname{rank}(v),
\end{aligned}
$$

$$
\mathcal{G}=(V, E, \text { rank }: V \rightarrow \mathcal{R}, \mathcal{D})
$$

countdown game $=$ parity game + subset $\mathcal{D} \subseteq \mathcal{R}$

- counter $C_{r} \in\{0,1, \ldots \omega\}$ for each $r \in \mathcal{D}$
- initially all C_{r} equal ω
- from $\left(v, \overline{C_{r}}\right):$ a configuration nonstandard ranks
- first, counters are updated depending on $\operatorname{rank}(v)$:
- $C_{r}^{\prime}=C_{r}$ for $r>\operatorname{rank}(v)$,
[unchanged]
- $C_{r}^{\prime}=\omega$ for $r<\operatorname{rank}(v)$, [reset]
- if $\operatorname{rank}(v) \in \mathcal{D}$, the owner of $\operatorname{rank}(v)$ chooses:

$$
\mathcal{G}=(V, E, \text { rank }: V \rightarrow \mathcal{R}, \mathcal{D})
$$

countdown game $=$ parity game + subset $\mathcal{D} \subseteq \mathcal{R}$

- counter $C_{r} \in\{0,1, \ldots \omega\}$ for each $r \in \mathcal{D}$
- initially all C_{r} equal ω
- from $\left(v, \overline{C_{r}}\right)$ a configuration nonstandard ranks
- first, counters are updated depending on $\operatorname{rank}(v)$:
- $C_{r}^{\prime}=C_{r}$ for $r>\operatorname{rank}(v)$,
[unchanged]
- $C_{r}^{\prime}=\omega$ for $r<\operatorname{rank}(v)$, [reset]
- if $\operatorname{rank}(v) \in \mathcal{D}$, the owner of $\operatorname{rank}(v)$ chooses:

$$
\mathrm{C}_{\mathrm{rank}(v)}^{\prime}<\mathrm{C}_{\mathrm{rank}(v)} \quad[\text { decremented }]
$$

$$
\mathcal{G}=(V, E, \text { rank }: V \rightarrow \mathcal{R}, \mathcal{D})
$$

countdown game $=$ parity game + subset $\mathcal{D} \subseteq \mathcal{R}$

- counter $C_{r} \in\{0,1, \ldots \omega\}$ for each $r \in \mathcal{D}$
- initially all C_{r} equal ω

- from $\left(v, \overline{\mathrm{C}_{r}}\right): \longleftarrow$ a configuration nonstandard ranks
- first, counters are updated depending on $\operatorname{rank}(v)$:
- $C_{r}^{\prime}=C_{r}$ for $r>\operatorname{rank}(v)$, [unchanged]
- $C_{r}^{\prime}=\omega$ for $r<\operatorname{rank}(v)$, [reset]
- if $\operatorname{rank}(v) \in \mathcal{D}$, the owner of $\operatorname{rank}(v)$ chooses:

$$
C_{r a n k(v)}^{\prime}<C_{r a n k(v)}
$$

[decremented]

- then, owner of v chooses $v E w$

$$
\mathcal{G}=(V, E, \text { rank }: V \rightarrow \mathcal{R}, \mathcal{D})
$$

countdown game $=$ parity game + subset $\mathcal{D} \subseteq \mathcal{R}$

- counter $C_{r} \in\{0,1, \ldots \omega\}$ for each $r \in \mathcal{D}$
- initially all C_{r} equal ω

- from $\left(v, \overline{C_{r}}\right): \longleftarrow$ configuration nonstandard ranks
- first, counters are updated depending on $\operatorname{rank}(v)$:
- $C_{r}^{\prime}=C_{r}$ for $r>\operatorname{rank}(v)$, [unchanged]
- $C_{r}^{\prime}=\omega$ for $r<\operatorname{rank}(v)$,
- if $\operatorname{rank}(v) \in \mathcal{D}$, the owner of $\operatorname{rank}(v)$ chooses:

$$
C_{r a n k(v)}^{\prime}<C_{r a n k(v)}
$$

[decremented]

- then, owner of v chooses $v E w$
- and the game moves to ($w, \overline{\mathrm{C}_{r}^{\prime}}$).

