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Abstract
We introduce the countdown µ-calculus, an extension of the modal µ-calculus with ordinal approx-
imations of fixpoint operators. In addition to properties definable in the classical calculus, it can
express (un)boundedness properties such as the existence of arbitrarily long sequences of specific
actions. The standard correspondence with parity games and automata extends to suitably defined
countdown games and automata. However, unlike in the classical setting, the scalar fragment is
provably weaker than the full vectorial calculus and corresponds to automata satisfying a simple
syntactic condition. We establish some facts, in particular decidability of the model checking problem
and strictness of the hierarchy induced by the maximal allowed nesting of our new operators.
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1 Introduction

The modal µ-calculus [14] is a well-known logic for defining and verifying behavioural
properties of state-and-transition systems. It extends propositional logic with basic next-step
modalities and fixpoint operators to describe long-term behaviour. It is expressive enough to
include other temporal logics such as CTL* as fragments, but it has good computational
properties, and its simple syntax and semantics makes it a convenient formalism to study.

The µ-calculus has a straightforward inductively-defined semantics, but it is often useful
to consider an alternative (but equivalent) semantics based on parity games. A formula ϕ
together with a modelM define a game between two players called ∀dam and ∃ve. Positions
in the game are of the form (m, ψ) where m is a point inM and ψ is a subformula of ϕ, and
moves are defined so that ∃ve has a winning strategy from (m, ϕ) if and only if ϕ holds in m.
Among other advantages, the game-based semantics provides more efficient algorithms for
model checking of µ-calculus formulas than an inductive computation of fixpoints [9].

The model component can be abstracted away from parity games. Indeed, a formula ϕ
itself gives rise to an alternating parity automaton Aϕ that recognizes models. The behaviour
of an automaton on a model is defined in terms of a parity game, states of Aϕ are subformulas
of ϕ, and the transition relation is defined so that it accepts a modelM rooted in a point m
if and only if ϕ holds in m. The advantage of this is that Aϕ, while conceptually closer to a
parity game, is a finite structure even if it is then applied to infinite models.

The modal µ-calculus is a rather expressive formalism: it can define all bisimulation-
invariant properties definable in monadic second-order logic (MSO) [13], such as “there is an
infinite path of τ -labeled edges”. However, there are some properties of interest which are not
definable even in MSO. Notable examples include (un)boundedness properties such as “for
every number n, there is a path with at least n consecutive τ -labeled edges”. An extension of
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MSO called MSO+U, aimed at defining such properties, has been considered [6]. However, the
satisfiability problem of MSO+U turned out to be undecidable even for word models [4]. Since
the modal µ-calculus is a fragment of MSO, it is worthwhile to extend it with a mechanism
for defining (un)boundedness properties, in the hope of retaining decidability.

In this paper we propose such an extension: the countdown µ-calculus µα-ML. In addition
to µ-calculus operators, it features countdown operators µα and να parametrized by ordinal
numbers α. Instead of least and greatest fixpoints, they define ordinal approximations of
those fixpoints. Intuitively, while the meaning of classical µ-calculus formulas µx.ϕ(x) and
νx.ϕ(x) is defined by infinite unfolding of the formula ϕ until a fixpoint is reached, for
µαx.ϕ(x) and ναx.ϕ(x) the unfolding stops after α steps (which makes a difference if α is
smaller than the closure ordinal of ϕ). The classical fixpoint operators are kept but renamed
to µ∞ and ν∞, to make clear the lack of any restrictions on the unfolding process.

An inductive definition of the semantics of countdown formulas is just as straightforward
as in the classical case. With some more effort, we are able to formulate game-based semantics
as well. We introduce countdown games and countdown automata, which are similar to
parity games and alternating automata known from the classical setting, but are additionally
equipped with counters that are decremented and reset by the two players according to
specific rules. Intuitively, the counters say how many more times various ranks can be visited,
in similar manner to the signatures introduced by Walukiewicz [17, Section 3]. A player
responsible for decrementing a counter may lose the game if the value of that counter is
zero, just as a player responsible for finding the next position in a game may lose if there
is no position to go to. The key mechanism of countdown games is implicit in [11], where
the authors investigate a nonstandard semantics for the scalar fragment of the µ-calculus
equivalent to replacing every µ and ν by our countdown operators µα and να, respectively.
However, the authors do not abstract from formulas in their definition of games, nor consider
the full vectorial calculus that corresponds to automata.

