
Countdown logic, games and automata

bisimulation-invariant approach to (un)boundedness

J¦drzej Koªodziejski

(& Bartek Klin)

4 VII 2023

eTokio

Powered by BeamerikZ

https://www.mimuw.edu.pl/~mskrzypczak/projects/beamerikz/

µ-calculus = modal logic + �xpoints

Syntax:

ϕ ::= > | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [b]ϕ | x | µx .ϕ | νx .ϕ

boolean

a, b from �xed Act

and x from �xed Var

Semantics:

I interpreted in points of a modal modelM

directed graph (M , (
a→)a∈Act), edges labelled with Act

I �〈a〉ϕ� means �there exists an a-child satisfying ϕ�

if trivial Act = {a}, denote
〈a〉 = 3 and [a] = 2

plus val : Var→ P(M)

Syntax:

ϕ ::= > | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [b]ϕ | x | µx .ϕ | νx .ϕ

boolean

a, b from �xed Act

and x from �xed Var

Semantics:

I interpreted in points of a modal modelM

directed graph (M , (
a→)a∈Act), edges labelled with Act

I �〈a〉ϕ� means �there exists an a-child satisfying ϕ�

if trivial Act = {a}, denote
〈a〉 = 3 and [a] = 2

plus val : Var→ P(M)

Syntax:

ϕ ::= > | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [b]ϕ | x | µx .ϕ | νx .ϕ

boolean

a, b from �xed Act

and x from �xed Var

Semantics:

I interpreted in points of a modal modelM

directed graph (M , (
a→)a∈Act), edges labelled with Act

I �〈a〉ϕ� means �there exists an a-child satisfying ϕ�

if trivial Act = {a}, denote
〈a〉 = 3 and [a] = 2

plus val : Var→ P(M)

Syntax:

ϕ ::= > | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [b]ϕ | x | µx .ϕ | νx .ϕ

boolean

a, b from �xed Act

and x from �xed Var

Semantics:

I interpreted in points of a modal modelM

directed graph (M , (
a→)a∈Act), edges labelled with Act

I �〈a〉ϕ� means �there exists an a-child satisfying ϕ�

if trivial Act = {a}, denote
〈a〉 = 3 and [a] = 2

plus val : Var→ P(M)

Syntax:

ϕ ::= > | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [b]ϕ | x | µx .ϕ | νx .ϕ

boolean

a, b from �xed Act

and x from �xed Var

Semantics:

I interpreted in points of a modal modelM

directed graph (M , (
a→)a∈Act), edges labelled with Act

I �〈a〉ϕ� means �there exists an a-child satisfying ϕ�

if trivial Act = {a}, denote
〈a〉 = 3 and [a] = 2

plus val : Var→ P(M)

Syntax:

ϕ ::= > | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [b]ϕ | x | µx .ϕ | νx .ϕ

boolean

a, b from �xed Act

and x from �xed Var

Semantics:

I interpreted in points of a modal modelM

directed graph (M , (
a→)a∈Act), edges labelled with Act

I �〈a〉ϕ� means �there exists an a-child satisfying ϕ�

if trivial Act = {a}, denote
〈a〉 = 3 and [a] = 2

plus val : Var→ P(M)

Syntax:

ϕ ::= > | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [b]ϕ | x | µx .ϕ | νx .ϕ

boolean

a, b from �xed Act

and x from �xed Var

Semantics:

I interpreted in points of a modal modelM

directed graph (M , (
a→)a∈Act), edges labelled with Act

I �〈a〉ϕ� means �there exists an a-child satisfying ϕ�

if trivial Act = {a}, denote
〈a〉 = 3 and [a] = 2

plus val : Var→ P(M)

Syntax:

ϕ ::= > | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [b]ϕ | x | µx .ϕ | νx .ϕ

boolean

a, b from �xed Act

and x from �xed Var

Semantics:

I interpreted in points of a modal modelM

directed graph (M , (
a→)a∈Act), edges labelled with Act

I �〈a〉ϕ� means �there exists an a-child satisfying ϕ�

if trivial Act = {a}, denote
〈a〉 = 3 and [a] = 2

plus val : Var→ P(M)

Syntax:

ϕ ::= > | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [b]ϕ | x | µx .ϕ | νx .ϕ

boolean

a, b from �xed Act

and x from �xed Var

Semantics:

I interpreted in points of a modal modelM

directed graph (M , (
a→)a∈Act), edges labelled with Act

I �〈a〉ϕ� means �there exists an a-child satisfying ϕ�

if trivial Act = {a}, denote
〈a〉 = 3 and [a] = 2

plus val : Var→ P(M)

Syntax:

ϕ ::= > | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [b]ϕ | x | µx .ϕ | νx .ϕ

boolean

a, b from �xed Act

and x from �xed Var

Semantics:

I interpreted in points of a modal modelM

directed graph (M , (
a→)a∈Act), edges labelled with Act

I �〈a〉ϕ� means �there exists an a-child satisfying ϕ�

if trivial Act = {a}, denote
〈a〉 = 3 and [a] = 2

plus val : Var→ P(M)

Syntax:

ϕ ::= > | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [b]ϕ | x | µx .ϕ | νx .ϕ

boolean

a, b from �xed Act

and x from �xed Var

Semantics:

I interpreted in points of a modal modelM

directed graph (M , (
a→)a∈Act), edges labelled with Act

I �〈a〉ϕ� means �there exists an a-child satisfying ϕ�

if trivial Act = {a}, denote
〈a〉 = 3 and [a] = 2

plus val : Var→ P(M)

I 3x induces an operation F : P(M)→ P(M):

S
F7→ J3xKx ::=S = {m | ∃m→nn ∈ S}

I since x appears only positively in 3x , F is monotone...

S ⊆ S ′ =⇒ F (S) ⊆ F (S ′)

I ...and so F has the greatest and the least �xpoint!

Jνx .3xK = GFP.F Jµx .3xK = LFP.F

I 3x induces an operation F : P(M)→ P(M):

S
F7→ J3xKx ::=S = {m | ∃m→nn ∈ S}

I since x appears only positively in 3x , F is monotone...

S ⊆ S ′ =⇒ F (S) ⊆ F (S ′)

I ...and so F has the greatest and the least �xpoint!

Jνx .3xK = GFP.F Jµx .3xK = LFP.F

I 3x induces an operation F : P(M)→ P(M):

S
F7→ J3xKx ::=S = {m | ∃m→nn ∈ S}

I since x appears only positively in 3x , F is monotone...

S ⊆ S ′ =⇒ F (S) ⊆ F (S ′)

I ...and so F has the greatest and the least �xpoint!

Jνx .3xK = GFP.F Jµx .3xK = LFP.F

I 3x induces an operation F : P(M)→ P(M):

S
F7→ J3xKx ::=S = {m | ∃m→nn ∈ S}

I since x appears only positively in 3x , F is monotone...

S ⊆ S ′ =⇒ F (S) ⊆ F (S ′)

I ...and so F has the greatest and the least �xpoint!

Jνx .3xK = GFP.F Jµx .3xK = LFP.F

I 3x induces an operation F : P(M)→ P(M):

S
F7→ J3xKx ::=S = {m | ∃m→nn ∈ S}

I since x appears only positively in 3x , F is monotone...

S ⊆ S ′ =⇒ F (S) ⊆ F (S ′)

I ...and so F has the greatest and the least �xpoint!

Jνx .3xK = GFP.F

Jµx .3xK = LFP.F

I 3x induces an operation F : P(M)→ P(M):

S
F7→ J3xKx ::=S = {m | ∃m→nn ∈ S}

I since x appears only positively in 3x , F is monotone...

S ⊆ S ′ =⇒ F (S) ⊆ F (S ′)

I ...and so F has the greatest and the least �xpoint!

Jνx .3xK = GFP.F Jµx .3xK = LFP.F

Knaster-Tarski Theorem:

Every monotone map F : P(M)→ P(M) has the least and

the greatest (w.r.t. ⊆) �xpoint LFP.F and GFP.F .

Both are computed as the limits of (trans�nite) sequences:

F αµ =
⋃
β<α F

β
µ and F αν =

⋂
β<α F

β
ν

with α ranging over ordinal numbers

(note: F 0
µ =

⋃
∅ = ∅ and F 0

ν =
⋂
∅ = M)

Knaster-Tarski Theorem:

Every monotone map F : P(M)→ P(M) has the least and

the greatest (w.r.t. ⊆) �xpoint LFP.F and GFP.F .

Both are computed as the limits of (trans�nite) sequences:

F αµ =
⋃
β<α F

β
µ and F αν =

⋂
β<α F

β
ν

with α ranging over ordinal numbers

(note: F 0
µ =

⋃
∅ = ∅ and F 0

ν =
⋂
∅ = M)

Knaster-Tarski Theorem:

Every monotone map F : P(M)→ P(M) has the least and

the greatest (w.r.t. ⊆) �xpoint LFP.F and GFP.F .

Both are computed as the limits of (trans�nite) sequences:

F αµ =
⋃
β<α F

β
µ and F αν =

⋂
β<α F

β
ν

with α ranging over ordinal numbers

(note: F 0
µ =

⋃
∅ = ∅ and F 0

ν =
⋂
∅ = M)

Knaster-Tarski Theorem:

Every monotone map F : P(M)→ P(M) has the least and

the greatest (w.r.t. ⊆) �xpoint LFP.F and GFP.F .

Both are computed as the limits of (trans�nite) sequences:

F αµ =
⋃
β<α F

β
µ and F αν =

⋂
β<α F

β
ν

with α ranging over ordinal numbers

(note: F 0
µ =

⋃
∅ = ∅ and F 0

ν =
⋂
∅ = M)

Knaster-Tarski Theorem:

Every monotone map F : P(M)→ P(M) has the least and

the greatest (w.r.t. ⊆) �xpoint LFP.F and GFP.F .

Both are computed as the limits of (trans�nite) sequences:

F αµ =
⋃
β<α F

β
µ and F αν =

⋂
β<α F

β
ν

with α ranging over ordinal numbers

(note: F 0
µ =

⋃
∅ = ∅ and F 0

ν =
⋂
∅ = M)

I we compute �xpoints by (trans�nite) iteration of F :

S
F7→ J3xKx ::=S = {m | ∃m→nn ∈ S}

· · ·

·
·
·

F 0
ν = M F 1

ν = F (F 0
ν)

· · ·

·
·
·

F 1
ν = F (F 0

ν) =�∃ a child�

· · ·

· · ·

·
·
·

F ων = �arbitrarily long paths�

· · ·

·
·
·

F ω+1ν = F ω+2ν = GFP.F

=

Jνx .3xK

I we compute �xpoints by (trans�nite) iteration of F :

S
F7→ J3xKx ::=S = {m | ∃m→nn ∈ S}

· · ·

·
·
·

F 0
ν = M F 1

ν = F (F 0
ν)

· · ·

·
·
·

F 1
ν = F (F 0

ν) =�∃ a child�

· · ·

· · ·

·
·
·

F ων = �arbitrarily long paths�

· · ·

·
·
·

F ω+1ν = F ω+2ν = GFP.F

=

Jνx .3xK

I we compute �xpoints by (trans�nite) iteration of F :

S
F7→ J3xKx ::=S = {m | ∃m→nn ∈ S}

· · ·

·
·
·

F 0
ν = M

F 1
ν = F (F 0

ν)

· · ·

·
·
·

F 1
ν = F (F 0

ν) =�∃ a child�

· · ·

· · ·

·
·
·

F ων = �arbitrarily long paths�

· · ·

·
·
·

F ω+1ν = F ω+2ν = GFP.F

=

Jνx .3xK

I we compute �xpoints by (trans�nite) iteration of F :

S
F7→ J3xKx ::=S = {m | ∃m→nn ∈ S}

· · ·

·
·
·

F 0
ν = M F 1

ν = F (F 0
ν)

· · ·

·
·
·

F 1
ν = F (F 0

ν) =�∃ a child�

· · ·

· · ·

·
·
·

F ων = �arbitrarily long paths�

· · ·

·
·
·

F ω+1ν = F ω+2ν = GFP.F

=

Jνx .3xK

I we compute �xpoints by (trans�nite) iteration of F :