Game Semantics for countdown μ-ML:

Game Semantics for countdown $\mu-\mathrm{ML}$:

- countdown game $=(V, E$, rank $: V \rightarrow \mathcal{R})$ plus $\mathcal{D} \subseteq \mathcal{R}$

Game Semantics for countdown $\mu-\mathrm{ML}$:

- countdown game $=\overbrace{(V, E, \text { rank }: V \rightarrow \mathcal{R})}^{\text {parity game }}$ plus $\mathcal{D} \subseteq \mathcal{R}$

Game Semantics for countdown $\mu-\mathrm{ML}$:

- countdown game $=\frac{\text { parity game }}{(V, E, \text { rank }: V \rightarrow \mathcal{R})} \underset{\text { nonstandard ranks }}{\underset{\sim}{\mathcal{D}} \subseteq \mathcal{R}}$

Game Semantics for countdown $\mu-\mathrm{ML}$:

- countdown game $=\overbrace{(V, E, \text { rank: } V \rightarrow \mathcal{R})}^{\text {parity game }} \underbrace{\text { plus }}_{\text {nonstandard ranks }} \underbrace{\mathcal{D}} \subseteq \mathcal{R}$
- semantic games for countdown μ - $\mathrm{ML}=$ same as for μ - ML (as if μ^{ω} and ν^{ω} were μ and ν) plus nonstandard ranks \mathcal{D} : ranks of all immediate subformulae of countdown operators

Game Semantics for countdown $\mu-\mathrm{ML}$:

parity game

- countdown game $=\overbrace{(V, E, \text { rank: } V \rightarrow \mathcal{R})} \underbrace{\text { plus }}_{\text {nonstandard ranks }} \underset{\mathcal{D}}{\mathcal{D} \subseteq \mathcal{R}}$
- semantic games for countdown μ - $\mathrm{ML}=$ same as for $\mu-\mathrm{ML}$ (as if μ^{ω} and ν^{ω} were μ and ν) plus nonstandard ranks \mathcal{D} : ranks of all immediate subformulae of countdown operators
$\exists \mathrm{ve}$ wins from $(\mathrm{m}, \varphi) \Longleftrightarrow \mathrm{m} \in \llbracket \varphi \rrbracket$

Game Semantics for countdown $\mu-\mathrm{ML}$:

parity game

- countdown game $=\overbrace{(V, E, \text { rank: } V \rightarrow \mathcal{R})} \underbrace{\text { plus }}_{\text {nonstandard ranks }} \underset{\mathcal{D}}{\mathcal{D}} \subseteq \mathcal{R}$
- semantic games for countdown μ - $\mathrm{ML}=$ same as for $\mu-\mathrm{ML}$ (as if μ^{ω} and ν^{ω} were μ and ν) plus nonstandard ranks \mathcal{D} : ranks of all immediate subformulae of countdown operators
$\exists \mathrm{ve}$ wins from $(\mathrm{m}, \varphi) \Longleftrightarrow \mathrm{m} \in \llbracket \varphi \rrbracket$
works for every \mathcal{M} and φ !

Countdown automata:

Countdown automata:

- countdown game $=\overbrace{(V, E, \text { rank: }: V \rightarrow \mathcal{R})}^{\text {parity game }} \underset{\text { nonstandard ranks }}{\mathcal{D} \subseteq \mathcal{R}}$

Countdown automata:

- countdown game $=\frac{\text { parity game }}{(V, E, \text { rank }: V \rightarrow \mathcal{R})}$ plus $\underset{\text { nonstandard ranks }}{\mathcal{D}} \subseteq \mathcal{R}$
- countdown automaton $=\left(Q, \delta, q_{l}\right.$, rank $)$ plus $\mathcal{D} \subseteq \mathcal{R}$

Countdown automata:

- countdown game $=\frac{\text { parity game }}{(V, E, \text { rank }: V \rightarrow \mathcal{R})} \underset{\text { nonstandard ranks }}{\underset{\sim}{\mathcal{D}} \subseteq \mathcal{R}}$
parity automaton
- countdown automaton $=\left(Q, \delta, q_{l}\right.$, rank $)$ plus $\mathcal{D} \subseteq \mathcal{R}$

Countdown automata:

parity game

- countdown game $=(\overbrace{(V, E, \text { rank }: V \rightarrow \mathcal{R})}^{\text {nonstandard ranks }} \underset{\text { nos }}{\mathcal{D} \subseteq \mathcal{R}}$
parity automaton
- countdown automaton $=\left(Q, \delta, q_{l}\right.$, rank $) \quad$ plus $\underbrace{\mathcal{D}} \subseteq \mathcal{R}$ nonstandard ranks