A correspondence between countdown formulas, automata and games is as tight as for
the classical µ-calculus. However, complications arise: the distinction between vectorial and
scalar formulas, which in the classical case disappears to a large extent due to the so-called
Bekić principle, now becomes pronounced. We prove that vectorial countdown calculus is
more expressive than its scalar fragment. We also prove that the countdown operator nesting
hierarchy of formulas is proper.

We conjecture that the satisfiability problem is decidable for µα-ML. Unfortunately, the
lack of positional determinacy in countdown games prevents us from using proof techniques
known from parity automata (where one can transform an alternating automaton into a
nondeterministic one that guesses the positional strategy). Nevertheless, the existence of
an automata model equivalent to logic is encouraging. Apart from allowing us to solve
some fragments of the logic, it implies that µα-ML does not share some of the troublesome
properties of MSO + U that result in undecidability. In particular, it can be used to show
that all languages definable in µ-ML have bounded topological complexity (i.e. at most Σ1

2, see
[15] for an introduction to topological methods in computer science). Since MSO + U defines
a Σ1

n-complete language for every n < ω [12, Theorem 2.1], [15, Theorem 7], it follows that
some MSO + U-definable languages are not expressible in µα-ML (whether µα-ML-definability
implies MSO + U-definability remains an open question). Since by [8, Theorem 1.3] every
logic closed under boolean combinations, projections and defining the language U from
Example 4 contains MSO + U, this means that our calculus is not closed under projections.
This is an arguably good news, as in the light of [3, Theorem 1.4], giving up closure under
projections is the only way to go if one wants to design a decidable extension of MSO closed
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under boolean operations. Decidability of the weak variant WMSO + U of MSO + U over
infinite words [2] and infinite (ranked) trees [5] shows that such extensions are possible. In
fact, both results are obtained by establishing a correspondence with equivalent automata
models, namely deterministic max-automata [2, Theorem 1] and nested limsup automata [5,
Theorem 2]. Since the existence of accepting runs for such automata can be expressed in
µα-ML, we get that µα-ML contains WMSO + U on infinite words and trees. The opposite
inclusion is false (due to topological reasons), at least for the trees. The relation between
µα-ML and the ωB-, ωS- and ωBS-automata of [7] remains unclear, as these models do not
admit determinization. Also, the relation between our logic and regular cost functions (see
e.g. [10]) is less immediate than it could seem at first glance and requires further research.

2 Preliminaries

Fixpoints. Let Ord be the class of all ordinals, and Ord∞ the class Ord extended with an
additional element ∞ greater than all ordinals.

Knaster-Tarski theorem says that every monotonic function F : A→ A on a complete
lattice A has the least and the greatest fixpoint, which we denote F∞µ and F∞ν . Moreover:

F∞µ is the limit of the increasing sequence Fαµ =
∨
β<α F (F βµ )

F∞ν is the limit of the decreasing sequence Fαν =
∧
β<α F (F βν )

where α ∈ Ord and
∨
,
∧

are the join and meet operations in A.

Parity games. A parity game is played between two players ∃ve and ∀dam (or simply ∃
and ∀). It consists of a set of positions V = V∃ t V∀ divided between both players, an edge
relation E ⊆ V × V , and a labeling rank : V → R for some finite linear order R = R∃ tR∀
divided between the two players.

A play is a sequence of positions. After a play π = v1 . . . vn ∈ V ∗, the owner of vn
chooses (vn, vn+1) ∈ E and the game moves to vn+1. A player who has no legal moves loses
immediately. To determine the winner of an infinite play, we look at the highest r ∈ R such
that positions with rank r appear infinitely often in the play, and the owner of r loses.

A strategy for a player P ∈ {∃,∀} is a partial map σ : V ∗VP → E that tells the player
how to move. A play v1v2 . . . is consistent with σ if for every n such that vn ∈ VP we have
σ(v1 . . . vn) = vn+1. A strategy σ is winning from a position v if every play that begins in
v and is consistent with σ is a win for P . A strategy is positional if σ(π) depends only on
the last position in π. Parity games are positionally determined: if a player has a winning
strategy from v then (s)he has a winning positional strategy.

Modal µ-calculus. A modelM for a fixed set Act of atomic actions consists of a set of
points M 3 m, n, · · · together with a binary relation τ→ ⊆M ×M for every τ ∈ Act.

Formulas of the modal µ-calculus µ-ML are given by the grammar:

ϕ ::= x | > | ⊥ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | µx.ϕ | νx.ϕ | 〈τ〉ϕ | [τ ]ϕ (1)

where x ranges over a fixed infinite set Var of variables and τ ∈ Act. Given a valuation
val : Var→ P(M), the semantics JϕKval ⊆M for all formulas ϕ is defined inductively, with
µx.ϕ and νx.ϕ denoting the least and greatest fixpoints, respectively, of the monotonic
function H 7→ JϕKval[x7→H] on the complete lattice P(M). More details can be found
e.g. in [1, 16], but they can also be discerned from Section 3 below, where the semantics of
countdown µ-calculus is presented in detail.