S
F7→ J3xKx ::=S = {m | ∃m→nn ∈ S}

· · ·

·
·
·

F 0
ν = M

F 1
ν = F (F 0

ν)

· · ·

·
·
·

F 1
ν = F (F 0

ν) =�∃ a child�

· · ·

· · ·

·
·
·

F ων = �arbitrarily long paths�

· · ·

·
·
·

F ω+1ν = F ω+2ν = GFP.F

=

Jνx .3xK

I we compute �xpoints by (trans�nite) iteration of F :

S
F7→ J3xKx ::=S = {m | ∃m→nn ∈ S}

· · ·

·
·
·

F 0
ν = M

F 1
ν = F (F 0

ν)

· · ·

·
·
·

F 1
ν = F (F 0

ν) =�∃ a child�

· · ·

· · ·

·
·
·

F ων = �arbitrarily long paths�

· · ·

·
·
·

F ω+1ν = F ω+2ν = GFP.F

=

Jνx .3xK

I we compute �xpoints by (trans�nite) iteration of F :

S
F7→ J3xKx ::=S = {m | ∃m→nn ∈ S}

· · ·

·
·
·

F 0
ν = M

F 1
ν = F (F 0

ν)

· · ·

·
·
·

F 1
ν = F (F 0

ν) =�∃ a child�

· · ·

· · ·

·
·
·

F ων = �arbitrarily long paths�

· · ·

·
·
·

F ω+1ν = F ω+2ν = GFP.F

=

Jνx .3xK

I we compute �xpoints by (trans�nite) iteration of F :

S
F7→ J3xKx ::=S = {m | ∃m→nn ∈ S}

· · ·

·
·
·

F 0
ν = M

F 1
ν = F (F 0

ν)

· · ·

·
·
·

F 1
ν = F (F 0

ν) =�∃ a child�

· · ·

· · ·

·
·
·

F ων = �arbitrarily long paths�

· · ·

·
·
·

F ω+1ν = F ω+2ν = GFP.F

=

Jνx .3xK

µ-calculus = modal logic + �xpoints

ϕ ::= > | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [b]ϕ | x | µx .ϕ | νx .ϕ

J>Kval = M and J⊥Kval = ∅

Jϕ1 ∨ ϕ2Kval = Jϕ1Kval ∪ Jϕ2Kval and Jϕ1 ∧ ϕ2Kval = Jϕ1Kval ∩ Jϕ2Kval

J〈a〉ϕKval = {m ∈ M | ∃
m

a→n
n ∈ JϕKval} and J[a]ϕKval = {m ∈ M | ∀

m
a→n

n ∈ JϕKval}

JxKval = val(x)

Jµx .ϕKval = LFP.F and Jνx .ϕKval = GFP.F

with F (S) = JϕKval[x ::=S]

µ-calculus = modal logic + �xpoints

ϕ ::= > | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [b]ϕ | x | µx .ϕ | νx .ϕ

J>Kval = M and J⊥Kval = ∅

Jϕ1 ∨ ϕ2Kval = Jϕ1Kval ∪ Jϕ2Kval and Jϕ1 ∧ ϕ2Kval = Jϕ1Kval ∩ Jϕ2Kval

J〈a〉ϕKval = {m ∈ M | ∃
m

a→n
n ∈ JϕKval} and J[a]ϕKval = {m ∈ M | ∀

m
a→n

n ∈ JϕKval}

JxKval = val(x)

Jµx .ϕKval = LFP.F and Jνx .ϕKval = GFP.F

with F (S) = JϕKval[x ::=S]

µ-calculus = modal logic + �xpoints

ϕ ::= > | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [b]ϕ | x | µx .ϕ | νx .ϕ

J>Kval = M and J⊥Kval = ∅

Jϕ1 ∨ ϕ2Kval = Jϕ1Kval ∪ Jϕ2Kval and Jϕ1 ∧ ϕ2Kval = Jϕ1Kval ∩ Jϕ2Kval

J〈a〉ϕKval = {m ∈ M | ∃
m

a→n
n ∈ JϕKval} and J[a]ϕKval = {m ∈ M | ∀

m
a→n

n ∈ JϕKval}

JxKval = val(x)

Jµx .ϕKval = LFP.F and Jνx .ϕKval = GFP.F

with F (S) = JϕKval[x ::=S]

µ-calculus = modal logic + �xpoints

ϕ ::= > | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [b]ϕ | x | µx .ϕ | νx .ϕ

J>Kval = M and J⊥Kval = ∅

Jϕ1 ∨ ϕ2Kval = Jϕ1Kval ∪ Jϕ2Kval and Jϕ1 ∧ ϕ2Kval = Jϕ1Kval ∩ Jϕ2Kval

J〈a〉ϕKval = {m ∈ M | ∃
m

a→n
n ∈ JϕKval} and J[a]ϕKval = {m ∈ M | ∀

m
a→n

n ∈ JϕKval}

JxKval = val(x)

Jµx .ϕKval = LFP.F and Jνx .ϕKval = GFP.F

with F (S) = JϕKval[x ::=S]

µ-calculus = modal logic + �xpoints

ϕ ::= > | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [b]ϕ | x | µx .ϕ | νx .ϕ

J>Kval = M and J⊥Kval = ∅

Jϕ1 ∨ ϕ2Kval = Jϕ1Kval ∪ Jϕ2Kval and Jϕ1 ∧ ϕ2Kval = Jϕ1Kval ∩ Jϕ2Kval

J〈a〉ϕKval = {m ∈ M | ∃
m

a→n
n ∈ JϕKval} and J[a]ϕKval = {m ∈ M | ∀

m
a→n

n ∈ JϕKval}

JxKval = val(x)

Jµx .ϕKval = LFP.F and Jνx .ϕKval = GFP.F

with F (S) = JϕKval[x ::=S]

µ-calculus = modal logic + �xpoints

ϕ ::= > | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [b]ϕ | x | µx .ϕ | νx .ϕ

J>Kval = M and J⊥Kval = ∅

Jϕ1 ∨ ϕ2Kval = Jϕ1Kval ∪ Jϕ2Kval and Jϕ1 ∧ ϕ2Kval = Jϕ1Kval ∩ Jϕ2Kval

J〈a〉ϕKval = {m ∈ M | ∃
m

a→n
n ∈ JϕKval} and J[a]ϕKval = {m ∈ M | ∀

m
a→n

n ∈ JϕKval}

JxKval = val(x)

Jµx .ϕKval = LFP.F and Jνx .ϕKval = GFP.F

with F (S) = JϕKval[x ::=S]

µ-calculus = modal logic + �xpoints

ϕ ::= > | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [b]ϕ | x | µx .ϕ | νx .ϕ

J>Kval = M and J⊥Kval = ∅

Jϕ1 ∨ ϕ2Kval = Jϕ1Kval ∪ Jϕ2Kval and Jϕ1 ∧ ϕ2Kval = Jϕ1Kval ∩ Jϕ2Kval

J〈a〉ϕKval = {m ∈ M | ∃
m

a→n
n ∈ JϕKval} and J[a]ϕKval = {m ∈ M | ∀

m
a→n

n ∈ JϕKval}

JxKval = val(x)

Jµx .ϕKval = LFP.F and Jνx .ϕKval = GFP.F

with F (S) = JϕKval[x ::=S]

µ-calculus = modal logic + �xpoints

ϕ ::= > | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [b]ϕ | x | µx .ϕ | νx .ϕ

J>Kval = M and J⊥Kval = ∅

Jϕ1 ∨ ϕ2Kval = Jϕ1Kval ∪ Jϕ2Kval and Jϕ1 ∧ ϕ2Kval = Jϕ1Kval ∩ Jϕ2Kval

J〈a〉ϕKval = {m ∈ M | ∃
m

a→n
n ∈ JϕKval} and J[a]ϕKval = {m ∈ M | ∀

m
a→n

n ∈ JϕKval}

JxKval = val(x)

Jµx .ϕKval = LFP.F and Jνx .ϕKval = GFP.F

with F (S) = JϕKval[x ::=S]

Why we like it so much?

µ-calculus∼ parity games

I algorithmicaly feasible & expressive

I equivalent to automata (of various types),

monadic second-order logic MSO, algebras...

regular languages

(of �nite/in�nite words, trees... or up to bisimulation)

Why we like it so much?

µ-calculus∼ parity games

I algorithmicaly feasible & expressive

I equivalent to automata (of various types),

monadic second-order logic MSO, algebras...

regular languages

(of �nite/in�nite words, trees... or up to bisimulation)

Why we like it so much?

µ-calculus∼ parity games

I algorithmicaly feasible & expressive

I equivalent to automata (of various types),

monadic second-order logic MSO, algebras...

regular languages

(of �nite/in�nite words, trees... or up to bisimulation)

Why we like it so much?

µ-calculus∼ parity games

I algorithmicaly feasible & expressive

I equivalent to automata (of various types),

monadic second-order logic MSO, algebras...

regular languages

(of �nite/in�nite words, trees... or up to bisimulation)

Why we like it so much?

µ-calculus∼ parity games

I algorithmicaly feasible & expressive

I equivalent to automata (of various types),

monadic second-order logic MSO, algebras...

regular languages

(of �nite/in�nite words, trees... or up to bisimulation)

Why we like it so much?

µ-calculus∼ parity games

I algorithmicaly feasible & expressive

I equivalent to automata (of various types),

monadic second-order logic MSO, algebras...

regular languages

(of �nite/in�nite words, trees... or up to bisimulation)

Why we like it so much?

µ-calculus∼ parity games

I algorithmicaly feasible & expressive

I equivalent to automata (of various types),

monadic second-order logic MSO, algebras...

regular languages

(of �nite/in�nite words, trees... or up to bisimulation)

Parity Games:

V ,E , rank : V → R

V∃ t V∀

=

V × V

⊆

R∃ tR∀

=

I ∃ve and ∀dam move between positions, round by round

I from position v its owner chooses vEw & the game moves to w

I if a player is stuck (has no legal move) looses immediately

I otherwise an in�nite play π: look at the greatest rank r appearing

in�nitely often in π � the owner of r looses

(strategies, winning strategies, etc. de�ned as usual)

Parity Games:

V ,E , rank : V → R

V∃ t V∀

=

V × V

⊆

R∃ tR∀

=

I ∃ve and ∀dam move between positions, round by round

I from position v its owner chooses vEw & the game moves to w

I if a player is stuck (has no legal move) looses immediately

I otherwise an in�nite play π: look at the greatest rank r appearing

in�nitely often in π � the owner of r looses

(strategies, winning strategies, etc. de�ned as usual)

Parity Games:

V ,E , rank : V → R

V∃ t V∀

=

V × V

⊆

R∃ tR∀

=

I ∃ve and ∀dam move between positions, round by round

I from position v its owner chooses vEw & the game moves to w

I if a player is stuck (has no legal move) looses immediately

I otherwise an in�nite play π: look at the greatest rank r appearing

in�nitely often in π � the owner of r looses

(strategies, winning strategies, etc. de�ned as usual)

Parity Games:

V ,E , rank : V → R

V∃ t V∀

=

V × V

⊆

R∃ tR∀

=

I ∃ve and ∀dam move between positions, round by round

I from position v its owner chooses vEw & the game moves to w

I if a player is stuck (has no legal move) looses immediately

I otherwise an in�nite play π: look at the greatest rank r appearing

in�nitely often in π � the owner of r looses

(strategies, winning strategies, etc. de�ned as usual)

Parity Games:

V ,E , rank : V → R

V∃ t V∀

=

V × V

⊆

R∃ tR∀

=

I ∃ve and ∀dam move between positions, round by round

I from position v its owner chooses vEw & the game moves to w

I if a player is stuck (has no legal move) looses immediately

I otherwise an in�nite play π: look at the greatest rank r appearing

in�nitely often in π � the owner of r looses

(strategies, winning strategies, etc. de�ned as usual)

Parity Games:

V ,E , rank : V → R

V∃ t V∀

=

V × V

⊆

R∃ tR∀

=

I ∃ve and ∀dam move between positions, round by round

I from position v its owner chooses vEw & the game moves to w

I if a player is stuck (has no legal move) looses immediately

I otherwise an in�nite play π: look at the greatest rank r appearing

in�nitely often in π � the owner of r looses

(strategies, winning strategies, etc. de�ned as usual)

