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if trivial Act = {a}, denote
(a) = © and [a] = O a, b from fixed Act

boolean f \ and x from fixed Var
- A - \\\
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» interpreted in points of a modal model M

—

directed graph (M, (=)acact), edges labelled with Act

K» plus val : Var — P(M)

» “(a)’ means "there exists an a-child satisfying ¢"
SOITUBWIRG
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» Ox induces an operation F : P(M) — P(M):

S [Ox]=° = {m | pn_nn € S}

» since x appears only positively in $x, F is monotone. ..

SCS — F(S)CF(S J

» ...and so F has the greatest and the least fixpoint!

[vx.Ox] = GFP.F / [ux.Ox] = LFP.F\
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Knaster- Tarski Theorem:

Every monotone map F : P(M) — P(M) has the least and
the greatest (w.r.t. C) fixpoint LFP.F and GFP.F.

Both are computed as the limits of (transfinite) sequences:

Fg:UB<aF§ and ngﬂﬁ<cyl__5

with a ranging over ordinal numbers

(note: Fo=U0=0 and F)=N0=M)
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I
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u-calculus = modal logic + fixpoints

[T1™ =M and [L] =
[V oo = [ioa] ' U ] and HsolAst]]“' [ea]"™ N [ip2]
(el = {me M| 3,5, ne[el™} and [alel® = {me M|V, n e [o])
[x]* = val(x)
[ux.©] = LFP.F and [vx.]" = GFP.F

with F(S) = [g] 2]
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Why we like it so much?

t-calculus ~~ parity games

» algorithmicaly feasible & expressive
» equivalent to automata (of various types),

monadic second-order logic MSO, algebras...

regular languages

(of finite/infinite words, trees... or up to bisimulation)
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Parity Games:

V5||_|Vv V xV RHHRV

N U //
V,E,rank: V = R

» dve and Ydam move between positions, round by round

» from position v its owner chooses vEw & the game moves to w
» if a player is stuck (has no legal move) looses immediately

» otherwise an infinite play 7: look at the greatest rank r appearing

infinitely often in @ —  the owner of r looses

(strategies, winning strategies, etc. defined as usual)
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» given M and ¢, positions V = M x SubFor(y)

dve wins from (m, ) <= m € [y]

» possible moves E depend on the topmost connective:
» in (m, 1V 1') Jve chooses (m, 1)) or (m, 1)),
» in (m, (a)?)) Tve chooses (n, 1)) with m = n,
» with A and [a] in place of V and (a): same but Ydam chooses

> from (m, pux.1p) and (m, vx.1p) to (m, 1))

» plus x unfolds!
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» operators ux. and vx. bind variable x
» from (m, x) with x bound in px.1) or vx.1) the game
moves to (m, 1))
Y
» rank compatible with move from
subformula order (m, x) to (m, )

» rank(m, ) for immediate ,lew

0

» symmetrically with unfolding!

subformula 1 of ux.1)

belongs to dve
v and Vdam x

» unfolding may lead to infinite plays:

» dve looses if the outermost operator unfolded infinitely often is
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Example: vx.$x

vx.Ox deterministic &

/point not changed
Jve chooses successor

in the model Ox

¥
» dve wins all infinie plays

» initially a deterministic move from (m, vx.<$x) to (m, $x); then
> (m, Ox)E(m’, x)E(m’, Ox)E(m", x)..., every second deterministic

and m — m’ — m”... chosen by Jdve
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As desired:

dve wins from (m, ) <= m € ||

works for every M and ¢!
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Parity Automata:

QU Qy Q
N\ Y,
Q,q/,rank: @ > R

the semantics of the automton A defined by a game

e-transitions modal tgnsitions
/_/H

< N

0:Q— P(Q)U (Act x Q)

and a transition function
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Semantic Game for automaton A and model M:

» positions V =M x @

» from (m, g) moves to:
» (m, p) with p € 6(q) if 4(q) C Q.
» (n, p) with m Anif d(q) = (a, p).

» ownership and ranks inherited from @
> V5=Mx @Q3, Vo = M x Q
» rank(m, g) = rank(q)

language of A:

A accepts m € M = Jve wins the game from (m, q/)
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Q = SubFor(y)

u-ML formulae  ——= parity automata

(-ML describes arbitrary automata
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» 1-ML has the finite model property: if a formula ¢ is true in a point m

of some model M, then it is true in some point n of a finite model A/
» in general this is a good thing, but limits expressive power

» for instance, (un)boundedness properties such as:

“there exist arbitrarily long paths originating in a given point”

cannot be defined
» well-foundedness definable with owr, so if there was ¢y defining the above prope

then pwr A ¢y would be satisfiable but not in a finite model (Konig's Lemma)

we want to extend p-ML!H!
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» we compute fixpoints by (transfinite) iteration of F:

add countdown operator VYx.OX to the syntax!