The above syntax does not include negation, but µ-calculus formulas are semantically
closed under negation. For every formula ϕ there is a formula ϕ̃ that acts as the negation of
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ϕ on every model, defined by induction in a straightforward way:

ϕ̃1 ∨ ϕ2 = ϕ̃1 ∧ ϕ̃2, 〈̃τ〉ϕ = [τ ]ϕ̃, µ̃x.ϕ = νx.ϕ̃, etc. (2)

Vectorial µ-calculus. A syntactically richer version of the modal µ-calculus admits mu-
tual fixpoint definitions of multiple properties, in formulas such as µ1(x1, x2).(ϕ1, ϕ2),
where variables x1 and x2 may occur both in ϕ1 and ϕ2. Given a valuation val as before,
this formula is interpreted as the least fixpoint of the monotonic function (H1, H2) 7→
(Jϕ1Kval[xi 7→Hi], Jϕ1Kval[xi 7→Hi]) on the complete lattice P(M)2; the resulting pair of sets is
then projected to the first component as dictated by the subscript in µ1. Tuples of any size
are allowed. This vectorial calculus is expressively equivalent to the scalar version described
before, thanks to the so-called Bekić principle which says that the equality:

µ

(
x1
x2

)
.

(
f1(x1, x2)
f2(x1, x2)

)
=
(
µx1.f1(x1, µx2.f2(x1, x2))
µx2.f2(µx1.f1(x1, x2), x2)

)
(3)

holds for every pair of monotone operations fi : A1 ×A2 → Ai on complete lattices A1, A2,
and similarly for the greatest fixpoint operator ν in place of µ.

3 Countdown µ-calculus

We now introduce the countdown µ-calculus µα-ML. We begin with the scalar version.

3.1 The scalar fragment
As before, fix an infinite set Var of variables and a set Act of actions. The syntax of (scalar)
countdown µ-calculus is defined as follows:

ϕ ::= x | > | ⊥ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | µαx.ϕ | ναx.ϕ | 〈τ〉ϕ | [τ ]ϕ (4)

for x ∈ Var, τ ∈ Act and α ∈ Ord∞; the presence of ordinal numbers α is the only syntactic
difference with (1). A formula with no free variables is called a sentence. In case |Act| = 1,
we may skip the labels and write 3 and 2 instead of 〈τ〉 and [τ ]. In statements that apply
both to least and greatest fixpoints, we will sometimes use ηα to denote either µα or να.

Given a modelM, for every valuation val : Var → P(M), the semantics JϕKval ⊆ M is
defined inductively as follows:

JxKval = val(x);
J>Kval = M and J⊥Kval = ∅

Jϕ1 ∨ ϕ2Kval = Jϕ1Kval ∪ Jϕ2Kval and Jϕ1 ∧ ϕ2Kval = Jϕ1Kval ∩ Jϕ2Kval;

J〈τ〉ϕKval = {m ∈M | ∃n∈JϕKval m τ→ n} and J[τ ]ϕKval = {m ∈M | ∀n∈JϕKval m τ→ n};
Jµαx.ϕKval = Fαµ and Jναx.ϕKval = Fαν

where in the last clause F (H) = JϕKval[x 7→H]. We will skip the index val if it is immaterial or
clear from the context.

This obviously contains the classical µ-calculus, but is capable of capturing boundedness
and unboundedness properties which are not expressible in the classical setting:

I Example 1. For |Act| = 1, consider the formula ναx.3x. In a modelM, for α < ω the
set Jναx.3xK consists of the points from which there is a path of length at least α. Hence,
νωx.3x holds in a point if there are arbitrarily long finite paths starting from there.
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3.2 The vectorial calculus
The (full) countdown µ-calculus is defined as for its scalar fragment, except that fixpoint
operators act on tuples (vectors) of formulas rather than on single formulas.

I Definition 2. The syntax of countdown µ-calculus is given as follows:

ϕ ::= x | > | ⊥ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | µαi x.ϕ | ναi x.ϕ | 〈τ〉ϕ | [τ ]ϕ

for 1 ≤ i ≤ n < ω, x = 〈x1, ..., xn〉 ∈ Varn, ϕ = 〈ϕ1, ..., ϕn〉 a tuple of formulas, τ ∈ Act and
α ∈ Ord∞.

