Countdown logic, games and automata

bisimulation-invariant approach to (un)boundedness

Jedrzej Kotodziejski
(& Bartek Klin)

4 \/1l 2023
eTokio

Powered by BeamerikZ

https://www.mimuw.edu.pl/~mskrzypczak/projects/beamerikz/

u-calculus = modal logic + fixpoints

Syntax:

Syntax:

p=T|L]leVe|peAp]|@e]|bly|x]|uxyp|vxe

Syntax:

boolean

A
r N

p=T|L]leVe|peAp]|@e]|bly|x]|uxyp|vxe

Syntax:

a, b from fixed Act

boolean (\

p=T|L]leVe|peAp]|@e]|bly|x]|uxyp|vxe

Syntax:

a, b from fixed Act

boolean f \ and x from fixed Var
- A - \\\

pu=T|LloVelone]|(ae]|ble|x]|uxe|vxy

Syntax:

a, b from fixed Act

boolean f \ and x from fixed Var
- A - \\\

pu=T|LloVelone]|(ae]|ble|x]|uxe|vxy

:SOIFUBWIDG

Syntax:

a, b from fixed Act

boolean f \ and x from fixed Var
- A - \\\

pu=T|LloVelone]|(ae]|ble|x]|uxe|vxy

» interpreted in points of a modal model M

:SOIFUBWIDG

Syntax:

a, b from fixed Act

boolean f \ and x from fixed Var
- A - \\\

p=T|L]leVe|peAp]|@e]|bly|x]|uxyp|vxe

» interpreted in points of a modal model M

—

directed graph (M, (=)acact), edges labelled with Act

'SOIFUBWIDG

Syntax:

a, b from fixed Act

boolean f \ and x from fixed Var
- A - \\\

p=T|L]leVe|peAp]|@e]|bly|x]|uxyp|vxe

» interpreted in points of a modal model M

—

directed graph (M, (=)acact), edges labelled with Act

» “(a)¢’' means “there exists an a-child satisfying "
SOITUBWIRG

Syntax:

if trivial Act = {a}, denote
(a) = © and [a] = O a, b from fixed Act

boolean f \ and x from fixed Var
- A - \\\

p=T|L]leVe|peAp]|@e]|bly|x]|uxyp|vxe

» interpreted in points of a modal model M

—

directed graph (M, (=)acact), edges labelled with Act

» “(a)’ means "there exists an a-child satisfying ¢"
SOITUBWIRG

Syntax:

if trivial Act = {a}, denote
(a) = © and [a] = O a, b from fixed Act

boolean f \ and x from fixed Var
- A - \\\

p=T|L]leVe|peAp]|@e]|bly|x]|uxyp|vxe

» interpreted in points of a modal model M

—

directed graph (M, (=)acact), edges labelled with Act

K» plus val : Var — P(M)

» “(a)’ means "there exists an a-child satisfying ¢"
SOITUBWIRG

» Ox induces an operation F : P(M) — P(M):

S [Ox]=° = {m | pn_nn € S}

» Ox induces an operation F : P(M) — P(M):

S [Ox]=° = {m | pn_nn € S}

» since x appears only positively in $x, F is monotone. ..

» Ox induces an operation F : P(M) — P(M):

S [Ox]=° = {m | pn_nn € S}

» since x appears only positively in $x, F is monotone. ..

SCS — F(S)CF(S J

» Ox induces an operation F : P(M) — P(M):

S [Ox]=° = {m | pn_nn € S}

» since x appears only positively in $x, F is monotone. ..

SCS — F(S)CF(S J

» ...and so F has the greatest and the least fixpoint!

» Ox induces an operation F : P(M) — P(M):

S [Ox]=° = {m | pn_nn € S}

» since x appears only positively in $x, F is monotone. ..

SCS — F(S)CF(S J

» ...and so F has the greatest and the least fixpoint!

[vx.Ox] = GFP.F /

» Ox induces an operation F : P(M) — P(M):

S [Ox]=° = {m | pn_nn € S}

» since x appears only positively in $x, F is monotone. ..

SCS — F(S)CF(S J

» ...and so F has the greatest and the least fixpoint!

[vx.Ox] = GFP.F / [ux.Ox] = LFP.F\

Knaster- Tarski Theorem:

Knaster- Tarski Theorem:

Every monotone map F : P(M) — P(M) has the least and
the greatest (w.r.t. C) fixpoint LFP.F and GFP.F.

Knaster- Tarski Theorem:

Every monotone map F : P(M) — P(M) has the least and
the greatest (w.r.t. C) fixpoint LFP.F and GFP.F.

Both are computed as the limits of (transfinite) sequences:

Knaster- Tarski Theorem:

Every monotone map F : P(M) — P(M) has the least and
the greatest (w.r.t. C) fixpoint LFP.F and GFP.F.

Both are computed as the limits of (transfinite) sequences:

Fg:UB<aFg and ngﬂﬁ<cyl__g

with a ranging over ordinal numbers

Knaster- Tarski Theorem:

Every monotone map F : P(M) — P(M) has the least and
the greatest (w.r.t. C) fixpoint LFP.F and GFP.F.