Parity Games:

V ,E , rank : V → R

V∃ t V∀

=

V × V

⊆

R∃ tR∀

=

I ∃ve and ∀dam move between positions, round by round

I from position v its owner chooses vEw & the game moves to w

I if a player is stuck (has no legal move) looses immediately

I otherwise an in�nite play π: look at the greatest rank r appearing

in�nitely often in π � the owner of r looses

(strategies, winning strategies, etc. de�ned as usual)

Parity Games:

V ,E , rank : V → R

V∃ t V∀

=

V × V

⊆

R∃ tR∀

=

I ∃ve and ∀dam move between positions, round by round

I from position v its owner chooses vEw & the game moves to w

I if a player is stuck (has no legal move) looses immediately

I otherwise an in�nite play π: look at the greatest rank r appearing

in�nitely often in π � the owner of r looses

(strategies, winning strategies, etc. de�ned as usual)

Parity Games:

V ,E , rank : V → R

V∃ t V∀

=

V × V

⊆

R∃ tR∀

=

I ∃ve and ∀dam move between positions, round by round

I from position v its owner chooses vEw & the game moves to w

I if a player is stuck (has no legal move) looses immediately

I otherwise an in�nite play π: look at the greatest rank r appearing

in�nitely often in π � the owner of r looses

(strategies, winning strategies, etc. de�ned as usual)

Parity Games:

V ,E , rank : V → R

V∃ t V∀

=

V × V

⊆

R∃ tR∀

=

I ∃ve and ∀dam move between positions, round by round

I from position v its owner chooses vEw & the game moves to w

I if a player is stuck (has no legal move) looses immediately

I otherwise an in�nite play π: look at the greatest rank r appearing

in�nitely often in π � the owner of r looses

(strategies, winning strategies, etc. de�ned as usual)

Game Semantics:

I givenM and ϕ, positions V = M × SubFor(ϕ)

∃ve wins from (m, ϕ) ⇐⇒ m ∈ JϕK

I possible moves E depend on the topmost connective:

I in (m, ψ ∨ ψ′) ∃ve chooses (m, ψ) or (m, ψ′),

I in (m, 〈a〉ψ) ∃ve chooses (n, ψ) with m
a→ n,

I with ∧ and [a] in place of ∨ and 〈a〉: same but ∀dam chooses

I from (m, µx .ψ) and (m, νx .ψ) to (m, ψ)

I plus x unfolds!

Game Semantics:

I givenM and ϕ, positions V = M × SubFor(ϕ)

∃ve wins from (m, ϕ) ⇐⇒ m ∈ JϕK

I possible moves E depend on the topmost connective:

I in (m, ψ ∨ ψ′) ∃ve chooses (m, ψ) or (m, ψ′),

I in (m, 〈a〉ψ) ∃ve chooses (n, ψ) with m
a→ n,

I with ∧ and [a] in place of ∨ and 〈a〉: same but ∀dam chooses

I from (m, µx .ψ) and (m, νx .ψ) to (m, ψ)

I plus x unfolds!

Game Semantics:

I givenM and ϕ, positions V = M × SubFor(ϕ)

∃ve wins from (m, ϕ) ⇐⇒ m ∈ JϕK

I possible moves E depend on the topmost connective:

I in (m, ψ ∨ ψ′) ∃ve chooses (m, ψ) or (m, ψ′),

I in (m, 〈a〉ψ) ∃ve chooses (n, ψ) with m
a→ n,

I with ∧ and [a] in place of ∨ and 〈a〉: same but ∀dam chooses

I from (m, µx .ψ) and (m, νx .ψ) to (m, ψ)

I plus x unfolds!

Game Semantics:

I givenM and ϕ, positions V = M × SubFor(ϕ)

∃ve wins from (m, ϕ) ⇐⇒ m ∈ JϕK

I possible moves E depend on the topmost connective:

I in (m, ψ ∨ ψ′) ∃ve chooses (m, ψ) or (m, ψ′),

I in (m, 〈a〉ψ) ∃ve chooses (n, ψ) with m
a→ n,

I with ∧ and [a] in place of ∨ and 〈a〉: same but ∀dam chooses

I from (m, µx .ψ) and (m, νx .ψ) to (m, ψ)

I plus x unfolds!

Game Semantics:

I givenM and ϕ, positions V = M × SubFor(ϕ)

∃ve wins from (m, ϕ) ⇐⇒ m ∈ JϕK

I possible moves E depend on the topmost connective:

I in (m, ψ ∨ ψ′) ∃ve chooses (m, ψ) or (m, ψ′),

I in (m, 〈a〉ψ) ∃ve chooses (n, ψ) with m
a→ n,

I with ∧ and [a] in place of ∨ and 〈a〉: same but ∀dam chooses

I from (m, µx .ψ) and (m, νx .ψ) to (m, ψ)

I plus x unfolds!

Game Semantics:

I givenM and ϕ, positions V = M × SubFor(ϕ)

∃ve wins from (m, ϕ) ⇐⇒ m ∈ JϕK

I possible moves E depend on the topmost connective:

I in (m, ψ ∨ ψ′) ∃ve chooses (m, ψ) or (m, ψ′),

I in (m, 〈a〉ψ) ∃ve chooses (n, ψ) with m
a→ n,

I with ∧ and [a] in place of ∨ and 〈a〉: same but ∀dam chooses

I from (m, µx .ψ) and (m, νx .ψ) to (m, ψ)

I plus x unfolds!

Game Semantics:

I givenM and ϕ, positions V = M × SubFor(ϕ)

∃ve wins from (m, ϕ) ⇐⇒ m ∈ JϕK

I possible moves E depend on the topmost connective:

I in (m, ψ ∨ ψ′) ∃ve chooses (m, ψ) or (m, ψ′),

I in (m, 〈a〉ψ) ∃ve chooses (n, ψ) with m
a→ n,

I with ∧ and [a] in place of ∨ and 〈a〉: same but ∀dam chooses

I from (m, µx .ψ) and (m, νx .ψ) to (m, ψ)

I plus x unfolds!

Game Semantics:

I givenM and ϕ, positions V = M × SubFor(ϕ)

∃ve wins from (m, ϕ) ⇐⇒ m ∈ JϕK

I possible moves E depend on the topmost connective:

I in (m, ψ ∨ ψ′) ∃ve chooses (m, ψ) or (m, ψ′),

I in (m, 〈a〉ψ) ∃ve chooses (n, ψ) with m
a→ n,

I with ∧ and [a] in place of ∨ and 〈a〉: same but ∀dam chooses

I from (m, µx .ψ) and (m, νx .ψ) to (m, ψ)

I plus x unfolds!

Game Semantics:

I givenM and ϕ, positions V = M × SubFor(ϕ)

∃ve wins from (m, ϕ) ⇐⇒ m ∈ JϕK

I possible moves E depend on the topmost connective:

I in (m, ψ ∨ ψ′) ∃ve chooses (m, ψ) or (m, ψ′),

I in (m, 〈a〉ψ) ∃ve chooses (n, ψ) with m
a→ n,

I with ∧ and [a] in place of ∨ and 〈a〉: same but ∀dam chooses

I from (m, µx .ψ) and (m, νx .ψ) to (m, ψ)

I plus x unfolds!

I operators µx . and νx . bind variable x

I from (m, x) with x bound in µx .ψ or νx .ψ the game

moves to (m, ψ)
ϕ

µx .ψ

ψ

x

unfolding!

move from

(m, x) to (m, ψ)

I unfolding may lead to in�nite plays:

I ∃ve looses if the outermost operator unfolded in�nitely often is µ

I rank compatible with

subformula order

I rank(m, ψ) for immediate

subformula ψ of µx .ψ

belongs to ∃ve
I symmetrically with

ν and ∀dam

I operators µx . and νx . bind variable x

I from (m, x) with x bound in µx .ψ or νx .ψ the game

moves to (m, ψ)

ϕ

µx .ψ

ψ

x

unfolding!

move from

(m, x) to (m, ψ)

I unfolding may lead to in�nite plays:

I ∃ve looses if the outermost operator unfolded in�nitely often is µ

I rank compatible with

subformula order

I rank(m, ψ) for immediate

subformula ψ of µx .ψ

belongs to ∃ve
I symmetrically with

ν and ∀dam

I operators µx . and νx . bind variable x

I from (m, x) with x bound in µx .ψ or νx .ψ the game

moves to (m, ψ)
ϕ

µx .ψ

ψ

x

unfolding!

move from

(m, x) to (m, ψ)

I unfolding may lead to in�nite plays:

I ∃ve looses if the outermost operator unfolded in�nitely often is µ

I rank compatible with

subformula order

I rank(m, ψ) for immediate

subformula ψ of µx .ψ

belongs to ∃ve
I symmetrically with

ν and ∀dam

I operators µx . and νx . bind variable x

I from (m, x) with x bound in µx .ψ or νx .ψ the game

moves to (m, ψ)
ϕ

µx .ψ

ψ

x

unfolding!

move from

(m, x) to (m, ψ)

I unfolding may lead to in�nite plays:

I ∃ve looses if the outermost operator unfolded in�nitely often is µ

I rank compatible with

subformula order

I rank(m, ψ) for immediate

subformula ψ of µx .ψ

belongs to ∃ve
I symmetrically with

ν and ∀dam

I operators µx . and νx . bind variable x

I from (m, x) with x bound in µx .ψ or νx .ψ the game

moves to (m, ψ)
ϕ

µx .ψ

ψ

x

unfolding!

move from

(m, x) to (m, ψ)

I unfolding may lead to in�nite plays:

I ∃ve looses if the outermost operator unfolded in�nitely often is µ

I rank compatible with

subformula order

I rank(m, ψ) for immediate

subformula ψ of µx .ψ

belongs to ∃ve
I symmetrically with

ν and ∀dam

I operators µx . and νx . bind variable x

I from (m, x) with x bound in µx .ψ or νx .ψ the game

moves to (m, ψ)
ϕ

µx .ψ

ψ

x

unfolding!

move from

(m, x) to (m, ψ)

I unfolding may lead to in�nite plays:

I ∃ve looses if the outermost operator unfolded in�nitely often is µ

I rank compatible with

subformula order

I rank(m, ψ) for immediate

subformula ψ of µx .ψ

belongs to ∃ve
I symmetrically with

ν and ∀dam

I operators µx . and νx . bind variable x

I from (m, x) with x bound in µx .ψ or νx .ψ the game

moves to (m, ψ)
ϕ

µx .ψ

ψ

x

unfolding!

move from

(m, x) to (m, ψ)

I unfolding may lead to in�nite plays:

I ∃ve looses if the outermost operator unfolded in�nitely often is µ

I rank compatible with

subformula order

I rank(m, ψ) for immediate

subformula ψ of µx .ψ

belongs to ∃ve
I symmetrically with

ν and ∀dam

I operators µx . and νx . bind variable x

I from (m, x) with x bound in µx .ψ or νx .ψ the game

moves to (m, ψ)
ϕ

µx .ψ

ψ

x

unfolding!

move from

(m, x) to (m, ψ)

I unfolding may lead to in�nite plays:

I ∃ve looses if the outermost operator unfolded in�nitely often is µ

I rank compatible with

subformula order

I rank(m, ψ) for immediate

subformula ψ of µx .ψ

belongs to ∃ve
I symmetrically with

ν and ∀dam

I operators µx . and νx . bind variable x

I from (m, x) with x bound in µx .ψ or νx .ψ the game

moves to (m, ψ)
ϕ

µx .ψ

ψ

x

unfolding!

move from

(m, x) to (m, ψ)

I unfolding may lead to in�nite plays:

I ∃ve looses if the outermost operator unfolded in�nitely often is µ

I rank compatible with

subformula order

I rank(m, ψ) for immediate

subformula ψ of µx .ψ

belongs to ∃ve

I symmetrically with

ν and ∀dam

I operators µx . and νx . bind variable x

I from (m, x) with x bound in µx .ψ or νx .ψ the game

moves to (m, ψ)
ϕ

µx .ψ

ψ

x

unfolding!

move from

(m, x) to (m, ψ)

I unfolding may lead to in�nite plays:

I ∃ve looses if the outermost operator unfolded in�nitely often is µ

I rank compatible with

subformula order

I rank(m, ψ) for immediate

subformula ψ of µx .ψ

belongs to ∃ve
I symmetrically with

ν and ∀dam

Example: νx .3x

νx .3x

3x

x

∃ve chooses successor

in the model

deterministic &

point not changed

I ∃ve wins all in�nie plays

I initially a deterministic move from (m, νx .3x) to (m,3x); then

I (m,3x)E (m′, x)E (m′,3x)E (m′′, x)..., every second deterministic

and m→ m′ → m′′... chosen by ∃ve

Example: νx .3x

νx .3x

3x

x

∃ve chooses successor

in the model

deterministic &

point not changed

I ∃ve wins all in�nie plays

I initially a deterministic move from (m, νx .3x) to (m,3x); then

I (m,3x)E (m′, x)E (m′,3x)E (m′′, x)..., every second deterministic

and m→ m′ → m′′... chosen by ∃ve

Example: νx .3x

νx .3x

3x

x

∃ve chooses successor

in the model

deterministic &

point not changed

I ∃ve wins all in�nie plays

I initially a deterministic move from (m, νx .3x) to (m,3x); then

I (m,3x)E (m′, x)E (m′,3x)E (m′′, x)..., every second deterministic

and m→ m′ → m′′... chosen by ∃ve

Example: νx .3x

νx .3x

3x

x

∃ve chooses successor

in the model

deterministic &

point not changed

I ∃ve wins all in�nie plays

I initially a deterministic move from (m, νx .3x) to (m,3x); then

I (m,3x)E (m′, x)E (m′,3x)E (m′′, x)..., every second deterministic

and m→ m′ → m′′... chosen by ∃ve

Example: νx .3x

νx .3x

3x

x

∃ve chooses successor

in the model

deterministic &

point not changed

I ∃ve wins all in�nie plays

I initially a deterministic move from (m, νx .3x) to (m,3x); then

I (m,3x)E (m′, x)E (m′,3x)E (m′′, x)..., every second deterministic

and m→ m′ → m′′... chosen by ∃ve

Example: νx .3x

νx .3x

3x

x

∃ve chooses successor

in the model

deterministic &

point not changed

I ∃ve wins all in�nie plays

I initially a deterministic move from (m, νx .3x) to (m,3x); then

I (m,3x)E (m′, x)E (m′,3x)E (m′′, x)..., every second deterministic

and m→ m′ → m′′... chosen by ∃ve

Example: νx .3x

νx .3x

3x

x

∃ve chooses successor

in the model

deterministic &

point not changed

I ∃ve wins all in�nie plays

I initially a deterministic move from (m, νx .3x) to (m,3x); then

I (m,3x)E (m′, x)E (m′,3x)E (m′′, x)..., every second deterministic

and m→ m′ → m′′... chosen by ∃ve

As desired:

∃ve wins from (m, ϕ) ⇐⇒ m ∈ JϕK

works for everyM and ϕ!

As desired:

∃ve wins from (m, ϕ) ⇐⇒ m ∈ JϕK

works for everyM and ϕ!

As desired:

∃ve wins from (m, ϕ) ⇐⇒ m ∈ JϕK

works for everyM and ϕ!

Parity Automata:

Q, qI , rank : Q → R

Q∃ t Q∀

=

Q

∈

δ : Q → P(Q) ∪ (Act× Q)

and a transition function

ε-transitions modal transitions

the semantics of the automton A de�ned by a game

Parity Automata:

Q, qI , rank : Q → R

Q∃ t Q∀

=

Q

∈

δ : Q → P(Q) ∪ (Act× Q)

and a transition function

ε-transitions modal transitions

the semantics of the automton A de�ned by a game

Parity Automata:

Q, qI , rank : Q → R

Q∃ t Q∀

=

Q

∈

δ : Q → P(Q) ∪ (Act× Q)

and a transition function

ε-transitions modal transitions

the semantics of the automton A de�ned by a game

Parity Automata:

Q, qI , rank : Q → R

Q∃ t Q∀

=

Q

∈

δ : Q → P(Q) ∪ (Act× Q)

and a transition function

ε-transitions modal transitions

the semantics of the automton A de�ned by a game

Parity Automata:

Q, qI , rank : Q → R

Q∃ t Q∀

=

Q

∈

δ : Q → P(Q) ∪ (Act× Q)

and a transition function

ε-transitions modal transitions

the semantics of the automton A de�ned by a game

Parity Automata:

Q, qI , rank : Q → R

Q∃ t Q∀

=

Q

∈

δ : Q → P(Q) ∪ (Act× Q)

and a transition function

ε-transitions

modal transitions

the semantics of the automton A de�ned by a game

Parity Automata:

Q, qI , rank : Q → R

Q∃ t Q∀

=

Q

∈

δ : Q → P(Q) ∪ (Act× Q)

and a transition function

ε-transitions modal transitions

the semantics of the automton A de�ned by a game

Parity Automata:

Q, qI , rank : Q → R

Q∃ t Q∀

=

Q

∈

δ : Q → P(Q) ∪ (Act× Q)

and a transition function

ε-transitions modal transitions

the semantics of the automton A de�ned by a game

Semantic Game for automaton A and modelM:

I positions V = M × Q

I from (m, q) moves to:

I (m, p) with p ∈ δ(q) if δ(q) ⊆ Q,

I (n, p) with m
a→ n if δ(q) = (a, p).

I ownership and ranks inherited from Q

I V∃ = M × Q∃, V∀ = M × Q∀

I rank(m, q) = rank(q)

language of A:

A accepts m ∈ M = ∃ve wins the game from (m, qI)

Semantic Game for automaton A and modelM:

I positions V = M × Q

I from (m, q) moves to:

I (m, p) with p ∈ δ(q) if δ(q) ⊆ Q,

I (n, p) with m
a→ n if δ(q) = (a, p).

I ownership and ranks inherited from Q

I V∃ = M × Q∃, V∀ = M × Q∀

I rank(m, q) = rank(q)

language of A:

A accepts m ∈ M = ∃ve wins the game from (m, qI)

Semantic Game for automaton A and modelM:

I positions V = M × Q

I from (m, q) moves to:

I (m, p) with p ∈ δ(q) if δ(q) ⊆ Q,

I (n, p) with m
a→ n if δ(q) = (a, p).

I ownership and ranks inherited from Q

I V∃ = M × Q∃, V∀ = M × Q∀

I rank(m, q) = rank(q)

language of A:

A accepts m ∈ M = ∃ve wins the game from (m, qI)

Semantic Game for automaton A and modelM:

I positions V = M × Q

I from (m, q) moves to:

I (m, p) with p ∈ δ(q) if δ(q) ⊆ Q,

I (n, p) with m
a→ n if δ(q) = (a, p).

I ownership and ranks inherited from Q

I V∃ = M × Q∃, V∀ = M × Q∀

I rank(m, q) = rank(q)

language of A:

A accepts m ∈ M = ∃ve wins the game from (m, qI)

Semantic Game for automaton A and modelM:

I positions V = M × Q

I from (m, q) moves to:

I (m, p) with p ∈ δ(q) if δ(q) ⊆ Q,

I (n, p) with m
a→ n if δ(q) = (a, p).

I ownership and ranks inherited from Q

I V∃ = M × Q∃, V∀ = M × Q∀

I rank(m, q) = rank(q)

language of A:

A accepts m ∈ M = ∃ve wins the game from (m, qI)

Semantic Game for automaton A and modelM:

I positions V = M × Q

I from (m, q) moves to:

I (m, p) with p ∈ δ(q) if δ(q) ⊆ Q,

I (n, p) with m
a→ n if δ(q) = (a, p).

I ownership and ranks inherited from Q

I V∃ = M × Q∃, V∀ = M × Q∀

I rank(m, q) = rank(q)

language of A:

A accepts m ∈ M = ∃ve wins the game from (m, qI)

Semantic Game for automaton A and modelM:

I positions V = M × Q

I from (m, q) moves to:

I (m, p) with p ∈ δ(q) if δ(q) ⊆ Q,

I (n, p) with m
a→ n if δ(q) = (a, p).

I ownership and ranks inherited from Q

I V∃ = M × Q∃, V∀ = M × Q∀

I rank(m, q) = rank(q)

language of A:

A accepts m ∈ M = ∃ve wins the game from (m, qI)

Semantic Game for automaton A and modelM:

I positions V = M × Q

I from (m, q) moves to:

I (m, p) with p ∈ δ(q) if δ(q) ⊆ Q,

I (n, p) with m
a→ n if δ(q) = (a, p).

I ownership and ranks inherited from Q

I V∃ = M × Q∃, V∀ = M × Q∀

I rank(m, q) = rank(q)

language of A:

A accepts m ∈ M = ∃ve wins the game from (m, qI)

Semantic Game for automaton A and modelM:

I positions V = M × Q

I from (m, q) moves to:

I (m, p) with p ∈ δ(q) if δ(q) ⊆ Q,

I (n, p) with m
a→ n if δ(q) = (a, p).

I ownership and ranks inherited from Q

I V∃ = M × Q∃, V∀ = M × Q∀

I rank(m, q) = rank(q)

language of A:

A accepts m ∈ M = ∃ve wins the game from (m, qI)

µ-ML formulae parity automata

game semantics
Q = SubFor(ϕ)

µ-ML describes arbitrary automata

=

µ-ML formulae parity automata

game semantics

Q = SubFor(ϕ)

µ-ML describes arbitrary automata

=

µ-ML formulae parity automata

game semantics
Q = SubFor(ϕ)

µ-ML describes arbitrary automata

=

µ-ML formulae parity automata

game semantics
Q = SubFor(ϕ)

µ-ML describes arbitrary automata

=

µ-ML formulae parity automata

game semantics
Q = SubFor(ϕ)

µ-ML describes arbitrary automata

=

Limitations:

I µ-ML has the �nite model property: if a formula ϕ is true in a point m

of some modelM, then it is true in some point n of a �nite model N
I in general this is a good thing, but limits expressive power

I for instance, (un)boundedness properties such as:

�there exist arbitrarily long paths originating in a given point�

cannot be de�ned

I well-foundedness de�nable with ϕWF, so if there was ϕU de�ning the above property

then ϕWF ∧ ϕU would be satis�able but not in a �nite model (König's Lemma)

we want to extend µ-ML!!!

Limitations:
I µ-ML has the �nite model property: if a formula ϕ is true in a point m

of some modelM, then it is true in some point n of a �nite model N

I in general this is a good thing, but limits expressive power

I for instance, (un)boundedness properties such as:

�there exist arbitrarily long paths originating in a given point�

cannot be de�ned

I well-foundedness de�nable with ϕWF, so if there was ϕU de�ning the above property

then ϕWF ∧ ϕU would be satis�able but not in a �nite model (König's Lemma)

we want to extend µ-ML!!!

Limitations:
I µ-ML has the �nite model property: if a formula ϕ is true in a point m

of some modelM, then it is true in some point n of a �nite model N
I in general this is a good thing, but limits expressive power

I for instance, (un)boundedness properties such as:

�there exist arbitrarily long paths originating in a given point�

cannot be de�ned

I well-foundedness de�nable with ϕWF, so if there was ϕU de�ning the above property

then ϕWF ∧ ϕU would be satis�able but not in a �nite model (König's Lemma)

we want to extend µ-ML!!!

Limitations:
I µ-ML has the �nite model property: if a formula ϕ is true in a point m

of some modelM, then it is true in some point n of a �nite model N
I in general this is a good thing, but limits expressive power

I for instance, (un)boundedness properties such as:

�there exist arbitrarily long paths originating in a given point�

cannot be de�ned

I well-foundedness de�nable with ϕWF, so if there was ϕU de�ning the above property

then ϕWF ∧ ϕU would be satis�able but not in a �nite model (König's Lemma)

we want to extend µ-ML!!!

Limitations:
I µ-ML has the �nite model property: if a formula ϕ is true in a point m

of some modelM, then it is true in some point n of a �nite model N
I in general this is a good thing, but limits expressive power

I for instance, (un)boundedness properties such as:

�there exist arbitrarily long paths originating in a given point�

cannot be de�ned

I well-foundedness de�nable with ϕWF, so if there was ϕU de�ning the above property

then ϕWF ∧ ϕU would be satis�able but not in a �nite model (König's Lemma)

we want to extend µ-ML!!!