I Definition 3. The meaning JϕKval ⊆M of a formula ϕ in a modelM under valuation val
is defined by induction the same way as for the scalar formulas except for the operators µαi
and ναi , in which case:

Jµαi x.ϕKval = πi(Fαµ ) and Jναi x.ϕKval = πi(Fαν )

where the monotone map F : (P(M))n → (P(M))n is given as:

F (H1, ...,Hn) = (Jϕ1Kval′ , ..., JϕnKval′)

for val′ = val[x1 7→ H1, ..., xn 7→ Hn] and πi : (P(M))n → P(M) is the i-th projection.

Note that operators µ∞ and ν∞ are equivalent to µ and ν from the classical µ-calculus.
Furthermore, for every ordinal α, the formula µα+1

i x.ψ is equivalent to

ψi[x1 7→ µα1x.ψ, . . . , xn 7→ µαnx.ψ]

and similarly for να+1. As a result, without loss of generality we may assume that in
countdown operators µα and να only limit ordinals α are used.

The countdown µ-calculus is semantically closed under negation in the same way as the
classical calculus, extending (2) with the straightforward µ̃αi x.ϕ = ναi x.ϕ̃ and ν̃αi x.ϕ = µαi x.ϕ̃.

In Section 6 we will compare the expressive power of the vectorial and scalar countdown
µ-calculus in detail. For now, let us show that Bekić principle (3) fails for countdown
operators:

I Example 4. An infinite word W ∈ Γω over the alphabet Γ = {a, b} can be seen as a model
for Act = Γ with ω as the set of points and with transition relations defined by:

n
τ→ m ⇐⇒ m = n+ 1 and Wn = τ.

For every regular language K ⊆ Γ∗ and x ∈ Var, it is straightforward to define a fixpoint
formula (in the classical µ-calculus, so without countdown operators) 〈K〉x that holds in a
point n, for a valuation val, if and only if there exists a word w ∈ K and a path in W labelled
with w that starts in n and ends in a point that belongs to val(x). Then, the formula:

ϕ = νω1 (x1, x2).(〈Γ∗〉x2, 〈a〉x2)

is true in a word W iff it contains arbitrarily long blocks of consecutive a’s. To see this,
observe that at the i-th step of approximation: (i) the second component (x2) contains a
point n iff the next i transitions are all labelled with a, and (ii) the first component (x1)
contains a point n iff the second component contains at least one point after n.

However, the following scalar formula constructed by analogy to the Bekić principle:

ψ = νωx1.〈Γ∗〉(νωx2.〈a〉x2)

is equivalent to 〈Γ∗〉(νωx2.〈a〉x2), and the formula under 〈Γ∗〉 holds in a point iff all the
future transitions from that point are labelled with a. Thus, ψ holds (in any point) iff the
word W is of the form Γ∗aω, and so ψ is not equivalent to ϕ.

MFCS 2022
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4 Countdown Games

The notion of a countdown game extends that of a parity game. As for parity games, it
assumes a fixed finite linear order of ranks R = R∃ t R∀. In addition, we fix a subset
D ⊆ R of nonstandard ranks; at positions with these ranks countdowns will occur. Denote
D∃ = D ∩R∃ and D∀ = D ∩R∀.

A countdown game consists of a set of positions V = V∃ t V∀ divided between players ∃ve
and ∀dam, an edge relation E ⊆ V × V , a labelling rank : V → R, and an initial counter
valuation ctrI : D → Ord. Each nonstandard rank has an associated counter.

Each game configuration consists of a position v ∈ V together with a counter valuation
ctr : D → Ord. We consider positional and countdown configurations, denoted respectively
〈v, ctr〉 and [v, ctr], with the following moves allowed:

From a positional configuration 〈v, ctr〉, the owner of v chooses an edge (v, w) ∈ E and
the game proceeds from the countdown configuration [w, ctr];
From a countdown configuration [v, ctr], the owner of r = rank(v) chooses a counter
valuation ctr′ such that:

ctr′(r′) = ctrI(r′) for r′ < r,
ctr′(r) < ctr(r) (if r is nonstandard),
ctr′(r′) = ctr(r′) for r′ > r,

and the game proceeds from the positional configuration 〈v, ctr′〉. In words: counters
for ranks lower than r are reset, the counter for r (if any) is decremented, and counters
for higher ranks are left unchanged. Note that if r is standard then there is no real
choice here: ctr′ is determined by ctr. And if r is nonstandard then the move amounts to
choosing an ordinal α < ctr(r).