Both are computed as the limits of (transfinite) sequences:

Fg:UB<aF§ and ngﬂﬁ<cyl__5

with a ranging over ordinal numbers

(note: Fo=U0=0 and F)=N0=M)

» we compute fixpoints by (transfinite) iteration of F:

» we compute fixpoints by (transfinite) iteration of F:

S [Ox]=S = {m | Jmoan € S}

» we compute fixpoints by (transfinite) iteration of F:

S [Ox]=S = {m | Jmoan € S}

» we compute fixpoints by (transfinite) iteration of F:

S [Ox]=S = {m | Jmoan € S}

» we compute fixpoints by (transfinite) iteration of F:

S [Ox]=S = {m | Jmoan € S}

Fo=M FL=F(F9) ="3a child"

» we compute fixpoints by (transfinite) iteration of F:

S [Ox]=S = {m | Jmoan € S}

FO =M F! = F(F%) ="3 a child" F“ = "arbitrarily long paths"

» we compute fixpoints by (transfinite) iteration of F:

S [Ox]=S = {m | Jmoan € S}

FO =M F!' = F(F%) ="3 a child" F¥ = "arbitrarily long paths" F“™l = F¥+2 = GFP.F

» we compute fixpoints by (transfinite) iteration of F:

S [Ox]=S = {m | Jmoan € S}

FO =M F!' = F(F%) ="3 a child" F¥ = "arbitrarily long paths" F“™l = F¥+2 = GFP.F

I
[vx.<x]

u-calculus = modal logic + fixpoints

p=T|LloeVe|peAp]|@e]bly|x]|uxe|vxe

u-calculus = modal logic + fixpoints

p=T|LloeVe|peAp]|@e]bly|x]|uxe|vxe

u-calculus = modal logic + fixpoints

[T]@ =M and [L]? =0

pu=T|LleVelone|(ae]|ble|x]|puxe|vxy

u-calculus = modal logic + fixpoints

[[T]]"al M and [[J_]]"a'

[e1 V @] = [r]™ U [a] ™ and i1 A 902]]"2" [1]"' N [po]

pu=T|LleVelone|(ae]|ble|x]|puxe|vxy

u-calculus = modal logic + fixpoints

[[T]]"al M and [[J_]]"a'
[e1 V @] = [r]™ U [a] ™ and i1 A 902]]"2" [1]"' N [po]
[}l = {meM [T s, nelel™} and L] ={me M|V, ne o]}

pu=T|LleVelone|(ae]|ble|x]|puxe|vxy

u-calculus = modal logic + fixpoints

[T]@=M and [L]"? =
[e1 V @] = [r]™ U [a] ™ and i1 A 902]]"2" [1]"' N [po]
[(@)e] ={meM]|3 o nele]?} and [la]e]?={me M|V - ne]}
[x]" = val(x)

p=T|LloeVe|peAp]|@e]bly|x]|uxe|vxe

u-calculus = modal logic + fixpoints

[T1™ =M and [L] =
[V oo = [ioa] ' U] and HsolAst]]“' [ea]"™ N [ip2]
(el = {me M| 3,5, ne[el™} and [alel® = {me M|V, n e [o])
[x]* = val(x)
[ux.©] = LFP.F and [vx.]" = GFP.F

p=T|LloeVe|peAp]|@e]bly|x]|uxe|vxe

u-calculus = modal logic + fixpoints

[T1™ =M and [L] =
[V oo = [ioa] ' U] and HsolAst]]“' [ea]"™ N [ip2]
(el = {me M| 3,5, ne[el™} and [alel® = {me M|V, n e [o])
[x]* = val(x)
[ux.©] = LFP.F and [vx.]" = GFP.F

with F(S) = [g] 2]

Why we like it so much?

Why we like it so much?

t-calculus ~~ parity games

Why we like it so much?

t-calculus ~~ parity games

» algorithmicaly feasible & expressive

Why we like it so much?

t-calculus ~~ parity games

» algorithmicaly feasible & expressive

» equivalent to automata (of various types),

Why we like it so much?

t-calculus ~~ parity games

» algorithmicaly feasible & expressive
» equivalent to automata (of various types),

monadic second-order logic MSO, algebras...

Why we like it so much?

t-calculus ~~ parity games

» algorithmicaly feasible & expressive
» equivalent to automata (of various types),

monadic second-order logic MSO, algebras...

regular languages

Why we like it so much?

t-calculus ~~ parity games

» algorithmicaly feasible & expressive
» equivalent to automata (of various types),

monadic second-order logic MSO, algebras...

regular languages

(of finite/infinite words, trees... or up to bisimulation)

Parity Games:

Parity Games:

V,E,rank: V = R

Parity Games:

Vo U W

AN
V,E,rank: V = R

Parity Games:

V3|_|Vv V xV

N U
V,E,rank: V = R

Parity Games:

V5||_|Vv V xV RHHRV

N U //
V,E,rank: V = R

Parity Games:

V5||_|Vv V xV RHHRV

N U //
V,E,rank: V = R

» dve and Ydam move between positions, round by round

Parity Games:

V5||_|Vv V xV RHHRV

N U //
V,E,rank: V = R

» dve and Ydam move between positions, round by round

» from position v its owner chooses vEw & the game moves to w

Parity Games:

V5||_|Vv V xV RHHRV

N U //
V,E,rank: V = R

» dve and Ydam move between positions, round by round
» from position v its owner chooses vEw & the game moves to w

» if a player is stuck (has no legal move) looses immediately

Parity Games:

V;||_|Vv V xV RHHRV

N U //
V,E,rank: V = R

» dve and Ydam move between positions, round by round

» from position v its owner chooses vEw & the game moves to w
» if a player is stuck (has no legal move) looses immediately

» otherwise an infinite play 7: look at the greatest rank r appearing

infinitely often in @ — the owner of r looses

Parity Games:

V5||_|Vv V xV RHHRV

N U //
V,E,rank: V = R

» dve and Ydam move between positions, round by round

» from position v its owner chooses vEw & the game moves to w
» if a player is stuck (has no legal move) looses immediately

» otherwise an infinite play 7: look at the greatest rank r appearing

infinitely often in @ — the owner of r looses

(strategies, winning strategies, etc. defined as usual)

Game Semantics:

Game Semantics:

» given M and ¢, positions V = M x SubFor(y)

Game Semantics:

» given M and ¢, positions V = M x SubFor(y)

dve wins from (m,) <= m € [y]

Game Semantics:

» given M and ¢, positions V = M x SubFor(y)

dve wins from (m,) <= m € [y]

» possible moves E depend on the topmost connective:

Game Semantics:

» given M and ¢, positions V = M x SubFor(y)

dve wins from (m,) <= m € [y]

» possible moves E depend on the topmost connective:

» in (m, V1) Ive chooses (m, 1)) or (m, '),

Game Semantics:

» given M and ¢, positions V = M x SubFor(y)

dve wins from (m,) <= m € [y]

» possible moves E depend on the topmost connective:
» in (m, 1V 1') Jve chooses (m, 1)) or (m, 1)),

» in (m, (a)?)) Tve chooses (n, 1)) with m = n,

Game Semantics:

» given M and ¢, positions V = M x SubFor(y)

dve wins from (m,) <= m € [y]

» possible moves E depend on the topmost connective:
» in (m, 1V 1') Jve chooses (m, 1)) or (m, 1)),
» in (m, (a)?)) Tve chooses (n, 1)) with m = n,

» with A and [a] in place of V and (a): same but Ydam chooses

Game Semantics:

» given M and ¢, positions V = M x SubFor(y)

dve wins from (m,) <= m € [y]

» possible moves E depend on the topmost connective:
» in (m, 1V 1') Jve chooses (m, 1)) or (m, 1)),
» in (m, (a)?)) Tve chooses (n, 1)) with m = n,

» with A and [a] in place of V and (a): same but Ydam chooses

> from (m, pux.1p) and (m, vx.1p) to (m, 1))

Game Semantics:

» given M and ¢, positions V = M x SubFor(y)

dve wins from (m,) <= m € [y]

» possible moves E depend on the topmost connective:
» in (m, 1V 1') Jve chooses (m, 1)) or (m, 1)),
» in (m, (a)?)) Tve chooses (n, 1)) with m = n,
» with A and [a] in place of V and (a): same but Ydam chooses

> from (m, pux.1p) and (m, vx.1p) to (m, 1))

» plus x unfolds!

» operators ux. and vx. bind variable x

» operators ux. and vx. bind variable x
» from (m, x) with x bound in px.1) or vx.1) the game

moves to (m, 1))

» operators ux. and vx. bind variable x
» from (m, x) with x bound in px.1) or vx.1) the game

moves to (m, 1))

P

px.4

» operators ux. and vx. bind variable x
» from (m, x) with x bound in px.1) or vx.1) the game

moves to (m, 1))

P

px.4

unfolding!

» operators ux. and vx. bind variable x
» from (m, x) with x bound in px.1) or vx.1) the game
moves to (m, 1))

P

move from

(m, x) to (m,)

px.4

unfolding!

» operators ux. and vx. bind variable x
» from (m, x) with x bound in px.1) or vx.1) the game
moves to (m, 1))

P

move from

(m, x) to (m,)

px.4

unfolding!

» unfolding may lead to infinite plays:

» operators ux. and vx. bind variable x
» from (m, x) with x bound in px.1) or vx.1) the game
moves to (m, 1))

P

move from

(m, x) to (m,)

px.4

unfolding!

» unfolding may lead to infinite plays:

» dve looses if the outermost operator unfolded infinitely often is

» operators ux. and vx. bind variable x
» from (m, x) with x bound in px.1) or vx.1) the game
moves to (m, 1))
¥
» rank compatible with move from

subformula order m, x) to (m,
e (M0 m)

Y
unfolding!

» unfolding may lead to infinite plays:

» dve looses if the outermost operator unfolded infinitely often is

» operators ux. and vx. bind variable x
» from (m, x) with x bound in px.1) or vx.1) the game
moves to (m, 1))
Y
» rank compatible with move from
subformula order (m, x) to (m,)

» rank(m,) for immediate ,lew
subformula 1 of ux.1) s

belongs to dve

unfolding!

» unfolding may lead to infinite plays:

» dve looses if the outermost operator unfolded infinitely often is

» operators ux. and vx. bind variable x
» from (m, x) with x bound in px.1) or vx.1) the game
moves to (m, 1))
Y
» rank compatible with move from
subformula order (m, x) to (m,)

» rank(m,) for immediate ,lew

0

» symmetrically with unfolding!

subformula 1 of ux.1)

belongs to dve
v and Vdam x

» unfolding may lead to infinite plays:

» dve looses if the outermost operator unfolded infinitely often is

Example: vx.$x

Example: vx.$x

Ux.<Ox

Example: vx.$x

Ux.<Ox
dve chooses successor
in the model Ox

Example: vx.$x

vx.Ox deterministic &

/point not changed
Jve chooses successor

in the model Ox

Example: vx.$x

vx.Ox deterministic &

/point not changed
Jve chooses successor

in the model Ox

» dve wins all infinie plays

Example: vx.$x

vx.Ox deterministic &

/point not changed
Jve chooses successor

in the model Ox

¥
» dve wins all infinie plays

» initially a deterministic move from (m, vx.$x) to (m, $x); then

Example: vx.$x

vx.Ox deterministic &

/point not changed
Jve chooses successor

in the model Ox

¥
» dve wins all infinie plays

» initially a deterministic move from (m, vx.<$x) to (m, $x); then
> (m, Ox)E(m’, x)E(m’, Ox)E(m", x)..., every second deterministic

and m — m’ — m”... chosen by Jdve

As desired:

As desired:

dve wins from (m,) <= m € ||

As desired:

dve wins from (m,) <= m € ||

works for every M and ¢!