Limitations:
I µ-ML has the �nite model property: if a formula ϕ is true in a point m

of some modelM, then it is true in some point n of a �nite model N
I in general this is a good thing, but limits expressive power

I for instance, (un)boundedness properties such as:

�there exist arbitrarily long paths originating in a given point�

cannot be de�ned

I well-foundedness de�nable with ϕWF, so if there was ϕU de�ning the above property

then ϕWF ∧ ϕU would be satis�able but not in a �nite model (König's Lemma)

we want to extend µ-ML!!!

I we compute �xpoints by (trans�nite) iteration of F :

· · ·

·
·
·

F 0
ν = M F 1

ν = F (F 0
ν)

· · ·

·
·
·

F 1
ν = F (F 0

ν) =�∃ a child�

· · ·

· · ·

·
·
·

F ων = �arbitrarily long paths�

· · ·

·
·
·

F ω+1ν = F ω+2ν = GFP.F

=

Jνx .3xK

add countdown operator νωx .3x to the syntax!

=

Jνωx .3xK

I we compute �xpoints by (trans�nite) iteration of F :

· · ·

·
·
·

F 0
ν = M

F 1
ν = F (F 0

ν)

· · ·

·
·
·

F 1
ν = F (F 0

ν) =�∃ a child�

· · ·

· · ·

·
·
·

F ων = �arbitrarily long paths�

· · ·

·
·
·

F ω+1ν = F ω+2ν = GFP.F

=

Jνx .3xK

add countdown operator νωx .3x to the syntax!

=

Jνωx .3xK

I we compute �xpoints by (trans�nite) iteration of F :

· · ·

·
·
·

F 0
ν = M F 1

ν = F (F 0
ν)

· · ·

·
·
·

F 1
ν = F (F 0

ν) =�∃ a child�

· · ·

· · ·

·
·
·

F ων = �arbitrarily long paths�

· · ·

·
·
·

F ω+1ν = F ω+2ν = GFP.F

=

Jνx .3xK

add countdown operator νωx .3x to the syntax!

=

Jνωx .3xK

I we compute �xpoints by (trans�nite) iteration of F :

· · ·

·
·
·

F 0
ν = M

F 1
ν = F (F 0

ν)

· · ·

·
·
·

F 1
ν = F (F 0

ν) =�∃ a child�

· · ·

· · ·

·
·
·

F ων = �arbitrarily long paths�

· · ·

·
·
·

F ω+1ν = F ω+2ν = GFP.F

=

Jνx .3xK

add countdown operator νωx .3x to the syntax!

=

Jνωx .3xK

I we compute �xpoints by (trans�nite) iteration of F :

· · ·

·
·
·

F 0
ν = M

F 1
ν = F (F 0

ν)

· · ·

·
·
·

F 1
ν = F (F 0

ν) =�∃ a child�

· · ·

· · ·

·
·
·

F ων = �arbitrarily long paths�

· · ·

·
·
·

F ω+1ν = F ω+2ν = GFP.F

=

Jνx .3xK

add countdown operator νωx .3x to the syntax!

=

Jνωx .3xK

I we compute �xpoints by (trans�nite) iteration of F :

· · ·

·
·
·

F 0
ν = M

F 1
ν = F (F 0

ν)

· · ·

·
·
·

F 1
ν = F (F 0

ν) =�∃ a child�

· · ·

· · ·

·
·
·

F ων = �arbitrarily long paths�

· · ·

·
·
·

F ω+1ν = F ω+2ν = GFP.F

=

Jνx .3xK

add countdown operator νωx .3x to the syntax!

=

Jνωx .3xK

I we compute �xpoints by (trans�nite) iteration of F :

· · ·

·
·
·

F 0
ν = M

F 1
ν = F (F 0

ν)

· · ·

·
·
·

F 1
ν = F (F 0

ν) =�∃ a child�

· · ·

· · ·

·
·
·

F ων = �arbitrarily long paths�

· · ·

·
·
·

F ω+1ν = F ω+2ν = GFP.F

=

Jνx .3xK

add countdown operator νωx .3x to the syntax!

=

Jνωx .3xK

I we compute �xpoints by (trans�nite) iteration of F :

· · ·

·
·
·

F 0
ν = M

F 1
ν = F (F 0

ν)

· · ·

·
·
·

F 1
ν = F (F 0

ν) =�∃ a child�

· · ·

· · ·

·
·
·

F ων = �arbitrarily long paths�

· · ·

·
·
·

F ω+1ν = F ω+2ν = GFP.F

=

Jνx .3xK

add countdown operator νωx .3x to the syntax!

=

Jνωx .3xK

I we compute �xpoints by (trans�nite) iteration of F :

· · ·

·
·
·

F 0
ν = M

F 1
ν = F (F 0

ν)

· · ·

·
·
·

F 1
ν = F (F 0

ν) =�∃ a child�

· · ·

· · ·

·
·
·

F ων = �arbitrarily long paths�

· · ·

·
·
·

F ω+1ν = F ω+2ν = GFP.F

=

Jνx .3xK

add countdown operator νωx .3x to the syntax!

=

Jνωx .3xK

µ-calculus + countdown operators µω, νω

=
countdown µ-calculus

Syntax:

extended with µω and νω

Semantics:

Jµωx .ϕKval = F ωµ and Jνωx .ϕKval = F ων

µ-calculus + countdown operators µω, νω

=
countdown µ-calculus

Syntax:

extended with µω and νω

Semantics:

Jµωx .ϕKval = F ωµ and Jνωx .ϕKval = F ων

µ-calculus + countdown operators µω, νω

=
countdown µ-calculus

Syntax:

extended with µω and νω

Semantics:

Jµωx .ϕKval = F ωµ and Jνωx .ϕKval = F ων

µ-calculus + countdown operators µω, νω

=
countdown µ-calculus

Syntax:

extended with µω and νω

Semantics:

Jµωx .ϕKval = F ωµ and Jνωx .ϕKval = F ων

µ-calculus∼ parity games

equivalent to alternating parity automata

wining regions de�nable in logic

countdown

equivalent to alternating ����XXXXparity automata

countdown!

µ-calculus∼ ���
�XXXXparity games

countdown!

µ-calculus∼ parity games

equivalent to alternating parity automata

wining regions de�nable in logic

countdown

equivalent to alternating ����XXXXparity automata

countdown!

µ-calculus∼ ���
�XXXXparity games

countdown!

µ-calculus∼ parity games

equivalent to alternating parity automata

wining regions de�nable in logic

countdown

equivalent to alternating ����XXXXparity automata

countdown!

µ-calculus∼ ���
�XXXXparity games

countdown!

µ-calculus∼ parity games

equivalent to alternating parity automata

wining regions de�nable in logic

countdown

equivalent to alternating ����XXXXparity automata

countdown!

µ-calculus∼ ���
�XXXXparity games

countdown!

µ-calculus∼ parity games

equivalent to alternating parity automata

wining regions de�nable in logic

countdown

equivalent to alternating ����XXXXparity automata

countdown!

µ-calculus∼ ���
�XXXXparity games

countdown!

Game for νx .3x :

I ∃ve picks a path m1 → m2 → ... point by point

I one rank r , belonging to ∀dam (meaning: he looses all in�nite plays)

· · ·

×

∃ve wins G(νx .3x)

⇐⇒
∃ in�nite path

Game for νωx .3x :

I same as for νx .3x plus ordinal-valued counter C initialized to ω

I In each round: (i) ∀dam decrements the counter (picks smaller value);

(ii) ∃ve picks an edge m→ m′ to a new point m′.

ω332

21

10
0

X

∃ve wins G(νωx .3x)

⇐⇒
∃ arbitrarily long paths

Game for νx .3x :

I ∃ve picks a path m1 → m2 → ... point by point

I one rank r , belonging to ∀dam (meaning: he looses all in�nite plays)

· · ·

×

∃ve wins G(νx .3x)

⇐⇒
∃ in�nite path

Game for νωx .3x :

I same as for νx .3x plus ordinal-valued counter C initialized to ω

I In each round: (i) ∀dam decrements the counter (picks smaller value);

(ii) ∃ve picks an edge m→ m′ to a new point m′.

ω332

21

10
0

X

∃ve wins G(νωx .3x)

⇐⇒
∃ arbitrarily long paths

Game for νx .3x :

I ∃ve picks a path m1 → m2 → ... point by point

I one rank r , belonging to ∀dam (meaning: he looses all in�nite plays)

· · ·

×

∃ve wins G(νx .3x)

⇐⇒
∃ in�nite path

Game for νωx .3x :

I same as for νx .3x plus ordinal-valued counter C initialized to ω

I In each round: (i) ∀dam decrements the counter (picks smaller value);

(ii) ∃ve picks an edge m→ m′ to a new point m′.

ω332

21

10
0

X

∃ve wins G(νωx .3x)

⇐⇒
∃ arbitrarily long paths

Game for νx .3x :

I ∃ve picks a path m1 → m2 → ... point by point

I one rank r , belonging to ∀dam (meaning: he looses all in�nite plays)

· · ·

×

∃ve wins G(νx .3x)

⇐⇒
∃ in�nite path

Game for νωx .3x :

I same as for νx .3x plus ordinal-valued counter C initialized to ω

I In each round: (i) ∀dam decrements the counter (picks smaller value);

(ii) ∃ve picks an edge m→ m′ to a new point m′.

ω332

21

10
0

X

∃ve wins G(νωx .3x)

⇐⇒
∃ arbitrarily long paths

Game for νx .3x :

I ∃ve picks a path m1 → m2 → ... point by point

I one rank r , belonging to ∀dam (meaning: he looses all in�nite plays)

· · ·

×

∃ve wins G(νx .3x)

⇐⇒
∃ in�nite path

Game for νωx .3x :

I same as for νx .3x plus ordinal-valued counter C initialized to ω

I In each round: (i) ∀dam decrements the counter (picks smaller value);

(ii) ∃ve picks an edge m→ m′ to a new point m′.

ω332

21

10
0

X

∃ve wins G(νωx .3x)

⇐⇒
∃ arbitrarily long paths

Game for νx .3x :

I ∃ve picks a path m1 → m2 → ... point by point

I one rank r , belonging to ∀dam (meaning: he looses all in�nite plays)

· · ·

×

∃ve wins G(νx .3x)

⇐⇒
∃ in�nite path

Game for νωx .3x :

I same as for νx .3x plus ordinal-valued counter C initialized to ω

I In each round: (i) ∀dam decrements the counter (picks smaller value);

(ii) ∃ve picks an edge m→ m′ to a new point m′.

ω332

21

10
0

X

∃ve wins G(νωx .3x)

⇐⇒
∃ arbitrarily long paths

Game for νx .3x :

I ∃ve picks a path m1 → m2 → ... point by point

I one rank r , belonging to ∀dam (meaning: he looses all in�nite plays)

· · ·

×

∃ve wins G(νx .3x)

⇐⇒
∃ in�nite path

Game for νωx .3x :

I same as for νx .3x plus ordinal-valued counter C initialized to ω

I In each round: (i) ∀dam decrements the counter (picks smaller value);

(ii) ∃ve picks an edge m→ m′ to a new point m′.

ω332

21

10
0

X

∃ve wins G(νωx .3x)

⇐⇒
∃ arbitrarily long paths

Game for νx .3x :

I ∃ve picks a path m1 → m2 → ... point by point

I one rank r , belonging to ∀dam (meaning: he looses all in�nite plays)

· · ·

×

∃ve wins G(νx .3x)

⇐⇒
∃ in�nite path

Game for νωx .3x :

I same as for νx .3x plus ordinal-valued counter C initialized to ω

I In each round: (i) ∀dam decrements the counter (picks smaller value);

(ii) ∃ve picks an edge m→ m′ to a new point m′.