Every play of the game alternates between positional and countdown configurations, and
in each move only one component of the configuration is modified. Therefore, although a
play is formally a sequence of configurations, it can be more succinctly represented as an
alternating sequence of positions and counter valuations:

π = v1ctr2v2ctr2v3ctr3 · · · (5)

This has the same length as the sequence of configurations, and we will call it the length
of the play. A phase of a game is a set of its finite plays that is convex with respect to the
prefix ordering.

In any configuration, if the player responsible for making the next move is stuck, (s)he
looses immediately. Otherwise, in an infinite play, the owner of the greatest rank appearing
infinitely often looses, as in parity games. Strategies and winning strategies are defined as
for classical parity games, as partial functions from finite plays to moves.

Given configuration γ, we denote the game initialized in the configuration γ by G, γ. The
default initial counter assignment is ctrI and the default initial mode is the positional one,
meaning that G, v stands for G, 〈v, ctrI〉.

Note that the only way the counters may interfere with a play is when a counter has
value 0 and so its owner cannot decrement it. It is therefore beneficial for a player to have
greater ordinals at his/her counters.

Countdown games are not positionally determined, in the sense that the players may
need to look at the counter values in order to choose a winning move (although they are
configurationally determined, since a countdown game G can be seen as a parity game with
configurations of G as its positions).
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5 Countdown Automata

Countdown automata are a stepping stone between formulas and games. A countdown
formula will define an automaton, which will then recognize a model in terms of a countdown
game. Since formulas can have free variables, for technical reasons we will also consider
automata with free variables. These variables resemble terminal states in that they can be
targets of transitions, but no transitions originate in them, and whether they accept or not
depends on an external valuation.

I Definition 5. A countdown automaton consists of:
a finite set of states Q = Q∃ tQ∀ divided between two players;
an initial state qI ∈ Q;
a transition function δ : Q → P(Q t Var) t (Act × (Q t Var)) (we call the left part
ε-transitions and the right one modal transitions);
an assignment of ranks rank : Q → R and an assignment of initial counter values
ctrI : D → Ord, as in a countdown game.

The language of an automaton is defined in terms of a countdown game, analogously to
parity games and parity automata.

I Definition 6. Fix an automaton A = (Q, qI , δ, rank, ctrI). Given a modelM, a valuation
val : Var → P(M) and a point mI ∈ M , we define the semantic game Gval(A) to be the
countdown game (V,E, rank′, ctrI) where positions are of the form V = M × (Q t Var) and
the edge relation E is defined as follows. In a position (m, q) for q ∈ Q:

if δ(q) ⊆ Q t Var, outgoing edges (called ε-edges, or ε-moves) are {((m, q), (m, z)) | z ∈
δ(q)},
if δ(q) = (τ, p), outgoing edges (modal edges, modal moves) are {((m, q), (n, p)) | m τ→ n}.

There are no outgoing edges from positions (m, x) for x ∈ Var.
For q ∈ Q, the owner of the position (m, q) is the owner of the state q, and rank′(m, q) =

rank(q). For x ∈ Var, the position (m, x) belongs to ∀dam if m ∈ val(x) and to ∃ve otherwise.
The rank rank′(m, x) can be set arbitrarily, as it does not affect the outcome of the game.
The initial counter assignment ctrI is kept the same.

The language JAKval ⊆ M of an automaton A is the set of all points m ∈ M for which
the configuration 〈(m, qI), ctrI〉 in the game Gval(A) is winning for ∃ve.

It is worth to mention that although in general countdown games are not positional,
one can show a much weaker but still useful fact: in the particular case of semantic games,
the winning player always has a strategy that does not look at the counters in the initial
pre-modal phase of the game (that is, before the first modal move).

The countdown calculus and countdown automata have the same expressive power, i.e.
there are language-preserving translations ϕ 7→ Aϕ and A 7→ ϕA between formulas and
automata. As in the classical setting, the link between formulas and automata is very useful
in establishing facts about the logic. For example, one can use game semantics to show that
every formula of the standard µ-ML can be transformed into an equivalent guarded one.
Thanks to the equivalence between countdown formulas and countdown automata, the same
is true for µα-ML.

We will now explain the translations between logic and automata in turn.