Parity Automata:

Parity Automata:

Q,q/,rank: @ > R

Parity Automata:

@3 U Qy
N\
Q,q/,rank: @ > R

Parity Automata:

QU Qy Q
N\ Y,
Q,q/,rank: @ > R

Parity Automata:

QU Qy Q
N\ Y,
Q,q/,rank: @ > R

0:Q— P(Q)U (Act x Q)

and a transition function

Parity Automata:

QU Qy Q
N\ Y,
Q,q/,rank: @ > R

e-transitions
/_/H

0:Q— P(Q)U (Act x Q)

and a transition function

Parity Automata:

QU Qy Q
N\ Y,
Q,q/,rank: @ > R

e-transitions modal tgnsitions
/_/H

< N

0:Q— P(Q)U (Act x Q)

and a transition function

Parity Automata:

QU Qy Q
N\ Y,
Q,q/,rank: @ > R

the semantics of the automton A defined by a game

e-transitions modal tgnsitions
/_/H

< N

0:Q— P(Q)U (Act x Q)

and a transition function

Semantic Game for automaton A and model M:

Semantic Game for automaton A and model M:

» positions V =M x Q

Semantic Game for automaton A and model M:

» positions V =M x Q

» from (m, g) moves to:

Semantic Game for automaton A and model M:

» positions V =M x Q

» from (m, g) moves to:
» (m, p) with p € 6(q) if 4(q) C Q.

Semantic Game for automaton A and model M:

» positions V =M x Q

» from (m, g) moves to:
» (m, p) with p € 6(q) if 4(q) C Q.
» (n, p) with m Anif d(q) = (a, p).

Semantic Game for automaton A and model M:

» positions V =M x @

» from (m, g) moves to:
» (m, p) with p € 6(q) if 4(q) C Q.
» (n, p) with m Anif d(q) = (a, p).

» ownership and ranks inherited from @

Semantic Game for automaton A and model M:

» positions V =M x @

» from (m, g) moves to:
» (m, p) with p € 6(q) if 4(q) C Q.
» (n, p) with m Anif d(q) = (a, p).

» ownership and ranks inherited from @
> V5=Mx @Q3, Vo = M x Q

Semantic Game for automaton A and model M:

» positions V =M x @

» from (m, g) moves to:
» (m, p) with p € 6(q) if 4(q) C Q.
» (n, p) with m Anif d(q) = (a, p).

» ownership and ranks inherited from @
> V5=Mx @Q3, Vo = M x Q
» rank(m, g) = rank(q)

Semantic Game for automaton A and model M:

» positions V =M x @

» from (m, g) moves to:
» (m, p) with p € 6(q) if 4(q) C Q.
» (n, p) with m Anif d(q) = (a, p).

» ownership and ranks inherited from @
> V5=Mx @Q3, Vo = M x Q
» rank(m, g) = rank(q)

language of A:

A accepts m € M = Jve wins the game from (m, q/)

u-ML formulae parity automata

game semantics

u-ML formulae parity automata

game semantics

Q = SubFor(y)

u-ML formulae parity automata

game semantics

Q = SubFor(y)

u-ML formulae parity automata

(-ML describes arbitrary automata

game semantics

Q = SubFor(y)

u-ML formulae ——= parity automata

(-ML describes arbitrary automata

Limitations:

Limitations:

» 1-ML has the finite model property: if a formula ¢ is true in a point m

of some model M, then it is true in some point n of a finite model A/

Limitations:

» 1-ML has the finite model property: if a formula ¢ is true in a point m

of some model M, then it is true in some point n of a finite model A/

» in general this is a good thing, but limits expressive power

Limitations:

» 1-ML has the finite model property: if a formula ¢ is true in a point m

of some model M, then it is true in some point n of a finite model A/
» in general this is a good thing, but limits expressive power

» for instance, (un)boundedness properties such as:

“there exist arbitrarily long paths originating in a given point”

cannot be defined

Limitations:

» 1-ML has the finite model property: if a formula ¢ is true in a point m

of some model M, then it is true in some point n of a finite model A/
» in general this is a good thing, but limits expressive power

» for instance, (un)boundedness properties such as:

“there exist arbitrarily long paths originating in a given point”

cannot be defined
» well-foundedness definable with owr, so if there was ¢y defining the above prope

then pwr A ¢y would be satisfiable but not in a finite model (Konig's Lemma)

Limitations:

» 1-ML has the finite model property: if a formula ¢ is true in a point m

of some model M, then it is true in some point n of a finite model A/
» in general this is a good thing, but limits expressive power

» for instance, (un)boundedness properties such as:

“there exist arbitrarily long paths originating in a given point”

cannot be defined
» well-foundedness definable with owr, so if there was ¢y defining the above prope

then pwr A ¢y would be satisfiable but not in a finite model (Konig's Lemma)

we want to extend p-ML!H!