ω332

21

10
0

X

∃ve wins G(νωx .3x)

⇐⇒
∃ arbitrarily long paths

Game for νx .3x :

I ∃ve picks a path m1 → m2 → ... point by point

I one rank r , belonging to ∀dam (meaning: he looses all in�nite plays)

· · ·

×

∃ve wins G(νx .3x)

⇐⇒
∃ in�nite path

Game for νωx .3x :

I same as for νx .3x plus ordinal-valued counter C initialized to ω

I In each round: (i) ∀dam decrements the counter (picks smaller value);

(ii) ∃ve picks an edge m→ m′ to a new point m′.

ω332

21

10
0

X

∃ve wins G(νωx .3x)

⇐⇒
∃ arbitrarily long paths

Game for νx .3x :

I ∃ve picks a path m1 → m2 → ... point by point

I one rank r , belonging to ∀dam (meaning: he looses all in�nite plays)

· · ·

×

∃ve wins G(νx .3x)

⇐⇒
∃ in�nite path

Game for νωx .3x :

I same as for νx .3x plus ordinal-valued counter C initialized to ω

I In each round: (i) ∀dam decrements the counter (picks smaller value);

(ii) ∃ve picks an edge m→ m′ to a new point m′.

ω332

21

10
0

X

∃ve wins G(νωx .3x)

⇐⇒
∃ arbitrarily long paths

Game for νx .3x :

I ∃ve picks a path m1 → m2 → ... point by point

I one rank r , belonging to ∀dam (meaning: he looses all in�nite plays)

· · ·

×

∃ve wins G(νx .3x)

⇐⇒
∃ in�nite path

Game for νωx .3x :

I same as for νx .3x plus ordinal-valued counter C initialized to ω

I In each round: (i) ∀dam decrements the counter (picks smaller value);

(ii) ∃ve picks an edge m→ m′ to a new point m′.

ω332

21

10
0

X

∃ve wins G(νωx .3x)

⇐⇒
∃ arbitrarily long paths

Game for νx .3x :

I ∃ve picks a path m1 → m2 → ... point by point

I one rank r , belonging to ∀dam (meaning: he looses all in�nite plays)

· · ·

×

∃ve wins G(νx .3x)

⇐⇒
∃ in�nite path

Game for νωx .3x :

I same as for νx .3x plus ordinal-valued counter C initialized to ω

I In each round: (i) ∀dam decrements the counter (picks smaller value);

(ii) ∃ve picks an edge m→ m′ to a new point m′.

ω332

21

10
0

X

∃ve wins G(νωx .3x)

⇐⇒
∃ arbitrarily long paths

Game for νx .3x :

I ∃ve picks a path m1 → m2 → ... point by point

I one rank r , belonging to ∀dam (meaning: he looses all in�nite plays)

· · ·

×

∃ve wins G(νx .3x)

⇐⇒
∃ in�nite path

Game for νωx .3x :

I same as for νx .3x plus ordinal-valued counter C initialized to ω

I In each round: (i) ∀dam decrements the counter (picks smaller value);

(ii) ∃ve picks an edge m→ m′ to a new point m′.

ω332

21

10
0

X

∃ve wins G(νωx .3x)

⇐⇒
∃ arbitrarily long paths

Game for νx .3x :

I ∃ve picks a path m1 → m2 → ... point by point

I one rank r , belonging to ∀dam (meaning: he looses all in�nite plays)

· · ·

×

∃ve wins G(νx .3x)

⇐⇒
∃ in�nite path

Game for νωx .3x :

I same as for νx .3x plus ordinal-valued counter C initialized to ω

I In each round: (i) ∀dam decrements the counter (picks smaller value);

(ii) ∃ve picks an edge m→ m′ to a new point m′.

ω

332

21

10
0

X

∃ve wins G(νωx .3x)

⇐⇒
∃ arbitrarily long paths

Game for νx .3x :

I ∃ve picks a path m1 → m2 → ... point by point

I one rank r , belonging to ∀dam (meaning: he looses all in�nite plays)

· · ·

×

∃ve wins G(νx .3x)

⇐⇒
∃ in�nite path

Game for νωx .3x :

I same as for νx .3x plus ordinal-valued counter C initialized to ω

I In each round: (i) ∀dam decrements the counter (picks smaller value);

(ii) ∃ve picks an edge m→ m′ to a new point m′.

ω

3

32

21

10
0

X

∃ve wins G(νωx .3x)

⇐⇒
∃ arbitrarily long paths

Game for νx .3x :

I ∃ve picks a path m1 → m2 → ... point by point

I one rank r , belonging to ∀dam (meaning: he looses all in�nite plays)

· · ·

×

∃ve wins G(νx .3x)

⇐⇒
∃ in�nite path

Game for νωx .3x :

I same as for νx .3x plus ordinal-valued counter C initialized to ω

I In each round: (i) ∀dam decrements the counter (picks smaller value);

(ii) ∃ve picks an edge m→ m′ to a new point m′.

ω3

3

2

21

10
0

X

∃ve wins G(νωx .3x)

⇐⇒
∃ arbitrarily long paths

Game for νx .3x :

I ∃ve picks a path m1 → m2 → ... point by point

I one rank r , belonging to ∀dam (meaning: he looses all in�nite plays)

· · ·

×

∃ve wins G(νx .3x)

⇐⇒
∃ in�nite path

Game for νωx .3x :

I same as for νx .3x plus ordinal-valued counter C initialized to ω

I In each round: (i) ∀dam decrements the counter (picks smaller value);

(ii) ∃ve picks an edge m→ m′ to a new point m′.

ω33

2

21

10
0

X

∃ve wins G(νωx .3x)

⇐⇒
∃ arbitrarily long paths

Game for νx .3x :

I ∃ve picks a path m1 → m2 → ... point by point

I one rank r , belonging to ∀dam (meaning: he looses all in�nite plays)

· · ·

×

∃ve wins G(νx .3x)

⇐⇒
∃ in�nite path

Game for νωx .3x :

I same as for νx .3x plus ordinal-valued counter C initialized to ω

I In each round: (i) ∀dam decrements the counter (picks smaller value);

(ii) ∃ve picks an edge m→ m′ to a new point m′.

ω332

2

1

10
0

X

∃ve wins G(νωx .3x)

⇐⇒
∃ arbitrarily long paths

Game for νx .3x :

I ∃ve picks a path m1 → m2 → ... point by point

I one rank r , belonging to ∀dam (meaning: he looses all in�nite plays)

· · ·

×

∃ve wins G(νx .3x)

⇐⇒
∃ in�nite path

Game for νωx .3x :

I same as for νx .3x plus ordinal-valued counter C initialized to ω

I In each round: (i) ∀dam decrements the counter (picks smaller value);

(ii) ∃ve picks an edge m→ m′ to a new point m′.

ω332

2

1

10
0

X

∃ve wins G(νωx .3x)

⇐⇒
∃ arbitrarily long paths

Game for νx .3x :

I ∃ve picks a path m1 → m2 → ... point by point

I one rank r , belonging to ∀dam (meaning: he looses all in�nite plays)

· · ·

×

∃ve wins G(νx .3x)

⇐⇒
∃ in�nite path

Game for νωx .3x :

I same as for νx .3x plus ordinal-valued counter C initialized to ω

I In each round: (i) ∀dam decrements the counter (picks smaller value);

(ii) ∃ve picks an edge m→ m′ to a new point m′.

ω332

21

1

0
0

X

∃ve wins G(νωx .3x)

⇐⇒
∃ arbitrarily long paths

Game for νx .3x :

I ∃ve picks a path m1 → m2 → ... point by point

I one rank r , belonging to ∀dam (meaning: he looses all in�nite plays)

· · ·

×

∃ve wins G(νx .3x)

⇐⇒
∃ in�nite path

Game for νωx .3x :

I same as for νx .3x plus ordinal-valued counter C initialized to ω

I In each round: (i) ∀dam decrements the counter (picks smaller value);

(ii) ∃ve picks an edge m→ m′ to a new point m′.

ω332

21

1

0

0

X

∃ve wins G(νωx .3x)

⇐⇒
∃ arbitrarily long paths

Game for νx .3x :

I ∃ve picks a path m1 → m2 → ... point by point

I one rank r , belonging to ∀dam (meaning: he looses all in�nite plays)

· · ·

×

∃ve wins G(νx .3x)

⇐⇒
∃ in�nite path

Game for νωx .3x :

I same as for νx .3x plus ordinal-valued counter C initialized to ω

I In each round: (i) ∀dam decrements the counter (picks smaller value);

(ii) ∃ve picks an edge m→ m′ to a new point m′.

ω332

21

10

0

X

∃ve wins G(νωx .3x)

⇐⇒
∃ arbitrarily long paths

Game for νx .3x :

I ∃ve picks a path m1 → m2 → ... point by point

I one rank r , belonging to ∀dam (meaning: he looses all in�nite plays)

· · ·

×

∃ve wins G(νx .3x)

⇐⇒
∃ in�nite path

Game for νωx .3x :

I same as for νx .3x plus ordinal-valued counter C initialized to ω

I In each round: (i) ∀dam decrements the counter (picks smaller value);

(ii) ∃ve picks an edge m→ m′ to a new point m′.

ω332

21

10

0

X

∃ve wins G(νωx .3x)

⇐⇒
∃ arbitrarily long paths

Game for νx .3x :

I ∃ve picks a path m1 → m2 → ... point by point

I one rank r , belonging to ∀dam (meaning: he looses all in�nite plays)

· · ·

×

∃ve wins G(νx .3x)

⇐⇒
∃ in�nite path

Game for νωx .3x :

I same as for νx .3x plus ordinal-valued counter C initialized to ω

I In each round: (i) ∀dam decrements the counter (picks smaller value);

(ii) ∃ve picks an edge m→ m′ to a new point m′.

ω332

21

10
0

X

∃ve wins G(νωx .3x)

⇐⇒
∃ arbitrarily long paths

countdown game = parity game + subset D ⊆ R

G = (V ,E , rank : V → R,D)

nonstandard ranks

I counter Cr ∈ {0, 1, ...ω} for each r ∈ D

I initially all Cr equal ω

I from (v ,Cr):
a con�guration

I �rst, counters are updated depending on rank(v):

I C′r = Cr for r > rank(v), [unchanged]

I C′r = ω for r < rank(v), [reset]

I if rank(v) ∈ D, the owner of rank(v) chooses:

C′
rank(v) < Crank(v) [decremented]

I then, owner of v chooses vEw

I and the game moves to (w ,C′r).

countdown game = parity game + subset D ⊆ R

G = (V ,E , rank : V → R,D)

nonstandard ranks

I counter Cr ∈ {0, 1, ...ω} for each r ∈ D

I initially all Cr equal ω

I from (v ,Cr):
a con�guration

I �rst, counters are updated depending on rank(v):

I C′r = Cr for r > rank(v), [unchanged]

I C′r = ω for r < rank(v), [reset]

I if rank(v) ∈ D, the owner of rank(v) chooses:

C′
rank(v) < Crank(v) [decremented]

I then, owner of v chooses vEw

I and the game moves to (w ,C′r).

countdown game = parity game + subset D ⊆ R

G = (V ,E , rank : V → R,D)

nonstandard ranks

I counter Cr ∈ {0, 1, ...ω} for each r ∈ D

I initially all Cr equal ω

I from (v ,Cr):
a con�guration

I �rst, counters are updated depending on rank(v):

I C′r = Cr for r > rank(v), [unchanged]

I C′r = ω for r < rank(v), [reset]

I if rank(v) ∈ D, the owner of rank(v) chooses:

C′
rank(v) < Crank(v) [decremented]

I then, owner of v chooses vEw

I and the game moves to (w ,C′r).

countdown game = parity game + subset D ⊆ R

G = (V ,E , rank : V → R,D)

nonstandard ranks

I counter Cr ∈ {0, 1, ...ω} for each r ∈ D

I initially all Cr equal ω

I from (v ,Cr):
a con�guration

I �rst, counters are updated depending on rank(v):

I C′r = Cr for r > rank(v), [unchanged]

I C′r = ω for r < rank(v), [reset]

I if rank(v) ∈ D, the owner of rank(v) chooses:

C′
rank(v) < Crank(v) [decremented]

I then, owner of v chooses vEw

I and the game moves to (w ,C′r).