Countdown automata:

parity game

- countdown game $=\overbrace{(V, E, \text { rank: } V \rightarrow \mathcal{R})} \underbrace{\text { plus }}_{\text {nonstandard ranks }} \underset{\mathcal{D}}{\mathcal{D} \subseteq \mathcal{R}}$
parity automaton
- countdown automaton $=\overbrace{\left(Q, \delta, q_{I}, \text { rank }\right)}^{\text {plus }} \underbrace{\mathcal{D}} \subseteq \mathcal{R}$ nonstandard ranks
- semantic via a countdown game: the parity game for (Q, δ, q_{l}, rank) but the ranks $\mathcal{D} \subseteq \mathcal{R}$ are now nonstandard!
countdown $\mu-\mathrm{ML}$
countdown automata

countdown μ-ML describes arbitrary automata

countdown μ-ML describes arbitrary automata
- equivalent to alternating pary automata countdown!
countdown μ-calculus \sim parity games countdown!
wining regions definable in logic
- equivalent to alternating pary automata countdown!
countdown μ-calculus \sim parity games countdown!

COMPLICATIONS!!!

wining regions definable in logic

- equivalent to alternating parity automata

countdown!

no simple nondeterministic model!!!
countdown μ-calculus \sim parity games countdown!
wining regions definable in logic

- equivalent to alternating parity automata countdown! no simple nondeterministic model!!!
countdown μ-calculus \sim parity games countdown!
variables bound simultaneously
vectorial, i.e. multiple
- equivalent to alternating parity automata countdown! no simple nondeterministic model!!!
countdown μ-calculus \sim parity games countdown!
variables bound simultaneously
wining regions definable in logic
- equivalent to alternating parity automata countdown! no simple nondeterministic model!!!
countdown μ-calculus \sim parity games countdown!
variables bound simultaneously
but not for $\mu^{\omega}-\mathrm{ML}!!!$
wining regions definable in logic

NO nondeterministic model:

NO nondeterministic model:

- parity games positionally determined: nondeterministic automaton guesses the strategy

NO nondeterministic model:

- parity games positionally determined: nondeterministic automaton guesses the strategy
- but countdown games not positionally determined: players need to look at the counters

NO nondeterministic model:

- parity games positionally determined: nondeterministic automaton guesses the strategy
- but countdown games not positionally determined: players need to look at the counters
- countdown μ-ML provably not closed under projections (due to low topological complexity)

NO nondeterministic model:

- parity games positionally determined: nondeterministic automaton guesses the strategy
- but countdown games not positionally determined: players need to look at the counters
- countdown μ-ML provably not closed under projections (due to low topological complexity)
- this is arguably a good news: every extension of MSO closed under projections and boolean operations is too strong (contains MSO +U)

NO nondeterministic model:

- parity games positionally determined: nondeterministic automaton guesses the strategy
- but countdown games not positionally determined: players need to look at the counters
- countdown μ-ML provably not closed under projections (due to low topological complexity)
- this is arguably a good news: every extension of MSO closed under projections and boolean operations is too strong (contains MSO +U)
- but the lack of nondeterministic model prevents us from copying clasical proofs

NO nondeterministic model:

- parity games positionally determined: nondeterministic automaton guesses the strategy
- but countdown games not positionally determined: players need to look at the counters
- countdown μ-ML provably not closed under projections (due to low topological complexity)
- this is arguably a good news: every extension of MSO closed under projections and boolean operations is too strong (contains MSO +U)
- but the lack of nondeterministic model prevents us from copying clasical proofs
- still, alternating automata are extremely useful:

NO nondeterministic model:

- parity games positionally determined: nondeterministic automaton guesses the strategy
- but countdown games not positionally determined: players need to look at the counters
- countdown μ-ML provably not closed under projections (due to low topological complexity)
- this is arguably a good news: every extension of MSO closed under projections and boolean operations is too strong (contains MSO +U)
- but the lack of nondeterministic model prevents us from copying clasical proofs
- still, alternating automata are extremely useful:
- guarded normal form

NO nondeterministic model:

- parity games positionally determined: nondeterministic automaton guesses the strategy
- but countdown games not positionally determined: players need to look at the counters
- countdown μ-ML provably not closed under projections (due to low topological complexity)
- this is arguably a good news: every extension of MSO closed under projections and boolean operations is too strong (contains MSO +U)
- but the lack of nondeterministic model prevents us from copying clasical proofs
- still, alternating automata are extremely useful:
- guarded normal form
- model theory (e.g. countable model property)