» we compute fixpoints by (transfinite) iteration of F:

» we compute fixpoints by (transfinite) iteration of F:

» we compute fixpoints by (transfinite) iteration of F:

» we compute fixpoints by (transfinite) iteration of F:

Fo=M FL=F(F9) ="3a child"

» we compute fixpoints by (transfinite) iteration of F:

FO =M F! = F(F%) ="3 a child" F“ = "arbitrarily long paths"

» we compute fixpoints by (transfinite) iteration of F:

FO =M F!' = F(F%) ="3 a child" F¥ = "arbitrarily long paths" F“™l = F¥+2 = GFP.F

» we compute fixpoints by (transfinite) iteration of F:

FO =M F!' = F(F%) ="3 a child" F¥ = "arbitrarily long paths" F“™l = F¥+2 = GFP.F

I
[vx.<x]

» we compute fixpoints by (transfinite) iteration of F:

add countdown operator VYx.OX to the syntax!

FO =M F!' = F(F%) ="3 a child" F¥ = "arbitrarily long paths" F“™l = F¥+2 = GFP.F

I
[vx.<x]

» we compute fixpoints by (transfinite) iteration of F:

add countdown operator VYx.OX to the syntax!

FO =M F!' = F(F%) ="3 a child" F¥ = "arbitrarily long paths" F“™l = F¥+2 = GFP.F

Il I
[v9x.Ox] [vx.<x]

ti-calculus + countdown operators u*, v*

ti-calculus + countdown operators u*, v*

countdown u-calculus

Syntax:

extended with u* and ¥

ti-calculus + countdown operators u*, v*

countdown u-calculus

Syntax:

extended with u* and ¥

ti-calculus + countdown operators u*, v*

countdown u-calculus

[x.]V = F and [vx.o]? = F¥

'SOIFUBWIDG

p-calculus ~~ parity games

equivalent to alternating parity automata

p-calculus ~~ parity games

equivalent to alternating parity automata

p-calculus ~~ parity games

wining regions definable in logic

equivalent to alternating parity automata

countdown p-calculus ™~ parity games

wining regions definable in logic

equivalent to alternating parity automata
countdown!

countdown p-calculus ™~ parity games

countdown!

wining regions definable in logic

Game for x.$OXx:

Game for x.$OXx:

» dve picks a path m; — my — ... point by point

Game for x.$OXx:

» dve picks a path m; — my — ... point by point

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

Game for x.$OXx:

» dve picks a path m; — my — ... point by point

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

Game for x.$OXx:

» dve picks a path m; — my — ... point by point

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

Game for x.$OXx:

» dve picks a path m; — my — ... point by point

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

Game for x.$OXx:

» dve picks a path m; — my — ... point by point

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

Game for x.$OXx:

» dve picks a path m; — my — ... point by point

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

Game for x.$OXx:

» dve picks a path m; — my — ... point by point

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

X

Game for x.$OXx:

» dve picks a path m; — my — ... point by point

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

dve wins G(vx.$Ox)
<~
3 infinite path

Game for x.$OXx:

» dve picks a path m; — my — ... point by point

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

dve wins G(vx.$Ox)
<~
3 infinite path

Game for ¥ x.Ox:

Game for x.$OXx:

» dve picks a path m; — my — ... point by point

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

dve wins G(vx.$Ox)
<~
3 infinite path

Game for ¥ x.Ox:

» same as for vx.$x plus ordinal-valued counter C initialized to w

Game for x.$OXx:

» dve picks a path m; — my — ... point by point

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

dve wins G(vx.$Ox)
<~
3 infinite path

Game for ¥ x.Ox:

» same as for vx.$x plus ordinal-valued counter C initialized to w
» In each round: (i) Vdam decrements the counter (picks smaller value);

(i) Jve picks an edge m — m’ to a new point m’.

Game for x.$OXx:

» dve picks a path m; — my — ... point by point

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

dve wins G(vx.$Ox)
<~ W
3 infinite path *

Game for ¥ x.Ox:

» same as for vx.$x plus ordinal-valued counter C initialized to w
» In each round: (i) Vdam decrements the counter (picks smaller value);

(i) Jve picks an edge m — m’ to a new point m’.

Game for x.$OXx:

» dve picks a path m; — my — ... point by point

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

dve wins G(vx.$Ox)
<~

3
3 infinite path -

Game for ¥ x.Ox:

» same as for vx.$x plus ordinal-valued counter C initialized to w
» In each round: (i) Vdam decrements the counter (picks smaller value);

(i) Jve picks an edge m — m’ to a new point m’.

Game for x.$OXx:

» dve picks a path m; — my — ... point by point

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

dve wins G(vx.$Ox)
<~
3 infinite path

3

Game for ¥ x.Ox:

» same as for vx.$x plus ordinal-valued counter C initialized to w
» In each round: (i) Vdam decrements the counter (picks smaller value);

(i) Jve picks an edge m — m’ to a new point m’.

Game for x.$OXx:

» dve picks a path m; — my — ... point by point

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

dve wins G(vx.$Ox)
<~
3 infinite path

Game for ¥ x.Ox:

» same as for vx.$x plus ordinal-valued counter C initialized to w
» In each round: (i) Vdam decrements the counter (picks smaller value);

(i) Jve picks an edge m — m’ to a new point m’.

Game for x.$OXx:

» dve picks a path m; — my — ... point by point

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

dve wins G(vx.$Ox)
<~
3 infinite path

Game for ¥ x.Ox:

» same as for vx.$x plus ordinal-valued counter C initialized to w
» In each round: (i) Vdam decrements the counter (picks smaller value);

(i) Jve picks an edge m — m’ to a new point m’.