MFCS 2022
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5.1 From formulas to automata – Game Semantics
Every countdown formula ϕ ∈ µα-ML gives rise to a countdown automaton Aϕ such that
JϕKval = JAϕKval for every modelM and valuation val. Specifically, given a formula ϕ (with
some free variables), we define an automaton Aϕ = (Q, qI , δ, rank, ctrI) (over the same free
variables) as follows:

Q = SubFor(ϕ)−FreeVar(ϕ) is the set of all subformulas other than the free variables of ϕ
(without identifying different occurrences of identical subformulas, i.e., here a subformula
means a path in the syntactic tree of ϕ from the root of ϕ to the root node of the
subformula). Ownership of a state in Q depends on the topmost connective, with
∃ve owning ∨ and 〈τ〉 and ∀dam owning ∧ and [τ ]; ownership of fixpoint subformulas,
countdown subformulas and variables can be set arbitrarily as it will not matter;
qI = ϕ;
the transition function is defined by cases:
δ(θ1 ∨ θ2) = δ(θ1 ∧ θ2) = {θ1, θ2},
δ(〈τ〉θ) = δ([τ ]θ) = (τ, θ),
δ(ηαi x.θ) = {θi} (for η = µ or η = ν),
δ(x) = {θi}, where ηαj (x1, ..., xn).(θ1, ..., θn) is the (unique) subformula of ϕ binding x
with x = xi.

For the ranking function, assume that the lowest rank in R is standard and call it 0
(ownership of this rank does not matter). Then let rank assign 0 to all subformulas of ϕ
except for immediate subformulas of fixpoint operators. To those, assign ranks in such a
way that subformulas have strictly smaller ranks than their superformulas, and for every
subformula ηαi x.ϕ:

all formulas in the tuple ϕ have the same rank r,
r belongs to ∃ve if η = µ and to ∀dam if η = ν, and
if α =∞ then r is standard, otherwise it is nonstandard and ctrI(r) = α.

We denote Gval(ϕ) = Gval(Aϕ).

I Theorem 7 (Adequacy). For every modelM and valuation val, JϕKval = JAϕKval.

Proof (sketch). As with the classical mu-calculus, the proof proceeds by induction on the
complexity of the formula. The only new cases of µαx.ϕ and ναx.ϕ are proven by transfinite
induction on α. J

I Example 8. For Act = {τ}, consider the formula ϕ = νωx.3x from Example 1. The
automaton Aϕ has three states: Q = {ϕ,3x, x}, with ϕ the initial state, and the transition
function comprises two deterministic ε-transitions and one modal transition:

δ(ϕ) = {3x}, δ(3x) = (τ, x), δ(x) = {3x}.

The state 3x is owned by ∃ve; ownership of the other two states does not matter. The
automaton uses two ranks, 0 < 1, where 0 is standard and 1 is nonstandard, assigned to
states by: rank(ϕ) = rank(x) = 0 and rank(3x) = 1. Rank 1 is owned by ∀dam; ownership
of rank 0 does not matter. (Note how the state 3x is owned by ∃ve, but its rank is owned
by ∀dam). The initial counter value is ctrI(1) = ω.

Now consider any model M. Since Act has only one element, M is simply a directed
graph. The semantic game G(ϕ) onM (ϕ has no free variables, so neither has Aϕ and we
need not consider valuations val) has positions of the form (m, q) where m ∈M and q ∈ Q,
with ownership and rank inherited from q. Edges are of the form:

((m, ϕ), (m,3x)) and ((m, x), (m, ϕ)) – the ε-edges,



J. Kołodziejski and B. Klin 55:9

((m,3x), (n, x)) such that m→ n is an edge inM – the modal edges.
Configurations of the game arise from positions together with counter valuations; there is
only one nonstandard rank, so a counter valuation is simply an ordinal.

For a point m ∈ M, the default initial configuration of the game is the positional
configuration 〈(m, ϕ), ω〉. A play that begins in this configuration proceeds as follows:
1. The first move is deterministic, to the countdown configuration [(m,3x), ω].
2. ∀dam, as the owner of the rank of 3x, makes the next move: he chooses a number k < ω,

and the games moves to the positional configuration 〈(m,3x), k〉.
3. ∃ve owns the position, so she makes the next move: she chooses a point n ∈M such that

m τ→ n, and the game moves to the countdown configuration [(n, x), k].
4. The rank of x is standard, so in the next move the counter does not change and the game

moves to 〈(n, x), k〉. The next move is also deterministic, to the countdown configuration
[(n,3x), k]. The game then goes back to step 2. above, with k in place of ω.

From this it is clear that ∃ve wins from 〈(m, ϕ), ω〉 if and only if M has arbitrarily long
paths that begin in m, as stated in Example 1.

5.2 From automata to formulas
I Theorem 9. For every countdown automaton A there exists a countdown formula ϕA s.t.
JAKval = JϕAKval for every modelM and valuation val.