FO =M F!' = F(F%) ="3 a child" F¥ = "arbitrarily long paths"  F“™l = F¥+2 = GFP.F

Il I
[v9x.Ox] [vx.<x]
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Syntax:

extended with u* and ¥

ti-calculus + countdown operators u*, v*

countdown u-calculus

[ x. ]V = F  and [vx.o]? = F¥

'SOIFUBWIDG
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equivalent to alternating parity automata
countdown!

countdown p-calculus ™~ parity games

countdown!

wining regions definable in logic
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Game for x.$OXx:

» dve picks a path m; — my — ... point by point

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

dve wins G(vx.$Ox) ~ dve wins G(1*x.Ox)
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Game for ¥ x.Ox:

» same as for vx.$x plus ordinal-valued counter C initialized to w
» In each round: (i) Vdam decrements the counter (picks smaller value);

(i) Jve picks an edge m — m’ to a new point m’.
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G=(V,E,rank: V — R, D)

countdown game = parity game -+ subset D C R

» counter C, € {0,1,...w} for each r € D
» initially all C, equal w

nonstandard ranks

> from (v C_) +——a configuration
y ~r)-

» first, counters are updated depending on rank(v):
» C' = C, for r > rank(v), [unchanged]
» C' =w for r < rank(v), [reset]

» if rank(v) € D, the owner of rank(v) chooses:
Cﬁank(v) < Crank(v) [decremented]

» then, owner of v chooses vEw

» and the game moves to (w, C’).
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Game Semantics for countdown p-ML:

parity game
» countdown game = (V, E rank : V = R) plus D CR

\(./
nonstandard ranks

» semantic games for countdown pu-ML = same as for pu-ML
(as if 4 and v were p and ) plus nonstandard ranks D:

ranks of all immediate subformulae of countdown operators

dve wins from (m, ) <= m € [y]

works for every M and ¢!
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parity game

7 N

» countdown game = (V, E rank: V = R) plus D CR

\{./
nonstandard ranks

parity automaton
A

< N

» countdown automaton = (@, 9, g;,rank) plus D CR

nonstandard ranks

» semantic via a countdown game: the parity game for (Q, 9, g, rank)

but the ranks D C R are now nonstandard!
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countdown p-ML describes arbitrary automata




equivalent to alternating parity automata
countdown!

countdown p-calculus ™~ party games
countdown!

wining regions definable in logic



equivalent to alternating parity automata
countdown!

countdown p-calculus ~~ parity games
countdown!

COMPLICATIONS!!

wining regions definable in logic



equivalent to alternating parity automata

/ countdown!
n

o simple nondeterministic model!!!

countdown p-calculus ™~ party games
countdown!

wining regions definable in logic



equivalent to alternating parity automata

/ countdown!
n

o simple nondeterministic model!!!

countdown p-calculus ™~ party games
countdown!

vectorial, i.e. multiple

variables bound simultaneously

wining regions definable in logic



equivalent to alternating parity automata

/ countdown!
n

o simple nondeterministic model!!!

countdown p-calculus ™~ party games
countdown!

o . mt for p-ML
vectorial, i.e. multiple

variables bound simultaneously

wining regions definable in logic



equivalent to alternating parity automata

/ countdown!
n

o simple nondeterministic model!!!

countdown p-calculus ™~ party games
countdown!

o . mt for p-ML
vectorial, i.e. multiple

variables bound simultaneously

Qc&tfor (-MLIH!

wining regions definable in logic
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» parity games positionally determined: nondeterministic automaton guesses
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» but countdown games not positionally determined: players need to look at

the counters
» countdown p-ML provably not closed under projections (due to low
topological complexity)

» this is arguably a good news: every extension of MSO closed under projections

and boolean operations is too strong (contains MSO + U)
» but the lack of nondeterministic model prevents us from copying clasical proofs
» still, alternating automata are extremely useful:

» guarded normal form

» model theory (e.g. countable model property)

» some decidability results
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Decidability results:

» (finite) model checking: given ¢ and m in M, does m satisfy ¢?

decidable but not that interesting
» satisfiability: given ¢, does there exists M with m satisfying 7

CONJECTURE: satisfiability decidable

» for now, proven in special cases:

» formulae with positive countdown, i.e. no v used

» Biichi countdown automata: only two ranks r? < r7, over infinite words
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Some facts and results:

» nothing special about w, take your favourite ordinal instead!
» more nesting of countdown operators = more power

» fragment without nesting of countdown operators = certain multi-valued p-ML

p-ML, but with logical values from [0, 1] instead of just {0,1}

. f .
and the function t +— %t as an extra unary connective:

VX.<>f(X) has value 1 <= there are arbitrarily long paths

(<" means “supremum over children”; f(t) = 1t+ 1 is dual to f)
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