Game for x.$OXx:

» dve picks a path m; — my — ... point by point

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

dve wins G(vx.Ox) , _1 ,
<
3 infinite path

Game for ¥ x.Ox:

» same as for vx.$x plus ordinal-valued counter C initialized to w
» In each round: (i) Vdam decrements the counter (picks smaller value);

(i) Jve picks an edge m — m’ to a new point m’.

Game for x.$OXx:

» dve picks a path m; — my — ... point by point

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

< |

dve wins G(vx.$Ox)
<~
3 infinite path

Game for ¥ x.Ox:

» same as for vx.$x plus ordinal-valued counter C initialized to w
» In each round: (i) Vdam decrements the counter (picks smaller value);

(i) Jve picks an edge m — m’ to a new point m’.

Game for x.$OXx:

» dve picks a path m; — my — ... point by point

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

dve wins G(vx.$Ox)
<~
3 infinite path

Game for ¥ x.Ox:

» same as for vx.$x plus ordinal-valued counter C initialized to w
» In each round: (i) Vdam decrements the counter (picks smaller value);

(i) Jve picks an edge m — m’ to a new point m’.

Game for x.$OXx:

» dve picks a path m; — my — ... point by point

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

*

dve wins G(vx.$Ox)
<~
3 infinite path

Game for ¥ x.Ox:

» same as for vx.$x plus ordinal-valued counter C initialized to w
» In each round: (i) Vdam decrements the counter (picks smaller value);

(i) Jve picks an edge m — m’ to a new point m’.

Game for x.$OXx:

» dve picks a path m; — my — ... point by point

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

*

dve wins G(vx.$Ox)
<~
3 infinite path

Game for ¥ x.Ox:

» same as for vx.$x plus ordinal-valued counter C initialized to w
» In each round: (i) Vdam decrements the counter (picks smaller value);

(i) Jve picks an edge m — m’ to a new point m’.

Game for x.$OXx:

» dve picks a path m; — my — ... point by point

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

dve wins G(vx.$Ox) ~ dve wins G(1*x.Ox)
< <~
3 infinite path 3 arbitrarily long paths

Game for ¥ x.Ox:

» same as for vx.$x plus ordinal-valued counter C initialized to w
» In each round: (i) Vdam decrements the counter (picks smaller value);

(i) Jve picks an edge m — m’ to a new point m’.

G=(V,E,rank: V — R, D)

countdown game = parity game -+ subset D C R

G=(V,E,rank: V — R, D)

countdown game = parity game -+ subset D C R

N

nonstandard ranks

G=(V,E,rank: V — R, D)

countdown game = parity game -+ subset D C R

» counter C, € {0,1,...w} for each r € D \

nonstandard ranks

G=(V,E,rank: V — R, D)

countdown game = parity game -+ subset D C R

» counter C, € {0,1,...w} for each r € D
» initially all C, equal w

nonstandard ranks

G=(V,E,rank: V — R, D)

countdown game = parity game -+ subset D C R

» counter C, € {0,1,...w} for each r € D
» initially all C, equal w

nonstandard ranks

» from (v, C,):

G=(V,E,rank: V — R, D)

countdown game = parity game -+ subset D C R

» counter C, € {0,1,...w} for each r € D
» initially all C, equal w

nonstandard ranks

> from (v C_) +——a configuration
y ~r)-

G=(V,E,rank: V — R, D)

countdown game = parity game -+ subset D C R

» counter C, € {0,1,...w} for each r € D
» initially all C, equal w

nonstandard ranks

> from (v C_) +——a configuration
y ~r)-

» first, counters are updated depending on rank(v):

G=(V,E,rank: V — R, D)

countdown game = parity game -+ subset D C R

» counter C, € {0,1,...w} for each r € D
» initially all C, equal w

nonstandard ranks

> from (v C_) +——a configuration
y ~r)-

» first, counters are updated depending on rank(v):

» C' = C, for r > rank(v), [unchanged]

G=(V,E,rank: V — R, D)

countdown game = parity game -+ subset D C R

» counter C, € {0,1,...w} for each r € D
» initially all C, equal w

nonstandard ranks

> from (v C_) +——a configuration
y ~r)-

» first, counters are updated depending on rank(v):
» C' = C, for r > rank(v), [unchanged]
» C' =w for r < rank(v), [reset]

G=(V,E,rank: V — R, D)

countdown game = parity game -+ subset D C R

» counter C, € {0,1,...w} for each r € D
» initially all C, equal w

nonstandard ranks

> from (v C_) +——a configuration
y ~r)-

» first, counters are updated depending on rank(v):
» C' = C, for r > rank(v), [unchanged]
» C' =w for r < rank(v), [reset]
» if rank(v) € D, the owner of rank(v) chooses:

G=(V,E,rank: V — R, D)

countdown game = parity game -+ subset D C R

» counter C, € {0,1,...w} for each r € D
» initially all C, equal w

nonstandard ranks

> from (v C_) +——a configuration
y ~r)-

» first, counters are updated depending on rank(v):
» C' = C, for r > rank(v), [unchanged]
» C' =w for r < rank(v), [reset]

» if rank(v) € D, the owner of rank(v) chooses:
Cﬁank(v) < Crank(v) [decremented]

G=(V,E,rank: V — R, D)

countdown game = parity game -+ subset D C R

» counter C, € {0,1,...w} for each r € D
» initially all C, equal w

nonstandard ranks

> from (v C_) +——a configuration
y ~r)-

» first, counters are updated depending on rank(v):
» C' = C, for r > rank(v), [unchanged]
» C' =w for r < rank(v), [reset]

» if rank(v) € D, the owner of rank(v) chooses:
Cﬁank(v) < Crank(v) [decremented]

» then, owner of v chooses vEw

G=(V,E,rank: V — R, D)

countdown game = parity game -+ subset D C R

» counter C, € {0,1,...w} for each r € D
» initially all C, equal w

nonstandard ranks

> from (v C_) +——a configuration
y ~r)-

» first, counters are updated depending on rank(v):
» C' = C, for r > rank(v), [unchanged]
» C' =w for r < rank(v), [reset]

» if rank(v) € D, the owner of rank(v) chooses:
Cﬁank(v) < Crank(v) [decremented]

» then, owner of v chooses vEw

» and the game moves to (w, C’).