countdown game = parity game + subset D ⊆ R

G = (V ,E , rank : V → R,D)

nonstandard ranks

I counter Cr ∈ {0, 1, ...ω} for each r ∈ D

I initially all Cr equal ω

I from (v ,Cr):

a con�guration

I �rst, counters are updated depending on rank(v):

I C′r = Cr for r > rank(v), [unchanged]

I C′r = ω for r < rank(v), [reset]

I if rank(v) ∈ D, the owner of rank(v) chooses:

C′
rank(v) < Crank(v) [decremented]

I then, owner of v chooses vEw

I and the game moves to (w ,C′r).

countdown game = parity game + subset D ⊆ R

G = (V ,E , rank : V → R,D)

nonstandard ranks

I counter Cr ∈ {0, 1, ...ω} for each r ∈ D

I initially all Cr equal ω

I from (v ,Cr):
a con�guration

I �rst, counters are updated depending on rank(v):

I C′r = Cr for r > rank(v), [unchanged]

I C′r = ω for r < rank(v), [reset]

I if rank(v) ∈ D, the owner of rank(v) chooses:

C′
rank(v) < Crank(v) [decremented]

I then, owner of v chooses vEw

I and the game moves to (w ,C′r).

countdown game = parity game + subset D ⊆ R

G = (V ,E , rank : V → R,D)

nonstandard ranks

I counter Cr ∈ {0, 1, ...ω} for each r ∈ D

I initially all Cr equal ω

I from (v ,Cr):
a con�guration

I �rst, counters are updated depending on rank(v):

I C′r = Cr for r > rank(v), [unchanged]

I C′r = ω for r < rank(v), [reset]

I if rank(v) ∈ D, the owner of rank(v) chooses:

C′
rank(v) < Crank(v) [decremented]

I then, owner of v chooses vEw

I and the game moves to (w ,C′r).

countdown game = parity game + subset D ⊆ R

G = (V ,E , rank : V → R,D)

nonstandard ranks

I counter Cr ∈ {0, 1, ...ω} for each r ∈ D

I initially all Cr equal ω

I from (v ,Cr):
a con�guration

I �rst, counters are updated depending on rank(v):

I C′r = Cr for r > rank(v), [unchanged]

I C′r = ω for r < rank(v), [reset]

I if rank(v) ∈ D, the owner of rank(v) chooses:

C′
rank(v) < Crank(v) [decremented]

I then, owner of v chooses vEw

I and the game moves to (w ,C′r).

countdown game = parity game + subset D ⊆ R

G = (V ,E , rank : V → R,D)

nonstandard ranks

I counter Cr ∈ {0, 1, ...ω} for each r ∈ D

I initially all Cr equal ω

I from (v ,Cr):
a con�guration

I �rst, counters are updated depending on rank(v):

I C′r = Cr for r > rank(v), [unchanged]

I C′r = ω for r < rank(v), [reset]

I if rank(v) ∈ D, the owner of rank(v) chooses:

C′
rank(v) < Crank(v) [decremented]

I then, owner of v chooses vEw

I and the game moves to (w ,C′r).

countdown game = parity game + subset D ⊆ R

G = (V ,E , rank : V → R,D)

nonstandard ranks

I counter Cr ∈ {0, 1, ...ω} for each r ∈ D

I initially all Cr equal ω

I from (v ,Cr):
a con�guration

I �rst, counters are updated depending on rank(v):

I C′r = Cr for r > rank(v), [unchanged]

I C′r = ω for r < rank(v), [reset]

I if rank(v) ∈ D, the owner of rank(v) chooses:

C′
rank(v) < Crank(v) [decremented]

I then, owner of v chooses vEw

I and the game moves to (w ,C′r).

countdown game = parity game + subset D ⊆ R

G = (V ,E , rank : V → R,D)

nonstandard ranks

I counter Cr ∈ {0, 1, ...ω} for each r ∈ D

I initially all Cr equal ω

I from (v ,Cr):
a con�guration

I �rst, counters are updated depending on rank(v):

I C′r = Cr for r > rank(v), [unchanged]

I C′r = ω for r < rank(v), [reset]

I if rank(v) ∈ D, the owner of rank(v) chooses:

C′
rank(v) < Crank(v) [decremented]

I then, owner of v chooses vEw

I and the game moves to (w ,C′r).

countdown game = parity game + subset D ⊆ R

G = (V ,E , rank : V → R,D)

nonstandard ranks

I counter Cr ∈ {0, 1, ...ω} for each r ∈ D

I initially all Cr equal ω

I from (v ,Cr):
a con�guration

I �rst, counters are updated depending on rank(v):

I C′r = Cr for r > rank(v), [unchanged]

I C′r = ω for r < rank(v), [reset]

I if rank(v) ∈ D, the owner of rank(v) chooses:

C′
rank(v) < Crank(v) [decremented]

I then, owner of v chooses vEw

I and the game moves to (w ,C′r).

countdown game = parity game + subset D ⊆ R

G = (V ,E , rank : V → R,D)

nonstandard ranks

I counter Cr ∈ {0, 1, ...ω} for each r ∈ D

I initially all Cr equal ω

I from (v ,Cr):
a con�guration

I �rst, counters are updated depending on rank(v):

I C′r = Cr for r > rank(v), [unchanged]

I C′r = ω for r < rank(v), [reset]

I if rank(v) ∈ D, the owner of rank(v) chooses:

C′
rank(v) < Crank(v) [decremented]

I then, owner of v chooses vEw

I and the game moves to (w ,C′r).

Game Semantics for countdown µ-ML:

I countdown game = (V ,E , rank : V → R) plus D ⊆ R

parity game

nonstandard ranks

I semantic games for countdown µ-ML = same as for µ-ML

(as if µω and νω were µ and ν) plus nonstandard ranks D:
ranks of all immediate subformulae of countdown operators

∃ve wins from (m, ϕ) ⇐⇒ m ∈ JϕK

works for everyM and ϕ!

Game Semantics for countdown µ-ML:

I countdown game = (V ,E , rank : V → R) plus D ⊆ R

parity game

nonstandard ranks

I semantic games for countdown µ-ML = same as for µ-ML

(as if µω and νω were µ and ν) plus nonstandard ranks D:
ranks of all immediate subformulae of countdown operators

∃ve wins from (m, ϕ) ⇐⇒ m ∈ JϕK

works for everyM and ϕ!

Game Semantics for countdown µ-ML:

I countdown game = (V ,E , rank : V → R) plus D ⊆ R

parity game

nonstandard ranks

I semantic games for countdown µ-ML = same as for µ-ML

(as if µω and νω were µ and ν) plus nonstandard ranks D:
ranks of all immediate subformulae of countdown operators

∃ve wins from (m, ϕ) ⇐⇒ m ∈ JϕK

works for everyM and ϕ!

Game Semantics for countdown µ-ML:

I countdown game = (V ,E , rank : V → R) plus D ⊆ R

parity game

nonstandard ranks

I semantic games for countdown µ-ML = same as for µ-ML

(as if µω and νω were µ and ν) plus nonstandard ranks D:
ranks of all immediate subformulae of countdown operators

∃ve wins from (m, ϕ) ⇐⇒ m ∈ JϕK

works for everyM and ϕ!

Game Semantics for countdown µ-ML:

I countdown game = (V ,E , rank : V → R) plus D ⊆ R

parity game

nonstandard ranks

I semantic games for countdown µ-ML = same as for µ-ML

(as if µω and νω were µ and ν) plus nonstandard ranks D:
ranks of all immediate subformulae of countdown operators

∃ve wins from (m, ϕ) ⇐⇒ m ∈ JϕK

works for everyM and ϕ!

Game Semantics for countdown µ-ML:

I countdown game = (V ,E , rank : V → R) plus D ⊆ R

parity game

nonstandard ranks

I semantic games for countdown µ-ML = same as for µ-ML

(as if µω and νω were µ and ν) plus nonstandard ranks D:
ranks of all immediate subformulae of countdown operators

∃ve wins from (m, ϕ) ⇐⇒ m ∈ JϕK

works for everyM and ϕ!

Game Semantics for countdown µ-ML:

I countdown game = (V ,E , rank : V → R) plus D ⊆ R

parity game

nonstandard ranks

I semantic games for countdown µ-ML = same as for µ-ML

(as if µω and νω were µ and ν) plus nonstandard ranks D:
ranks of all immediate subformulae of countdown operators

∃ve wins from (m, ϕ) ⇐⇒ m ∈ JϕK

works for everyM and ϕ!

Countdown automata:

I countdown game = (V ,E , rank : V → R) plus D ⊆ R

parity game

nonstandard ranks

I countdown automaton = (Q, δ, qI , rank) plus D ⊆ R

parity automaton

nonstandard ranks

I semantic via a countdown game: the parity game for (Q, δ, qI , rank)

but the ranks D ⊆ R are now nonstandard!

Countdown automata:

I countdown game = (V ,E , rank : V → R) plus D ⊆ R

parity game

nonstandard ranks

I countdown automaton = (Q, δ, qI , rank) plus D ⊆ R

parity automaton

nonstandard ranks

I semantic via a countdown game: the parity game for (Q, δ, qI , rank)

but the ranks D ⊆ R are now nonstandard!

Countdown automata:

I countdown game = (V ,E , rank : V → R) plus D ⊆ R

parity game

nonstandard ranks

I countdown automaton = (Q, δ, qI , rank) plus D ⊆ R

parity automaton

nonstandard ranks

I semantic via a countdown game: the parity game for (Q, δ, qI , rank)

but the ranks D ⊆ R are now nonstandard!

Countdown automata:

I countdown game = (V ,E , rank : V → R) plus D ⊆ R

parity game

nonstandard ranks

I countdown automaton = (Q, δ, qI , rank) plus D ⊆ R

parity automaton

nonstandard ranks

I semantic via a countdown game: the parity game for (Q, δ, qI , rank)

but the ranks D ⊆ R are now nonstandard!

Countdown automata:

I countdown game = (V ,E , rank : V → R) plus D ⊆ R

parity game

nonstandard ranks

I countdown automaton = (Q, δ, qI , rank) plus D ⊆ R

parity automaton

nonstandard ranks

I semantic via a countdown game: the parity game for (Q, δ, qI , rank)

but the ranks D ⊆ R are now nonstandard!

Countdown automata:

I countdown game = (V ,E , rank : V → R) plus D ⊆ R

parity game

nonstandard ranks

I countdown automaton = (Q, δ, qI , rank) plus D ⊆ R

parity automaton

nonstandard ranks

I semantic via a countdown game: the parity game for (Q, δ, qI , rank)

but the ranks D ⊆ R are now nonstandard!

countdown µ-ML countdown automata

countdown game semantics

countdown µ-ML describes arbitrary automata

=

countdown µ-ML countdown automata

countdown game semantics

countdown µ-ML describes arbitrary automata

=

countdown µ-ML countdown automata

countdown game semantics

countdown µ-ML describes arbitrary automata

=

countdown µ-ML countdown automata

countdown game semantics

countdown µ-ML describes arbitrary automata

=

µ-calculus∼ ���
�XXXXparity games

equivalent to alternating ����XXXXparity automata

wining regions de�nable in logic

countdown

countdown!

countdown!

COMPLICATIONS!!!

no simple nondeterministic model!!!

vectorial, i.e. multiple

variables bound simultaneously

equivalent for µ-ML

but not for µω-ML!!!

µ-calculus∼ ���
�XXXXparity games

equivalent to alternating ����XXXXparity automata

wining regions de�nable in logic

countdown

countdown!

countdown!

COMPLICATIONS!!!

no simple nondeterministic model!!!

vectorial, i.e. multiple

variables bound simultaneously

equivalent for µ-ML

but not for µω-ML!!!

µ-calculus∼ ���
�XXXXparity games

equivalent to alternating ����XXXXparity automata

wining regions de�nable in logic

countdown

countdown!

countdown!

COMPLICATIONS!!!

no simple nondeterministic model!!!

vectorial, i.e. multiple

variables bound simultaneously

equivalent for µ-ML

but not for µω-ML!!!

µ-calculus∼ ���
�XXXXparity games

equivalent to alternating ����XXXXparity automata

wining regions de�nable in logic

countdown

countdown!

countdown!

COMPLICATIONS!!!

no simple nondeterministic model!!!

vectorial, i.e. multiple

variables bound simultaneously

equivalent for µ-ML

but not for µω-ML!!!