Proof (sketch). We sketch the construction of ϕA. For an automatonA = (Q, qI , δ, rank, ctrI),
by induction on r ∈ R we build a formula ψr,q for each q ∈ Q. Then we put ϕA = ψrmax,qI

.
Thus for the base case of the lowest rank r = 0:

if δ(s) = (τ, p) then for ψ0,s we put 〈τ〉xp if q belongs to ∃ve and [τ ]xp if q belongs to
∀dam,
if δ(s) ⊆ Q then for ψ0,s we put

∨
p∈δ(s) xp if q belongs to ∃ve and

∧
p∈δ(s) xp if q belongs

to ∀dam.

For the inductive step, let q1, ..., qd be all states in Q with rank r. For every qi define the
vectorial formula:

θi = ηαqi
(xq1 , ..., xqd

).(ψr,q1 , ..., ψr,qd
)

with α = ctrI(r) and η = µ if r belongs to ∃ve and η = ν if r belongs to ∀dam. Then put
ψr+1,q = ψr,q[xq1 7→ θ1, ..., xqd

7→ θd]. J

6 Vectorial vs. scalar calculus

In this section we investigate the relation between scalar and vectorial formulas. We have
already seen with Example 4 that unlike with standard fixpoints, the Bekić principle is not
valid in the countdown setting. Interestingly, scalar formulas correspond to automata with a
simple syntactic restriction.

I Proposition 10. Scalar countdown formulas and automata where every two states have
different ranks have equal expressive power.

Proof (sketch). Inspecting the translations between formulas and automata from Sections 5.1
and 5.2, it is evident that injectively ranked automata are translated to scalar formulas, and
that, although in our translation the choice of the assignment of ranks is not deterministic,
every scalar formula can be translated to an injectively ranked automaton. J
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Since the Bekić principle fails, a natural question is whether there is another way of
transforming vectorial formulas to scalar form (or, equivalently, arbitrary countdown automata
to injectively ranked ones). We shall give a negative answer in Theorem 11. However, before
we proceed, let us analyse the following example, which shows that scalar formulas are more
expressive than they may seem, covering in particular the property from Example 4.

6.1 Languages of unbounded infixes
Fix a regular language of finite words L ⊆ Γ∗. Let U(L) ⊆ Γω be the language of all infinite
words that contain arbitrarily long infixes from L. For instance, the language from Example
4 is U(a∗). We shall now show that U(L) can be defined in the countdown µ-calculus, first
by a vectorial formula, then by a scalar one.

Consider a finite deterministic automaton A = (Q, δ, qI , F ) that recognizes L. Let
δ+ : Γ+×Q→ Q be the unique inductive extension of the transition function δ : Γ×Q→ Q

to nonempty words. Define Kp,q = {w ∈ Γ+ | δ+(w, p) = q} the (regular) language of
nonempty words leading from p to q in A, and let Kp,F denote the union

⋃
q∈F Kp,q. By

the pigeonhole principle we have U(L) =
⋃
q∈Q Uq(L), where Uq(L) ⊆ Γω consists of words

such that for every n < ω, w has an infix wn = vIu1...unvF ∈ L s.t. (i) vI ∈ KqI ,q, (ii)
u1, ..., un ∈ Kq,q, and (iii) vF ∈ Kq,F . Then Uq(L) can be defined by a vectorial formula:

Uq(L) = Jνω1 (x1, x2).(〈Γ∗KqI ,q〉x2, 〈Kq,q〉x2 ∧ 〈Kq,F 〉>)K

where 〈K〉ψ is the formula as explained in Example 4. Indeed, the corresponding semantic
game on a word w proceeds as follows:
1. ∀dam chooses a number n < ω as the value of his only counter,
2. ∃ve skips a prefix v0vI ∈ Γ∗KqI ,q of w,
3. ∀dam decrements his counter;
4. ∃ve keeps moving through u1, u2, ... ∈ Kq,q so that after each step, some state in F is

reachable from q by some prefix of the remaining word. After each such choice of ui ∀dam
has to decrement his counter, and so ∃ve wins iff she can make at least n− 1 such steps.

The two different stages in which ∀dam’s counter is decremented reflect the two-phase
dynamics of the game: first ∀dam challenges ∃ve with a number, and then ∃ve shows that
she can provide an infix long enough.