Game Semantics for countdown p-ML:

Game Semantics for countdown p-ML:

» countdown game = (V, E rank : V = R) plus D CR

Game Semantics for countdown p-ML:

parity game
< A N

» countdown game = (V, E rank : V = R) plus D CR

Game Semantics for countdown p-ML:

parity game
» countdown game = (V, E rank : V = R) plus D CR

\(./
nonstandard ranks

Game Semantics for countdown p-ML:

parity game

7 N

» countdown game = (V, E rank : V = R) plus D CR

\(./
nonstandard ranks

» semantic games for countdown pu-ML = same as for pu-ML
(as if 4 and v were p and) plus nonstandard ranks D:

ranks of all immediate subformulae of countdown operators

Game Semantics for countdown p-ML:

parity game
» countdown game = (V, E rank : V = R) plus D CR

\(./
nonstandard ranks

» semantic games for countdown pu-ML = same as for pu-ML
(as if 4 and v were p and) plus nonstandard ranks D:

ranks of all immediate subformulae of countdown operators

dve wins from (m,) <= m € [y]

Game Semantics for countdown p-ML:

parity game
» countdown game = (V, E rank : V = R) plus D CR

\(./
nonstandard ranks

» semantic games for countdown pu-ML = same as for pu-ML
(as if 4 and v were p and) plus nonstandard ranks D:

ranks of all immediate subformulae of countdown operators

dve wins from (m,) <= m € [y]

works for every M and ¢!

Countdown automata:

Countdown automata:

parity game

7 N

» countdown game = (V, E rank: V = R) plus D CR

\{./
nonstandard ranks

Countdown automata:

parity game

7 N

» countdown game = (V, E rank: V = R) plus D CR

\{./
nonstandard ranks

» countdown automaton = (@, 9, g;,rank) plus D CR

Countdown automata:

parity game
» countdown game = (V, E rank: V = R) plus D CR

\{./
nonstandard ranks

parity automaton
A

< N

» countdown automaton = (@, 9, g;,rank) plus D CR

Countdown automata:

parity game

7 N

» countdown game = (V, E rank: V = R) plus D CR

\{./
nonstandard ranks

parity automaton
A

< N

» countdown automaton = (@, 9, g;,rank) plus D CR

nonstandard ranks

Countdown automata:

parity game

7 N

» countdown game = (V, E rank: V = R) plus D CR

\{./
nonstandard ranks

parity automaton
A

< N

» countdown automaton = (@, 9, g;,rank) plus D CR

nonstandard ranks

» semantic via a countdown game: the parity game for (Q, 9, g, rank)

but the ranks D C R are now nonstandard!

countdown p-ML countdown automata

countdown game semantics

countdown pu-ML countdown automata

countdown game semantics

countdown pu-ML countdown automata

countdown p-ML describes arbitrary automata

countdown game semantics

countdown ui-ML == countdown automata

countdown p-ML describes arbitrary automata

equivalent to alternating parity automata
countdown!

countdown p-calculus ™~ party games
countdown!

wining regions definable in logic

equivalent to alternating parity automata
countdown!

countdown p-calculus ~~ parity games
countdown!

COMPLICATIONS!!

wining regions definable in logic

equivalent to alternating parity automata

/ countdown!
n

o simple nondeterministic model!!!

countdown p-calculus ™~ party games
countdown!

wining regions definable in logic

equivalent to alternating parity automata

/ countdown!
n

o simple nondeterministic model!!!

countdown p-calculus ™~ party games
countdown!

vectorial, i.e. multiple

variables bound simultaneously

wining regions definable in logic

equivalent to alternating parity automata

/ countdown!
n

o simple nondeterministic model!!!

countdown p-calculus ™~ party games
countdown!

o . mt for p-ML
vectorial, i.e. multiple

variables bound simultaneously

wining regions definable in logic

equivalent to alternating parity automata

/ countdown!
n

o simple nondeterministic model!!!

countdown p-calculus ™~ party games
countdown!

o . mt for p-ML
vectorial, i.e. multiple

variables bound simultaneously

Qc&tfor (-MLIH!

wining regions definable in logic

NO nondeterministic model:

NO nondeterministic model:

» parity games positionally determined: nondeterministic automaton guesses

the strategy

NO nondeterministic model:

» parity games positionally determined: nondeterministic automaton guesses

the strategy

» but countdown games not positionally determined: players need to look at

the counters

NO nondeterministic model:

» parity games positionally determined: nondeterministic automaton guesses

the strategy

» but countdown games not positionally determined: players need to look at

the counters
» countdown p-ML provably not closed under projections (due to low

topological complexity)

NO nondeterministic model:

» parity games positionally determined: nondeterministic automaton guesses

the strategy

» but countdown games not positionally determined: players need to look at

the counters
» countdown p-ML provably not closed under projections (due to low
topological complexity)