NO nondeterministic model:

- parity games positionally determined: nondeterministic automaton guesses the strategy
- but countdown games not positionally determined: players need to look at the counters
- countdown μ-ML provably not closed under projections (due to low topological complexity)
- this is arguably a good news: every extension of MSO closed under projections and boolean operations is too strong (contains MSO +U)
- but the lack of nondeterministic model prevents us from copying clasical proofs
- still, alternating automata are extremely useful:
- guarded normal form
- model theory (e.g. countable model property)
- some decidability results

Decidability results:

Decidability results:

- (finite) model checking: given φ and m in \mathcal{M}, does m satisfy φ ?
decidable but not that interesting

Decidability results:

- (finite) model checking: given φ and m in \mathcal{M}, does m satisfy φ ? decidable but not that interesting
- satisfiability: given φ, does there exists \mathcal{M} with m satisfying φ ?

Decidability results:

- (finite) model checking: given φ and m in \mathcal{M}, does m satisfy φ ? decidable but not that interesting
- satisfiability: given φ, does there exists \mathcal{M} with m satisfying φ ?

CONJECTURE: satisfiability decidable

Decidability results:

- (finite) model checking: given φ and m in \mathcal{M}, does m satisfy φ ? decidable but not that interesting
- satisfiability: given φ, does there exists \mathcal{M} with m satisfying φ ?

CONJECTURE: satisfiability decidable

- for now, proven in special cases:

Decidability results:

- (finite) model checking: given φ and m in \mathcal{M}, does m satisfy φ ? decidable but not that interesting
- satisfiability: given φ, does there exists \mathcal{M} with m satisfying φ ?

CONJECTURE: satisfiability decidable

- for now, proven in special cases:
- formulae with positive countdown, i.e. no ν^{ω} used

Decidability results:

- (finite) model checking: given φ and m in \mathcal{M}, does m satisfy φ ? decidable but not that interesting
- satisfiability: given φ, does there exists \mathcal{M} with m satisfying φ ?

CONJECTURE: satisfiability decidable

- for now, proven in special cases:
- formulae with positive countdown, i.e. no ν^{ω} used
- Büchi countdown automata: only two ranks $r^{\exists}<r^{\forall}$, over infinite words

Some facts and results:

Some facts and results:

- nothing special about ω, take your favourite ordinal instead!

Some facts and results:

- nothing special about ω, take your favourite ordinal instead!
- more nesting of countdown operators \Longrightarrow more power

Some facts and results:

- nothing special about ω, take your favourite ordinal instead!
- more nesting of countdown operators \Longrightarrow more power
- fragment without nesting of countdown operators $=$ certain multi-valued μ-ML

Some facts and results:

- nothing special about ω, take your favourite ordinal instead!
- more nesting of countdown operators \Longrightarrow more power
- fragment without nesting of countdown operators $=$ certain multi-valued μ-ML
μ-ML, but with logical values from $[0,1]$ instead of just $\{0,1\}$ and the function $t \stackrel{f}{\mapsto} \frac{1}{2} t$ as an extra unary connective:

Some facts and results:

- nothing special about ω, take your favourite ordinal instead!
- more nesting of countdown operators \Longrightarrow more power
- fragment without nesting of countdown operators $=$ certain multi-valued μ-ML
μ-ML, but with logical values from $[0,1]$ instead of just $\{0,1\}$ and the function $t \stackrel{f}{\mapsto} \frac{1}{2} t$ as an extra unary connective:
$\underline{\nu x .} \nabla \widetilde{f}(x)$ has value $1 \Longleftrightarrow$ there are arbitrarily long paths

Some facts and results:

- nothing special about ω, take your favourite ordinal instead!
- more nesting of countdown operators \Longrightarrow more power
- fragment without nesting of countdown operators $=$ certain multi-valued μ-ML
μ-ML, but with logical values from $[0,1]$ instead of just $\{0,1\}$ and the function $t \stackrel{f}{\mapsto} \frac{1}{2} t$ as an extra unary connective:
$\underline{\nu x .} \nabla \widetilde{f}(x)$ has value $1 \Longleftrightarrow$ there are arbitrarily long paths
(" \diamond " means "supremum over children"; $\widetilde{f}(t)=\frac{1}{2} t+\frac{1}{2}$ is dual to f)

Thank you! :)

craiyon

Al model drawing images from any prompt!

craiyon
Al model drawing images from any prompt!