µ-calculus∼ ���
�XXXXparity games

equivalent to alternating ����XXXXparity automata

wining regions de�nable in logic

countdown

countdown!

countdown!

COMPLICATIONS!!!

no simple nondeterministic model!!!

vectorial, i.e. multiple

variables bound simultaneously

equivalent for µ-ML

but not for µω-ML!!!

µ-calculus∼ ���
�XXXXparity games

equivalent to alternating ����XXXXparity automata

wining regions de�nable in logic

countdown

countdown!

countdown!

COMPLICATIONS!!!

no simple nondeterministic model!!!

vectorial, i.e. multiple

variables bound simultaneously

equivalent for µ-ML

but not for µω-ML!!!

NO nondeterministic model:

I parity games positionally determined: nondeterministic automaton guesses

the strategy

I but countdown games not positionally determined: players need to look at

the counters

I countdown µ-ML provably not closed under projections (due to low

topological complexity)

I this is arguably a good news: every extension of MSO closed under projections

and boolean operations is too strong (contains MSO + U)

I but the lack of nondeterministic model prevents us from copying clasical proofs

I still, alternating automata are extremely useful:

I guarded normal form

I model theory (e.g. countable model property)

I some decidability results

NO nondeterministic model:
I parity games positionally determined: nondeterministic automaton guesses

the strategy

I but countdown games not positionally determined: players need to look at

the counters

I countdown µ-ML provably not closed under projections (due to low

topological complexity)

I this is arguably a good news: every extension of MSO closed under projections

and boolean operations is too strong (contains MSO + U)

I but the lack of nondeterministic model prevents us from copying clasical proofs

I still, alternating automata are extremely useful:

I guarded normal form

I model theory (e.g. countable model property)

I some decidability results

NO nondeterministic model:
I parity games positionally determined: nondeterministic automaton guesses

the strategy

I but countdown games not positionally determined: players need to look at

the counters

I countdown µ-ML provably not closed under projections (due to low

topological complexity)

I this is arguably a good news: every extension of MSO closed under projections

and boolean operations is too strong (contains MSO + U)

I but the lack of nondeterministic model prevents us from copying clasical proofs

I still, alternating automata are extremely useful:

I guarded normal form

I model theory (e.g. countable model property)

I some decidability results

NO nondeterministic model:
I parity games positionally determined: nondeterministic automaton guesses

the strategy

I but countdown games not positionally determined: players need to look at

the counters

I countdown µ-ML provably not closed under projections (due to low

topological complexity)

I this is arguably a good news: every extension of MSO closed under projections

and boolean operations is too strong (contains MSO + U)

I but the lack of nondeterministic model prevents us from copying clasical proofs

I still, alternating automata are extremely useful:

I guarded normal form

I model theory (e.g. countable model property)

I some decidability results

NO nondeterministic model:
I parity games positionally determined: nondeterministic automaton guesses

the strategy

I but countdown games not positionally determined: players need to look at

the counters

I countdown µ-ML provably not closed under projections (due to low

topological complexity)

I this is arguably a good news: every extension of MSO closed under projections

and boolean operations is too strong (contains MSO + U)

I but the lack of nondeterministic model prevents us from copying clasical proofs

I still, alternating automata are extremely useful:

I guarded normal form

I model theory (e.g. countable model property)

I some decidability results

NO nondeterministic model:
I parity games positionally determined: nondeterministic automaton guesses

the strategy

I but countdown games not positionally determined: players need to look at

the counters

I countdown µ-ML provably not closed under projections (due to low

topological complexity)

I this is arguably a good news: every extension of MSO closed under projections

and boolean operations is too strong (contains MSO + U)

I but the lack of nondeterministic model prevents us from copying clasical proofs

I still, alternating automata are extremely useful:

I guarded normal form

I model theory (e.g. countable model property)

I some decidability results

NO nondeterministic model:
I parity games positionally determined: nondeterministic automaton guesses

the strategy

I but countdown games not positionally determined: players need to look at

the counters

I countdown µ-ML provably not closed under projections (due to low

topological complexity)

I this is arguably a good news: every extension of MSO closed under projections

and boolean operations is too strong (contains MSO + U)

I but the lack of nondeterministic model prevents us from copying clasical proofs

I still, alternating automata are extremely useful:

I guarded normal form

I model theory (e.g. countable model property)

I some decidability results

NO nondeterministic model:
I parity games positionally determined: nondeterministic automaton guesses

the strategy

I but countdown games not positionally determined: players need to look at

the counters

I countdown µ-ML provably not closed under projections (due to low

topological complexity)

I this is arguably a good news: every extension of MSO closed under projections

and boolean operations is too strong (contains MSO + U)

I but the lack of nondeterministic model prevents us from copying clasical proofs

I still, alternating automata are extremely useful:

I guarded normal form

I model theory (e.g. countable model property)

I some decidability results

NO nondeterministic model:
I parity games positionally determined: nondeterministic automaton guesses

the strategy

I but countdown games not positionally determined: players need to look at

the counters

I countdown µ-ML provably not closed under projections (due to low

topological complexity)

I this is arguably a good news: every extension of MSO closed under projections

and boolean operations is too strong (contains MSO + U)

I but the lack of nondeterministic model prevents us from copying clasical proofs

I still, alternating automata are extremely useful:

I guarded normal form

I model theory (e.g. countable model property)

I some decidability results

NO nondeterministic model:
I parity games positionally determined: nondeterministic automaton guesses

the strategy

I but countdown games not positionally determined: players need to look at

the counters

I countdown µ-ML provably not closed under projections (due to low

topological complexity)

I this is arguably a good news: every extension of MSO closed under projections

and boolean operations is too strong (contains MSO + U)

I but the lack of nondeterministic model prevents us from copying clasical proofs

I still, alternating automata are extremely useful:

I guarded normal form

I model theory (e.g. countable model property)

I some decidability results

Decidability results:

I (�nite) model checking: given ϕ and m inM, does m satisfy ϕ?

decidable but not that interesting

I satis�ability: given ϕ, does there existsM with m satisfying ϕ?

CONJECTURE: satis�ability decidable

I for now, proven in special cases:

I formulae with positive countdown, i.e. no νω used

I Büchi countdown automata: only two ranks r∃ < r∀, over in�nite words

Decidability results:
I (�nite) model checking: given ϕ and m inM, does m satisfy ϕ?

decidable but not that interesting

I satis�ability: given ϕ, does there existsM with m satisfying ϕ?

CONJECTURE: satis�ability decidable

I for now, proven in special cases:

I formulae with positive countdown, i.e. no νω used

I Büchi countdown automata: only two ranks r∃ < r∀, over in�nite words

Decidability results:
I (�nite) model checking: given ϕ and m inM, does m satisfy ϕ?

decidable but not that interesting

I satis�ability: given ϕ, does there existsM with m satisfying ϕ?

CONJECTURE: satis�ability decidable

I for now, proven in special cases:

I formulae with positive countdown, i.e. no νω used

I Büchi countdown automata: only two ranks r∃ < r∀, over in�nite words

Decidability results:
I (�nite) model checking: given ϕ and m inM, does m satisfy ϕ?

decidable but not that interesting

I satis�ability: given ϕ, does there existsM with m satisfying ϕ?

CONJECTURE: satis�ability decidable

I for now, proven in special cases:

I formulae with positive countdown, i.e. no νω used

I Büchi countdown automata: only two ranks r∃ < r∀, over in�nite words

Decidability results:
I (�nite) model checking: given ϕ and m inM, does m satisfy ϕ?

decidable but not that interesting

I satis�ability: given ϕ, does there existsM with m satisfying ϕ?

CONJECTURE: satis�ability decidable

I for now, proven in special cases:

I formulae with positive countdown, i.e. no νω used

I Büchi countdown automata: only two ranks r∃ < r∀, over in�nite words

Decidability results:
I (�nite) model checking: given ϕ and m inM, does m satisfy ϕ?

decidable but not that interesting

I satis�ability: given ϕ, does there existsM with m satisfying ϕ?

CONJECTURE: satis�ability decidable

I for now, proven in special cases:

I formulae with positive countdown, i.e. no νω used

I Büchi countdown automata: only two ranks r∃ < r∀, over in�nite words

Decidability results:
I (�nite) model checking: given ϕ and m inM, does m satisfy ϕ?

decidable but not that interesting

I satis�ability: given ϕ, does there existsM with m satisfying ϕ?

CONJECTURE: satis�ability decidable

I for now, proven in special cases:

I formulae with positive countdown, i.e. no νω used

I Büchi countdown automata: only two ranks r∃ < r∀, over in�nite words

Some facts and results:

I nothing special about ω, take your favourite ordinal instead!

I more nesting of countdown operators =⇒ more power

I fragment without nesting of countdown operators = certain multi-valued µ-ML

µ-ML, but with logical values from [0, 1] instead of just {0, 1}
and the function t

f7→ 1

2
t as an extra unary connective:

νx .3f̃ (x) has value 1 ⇐⇒ there are arbitrarily long paths

(�3� means �supremum over children�; f̃ (t) = 1

2
t + 1

2
is dual to f)

Some facts and results:
I nothing special about ω, take your favourite ordinal instead!

I more nesting of countdown operators =⇒ more power

I fragment without nesting of countdown operators = certain multi-valued µ-ML

µ-ML, but with logical values from [0, 1] instead of just {0, 1}
and the function t

f7→ 1

2
t as an extra unary connective:

νx .3f̃ (x) has value 1 ⇐⇒ there are arbitrarily long paths

(�3� means �supremum over children�; f̃ (t) = 1

2
t + 1

2
is dual to f)

Some facts and results:
I nothing special about ω, take your favourite ordinal instead!

I more nesting of countdown operators =⇒ more power

I fragment without nesting of countdown operators = certain multi-valued µ-ML

µ-ML, but with logical values from [0, 1] instead of just {0, 1}
and the function t

f7→ 1

2
t as an extra unary connective:

νx .3f̃ (x) has value 1 ⇐⇒ there are arbitrarily long paths

(�3� means �supremum over children�; f̃ (t) = 1

2
t + 1

2
is dual to f)

Some facts and results:
I nothing special about ω, take your favourite ordinal instead!

I more nesting of countdown operators =⇒ more power

I fragment without nesting of countdown operators = certain multi-valued µ-ML

µ-ML, but with logical values from [0, 1] instead of just {0, 1}
and the function t

f7→ 1

2
t as an extra unary connective:

νx .3f̃ (x) has value 1 ⇐⇒ there are arbitrarily long paths

(�3� means �supremum over children�; f̃ (t) = 1

2
t + 1

2
is dual to f)

Some facts and results:
I nothing special about ω, take your favourite ordinal instead!

I more nesting of countdown operators =⇒ more power

I fragment without nesting of countdown operators = certain multi-valued µ-ML

µ-ML, but with logical values from [0, 1] instead of just {0, 1}
and the function t

f7→ 1

2
t as an extra unary connective:

νx .3f̃ (x) has value 1 ⇐⇒ there are arbitrarily long paths

(�3� means �supremum over children�; f̃ (t) = 1

2
t + 1

2
is dual to f)

Some facts and results:
I nothing special about ω, take your favourite ordinal instead!

I more nesting of countdown operators =⇒ more power

I fragment without nesting of countdown operators = certain multi-valued µ-ML

µ-ML, but with logical values from [0, 1] instead of just {0, 1}
and the function t

f7→ 1

2
t as an extra unary connective:

νx .3f̃ (x) has value 1 ⇐⇒ there are arbitrarily long paths

(�3� means �supremum over children�; f̃ (t) = 1

2
t + 1

2
is dual to f)

Some facts and results:
I nothing special about ω, take your favourite ordinal instead!

I more nesting of countdown operators =⇒ more power

I fragment without nesting of countdown operators = certain multi-valued µ-ML

µ-ML, but with logical values from [0, 1] instead of just {0, 1}
and the function t

f7→ 1

2
t as an extra unary connective:

νx .3f̃ (x) has value 1 ⇐⇒ there are arbitrarily long paths

(�3� means �supremum over children�; f̃ (t) = 1

2
t + 1

2
is dual to f)

Thank you! :)