» this is arguably a good news: every extension of MSO closed under projections

and boolean operations is too strong (contains MSO + U)

NO nondeterministic model:

» parity games positionally determined: nondeterministic automaton guesses

the strategy

» but countdown games not positionally determined: players need to look at

the counters
» countdown p-ML provably not closed under projections (due to low
topological complexity)

» this is arguably a good news: every extension of MSO closed under projections

and boolean operations is too strong (contains MSO + U)

» but the lack of nondeterministic model prevents us from copying clasical proofs

NO nondeterministic model:

» parity games positionally determined: nondeterministic automaton guesses

the strategy

» but countdown games not positionally determined: players need to look at

the counters
» countdown p-ML provably not closed under projections (due to low
topological complexity)

» this is arguably a good news: every extension of MSO closed under projections

and boolean operations is too strong (contains MSO + U)
» but the lack of nondeterministic model prevents us from copying clasical proofs

» still, alternating automata are extremely useful:

NO nondeterministic model:

» parity games positionally determined: nondeterministic automaton guesses

the strategy

» but countdown games not positionally determined: players need to look at

the counters
» countdown p-ML provably not closed under projections (due to low
topological complexity)

» this is arguably a good news: every extension of MSO closed under projections

and boolean operations is too strong (contains MSO + U)
» but the lack of nondeterministic model prevents us from copying clasical proofs
» still, alternating automata are extremely useful:

» guarded normal form

NO nondeterministic model:

» parity games positionally determined: nondeterministic automaton guesses

the strategy

» but countdown games not positionally determined: players need to look at

the counters
» countdown p-ML provably not closed under projections (due to low
topological complexity)

» this is arguably a good news: every extension of MSO closed under projections

and boolean operations is too strong (contains MSO + U)
» but the lack of nondeterministic model prevents us from copying clasical proofs
» still, alternating automata are extremely useful:

» guarded normal form

» model theory (e.g. countable model property)

NO nondeterministic model:

» parity games positionally determined: nondeterministic automaton guesses

the strategy

» but countdown games not positionally determined: players need to look at

the counters
» countdown p-ML provably not closed under projections (due to low
topological complexity)

» this is arguably a good news: every extension of MSO closed under projections

and boolean operations is too strong (contains MSO + U)
» but the lack of nondeterministic model prevents us from copying clasical proofs
» still, alternating automata are extremely useful:

» guarded normal form

» model theory (e.g. countable model property)

» some decidability results

Decidability results:

Decidability results:

» (finite) model checking: given ¢ and m in M, does m satisfy ¢?

decidable but not that interesting

Decidability results:

» (finite) model checking: given ¢ and m in M, does m satisfy ¢?

decidable but not that interesting
» satisfiability: given ¢, does there exists M with m satisfying 7

Decidability results:

» (finite) model checking: given ¢ and m in M, does m satisfy ¢?

decidable but not that interesting
» satisfiability: given ¢, does there exists M with m satisfying 7

CONJECTURE: satisfiability decidable

Decidability results:

» (finite) model checking: given ¢ and m in M, does m satisfy ¢?

decidable but not that interesting
» satisfiability: given ¢, does there exists M with m satisfying 7

CONJECTURE: satisfiability decidable

» for now, proven in special cases:

Decidability results:

» (finite) model checking: given ¢ and m in M, does m satisfy ¢?

decidable but not that interesting
» satisfiability: given ¢, does there exists M with m satisfying 7

CONJECTURE: satisfiability decidable

» for now, proven in special cases:

» formulae with positive countdown, i.e. no v used

Decidability results:

» (finite) model checking: given ¢ and m in M, does m satisfy ¢?

decidable but not that interesting
» satisfiability: given ¢, does there exists M with m satisfying 7

CONJECTURE: satisfiability decidable

» for now, proven in special cases:

» formulae with positive countdown, i.e. no v used

» Biichi countdown automata: only two ranks r? < r7, over infinite words

Some facts and results:

Some facts and results:

» nothing special about w, take your favourite ordinal instead!

Some facts and results:

» nothing special about w, take your favourite ordinal instead!

» more nesting of countdown operators = more power

Some facts and results:

» nothing special about w, take your favourite ordinal instead!
» more nesting of countdown operators = more power

» fragment without nesting of countdown operators = certain multi-valued p-ML

Some facts and results:

» nothing special about w, take your favourite ordinal instead!
» more nesting of countdown operators = more power

» fragment without nesting of countdown operators = certain multi-valued p-ML

p-ML, but with logical values from [0, 1] instead of just {0,1}

. f .
and the function t +— %t as an extra unary connective:

Some facts and results:

» nothing special about w, take your favourite ordinal instead!
» more nesting of countdown operators = more power

» fragment without nesting of countdown operators = certain multi-valued p-ML

p-ML, but with logical values from [0, 1] instead of just {0,1}

. f .
and the function t +— %t as an extra unary connective:

VX.<>f(X) has value 1 <= there are arbitrarily long paths

Some facts and results:

» nothing special about w, take your favourite ordinal instead!
» more nesting of countdown operators = more power

» fragment without nesting of countdown operators = certain multi-valued p-ML

p-ML, but with logical values from [0, 1] instead of just {0,1}

. f .
and the function t +— %t as an extra unary connective:

VX.<>f(X) has value 1 <= there are arbitrarily long paths

(<" means “supremum over children”; f(t) = 1t+ 1 is dual to f)

Thank you!)

& craiyon

Al model drawing images from any prompt!

Countdown Logic automata and
games