It is more tricky to define the language Uq(L) with a scalar formula, but it turns out to
be possible. To this end, observe that without loss of generality we may restrict attention to
words w such that:
1. the infixes wn ∈ L start arbitrarily far in w;
2. each wn can be decomposed as vIu1...unvF ∈ L s.t. (i) vI ∈ KqI ,q, (ii) u1, ..., un ∈ Kq,q,

(iii) vF ∈ Kq,F , and additionally (iv) all ui begin with the same letter a ∈ Γ;
3. there are at least two distinct letters a, b ∈ Γ that appear infinitely often in w;
4. the first letter of w is b.
Indeed, for (1) note that otherwise wn start in the same position k for all n large enough.
But then even the stronger property “There exists a position k such that the run of A from
k visits q and F infinitely often” holds, and this is easily definable by a fixpoint formula.

Item (2) follows from the pigeonhole principle and the observation that in wn×|Γ| =
vIu1...un×|Γ|vF at least n ui’s begin with the same letter.

For (3) observe that otherwise w has a suffix aω for some a ∈ Γ, in which case membership
in Uq(L) is definable by a fixpoint formula. This is because an ultimately periodic word is
bisimilar to a finite model, and so every monotone map reaches its fixpoints in finitely many
steps, meaning that the countdown operator νω is equivalent to ν∞.
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m0m1m2···

n0n1n2···
Figure 1 The model M. Blue arrows represent edges labeled both with a and b, and pink arrows

are edges labeled only with b.

Finally, for (4) note that the language Uq(L) is closed under adding and removing finite
prefixes, and so if a formula ϕ defines Uq(L) ∩ bΓω, then the formula 〈Γ∗〉(〈b〉> ∧ ϕ) defines
Uq(L).

With this in mind, define:

ϕ = νωx.(〈b〉> ∧ 〈Γ∗KqI ,q〉(〈a〉> ∧ x)) ∨ (〈Kq,q〉(〈a〉> ∧ x) ∧ 〈a〉> ∧ 〈Kq,F 〉>).

Note how 〈b〉> ∧ x and 〈a〉> ∧ x replace x1 and x2 from the vectorial formula. Consider
the corresponding semantic game on a word w. Consider configurations of the game with
the main disjunction as the formula component. Every infinite play of the game must visit
such configurations infinitely often. In such a configuration, if the next letter in the model is
either a or b then ∃ve must choose the right or left disjunct respectively. In particular, once
the game reaches a configuration where 〈a〉> holds, it must also hold every time the variable
x in unraveled in the future. As a result, ∃ve wins from a configuration where 〈a〉> holds
against ∀dam’s counter n < ω iff there is u1...un+1vF starting in the current position such
that u1, ..., un+1 ∈ Kq,q, each ui starts with a, and vF ∈ Kq,F . Moreover, ∃ve wins from a
position where 〈b〉> holds, against ∀dam’s n+ 1 < ω, iff there is vI ∈ Γ∗KqI ,q starting in
the current position such that the next position after vI satisfies 〈a〉> and ∃ve wins from
there against n. Putting this together, we get that ∃ve wins from a position satisfying 〈b〉>
against n iff there is vIu1...unvF = wn as in condition (2) above. Since the game starts with
∀dam choosing an arbitrary n < ω, it follows that indeed ϕ defines Uq(L).

6.2 Greater expressive power of the vectorial calculus
We now show an example of a property that is definable in the vectorial countdown calculus
but not in the scalar one.

Fixing Act = {a, b}, consider a modelM = (M,
a→, b→) with points M = {mi, ni | i < ω},

and with exactly the edges: mi
a→ mj , ni

a→ mj and ni
b→ mj for all i > j; and mi

b→ mj for
all i and j. Note that the relation a→ is a subset of b→. The model is shown in Fig. 1.

Consider the vectorial sentence νω1 (x1, x2).(〈b〉x2, 〈a〉x2). This describes the property
there are arbitrarily long paths with labels in ba∗, and so it is true in all points mi and false in
all points ni. The following result immediately implies that this property cannot be defined
in the scalar countdown calculus:

MFCS 2022
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I Theorem 11. For every scalar sentence ϕ, there exists i < ω s.t. ni ∈ JϕK ⇐⇒ mi ∈ JϕK.

Proof (sketch). The heart of the proof is Proposition 10 which says that scalar formulas
correspond to injectively ranked automata. In such an automaton, whenever the counter
corresponding to rank r is modified, the automaton must be in the same state, which allows
the players to copy their strategies between different positions of the semantic game. J

7 Strictness of the countdown nesting hierarchy

A natural question is whether greater coutdown nesting, i.e. the maximal nesting of µα and
να operators with α 6= ∞, results in more expressive power. We give a positive answer:
under mild assumptions, the hierarchy is strict. From now on, focus on the monomodal case
(i.e. |Act| = 1) and we assume that the only ordinal used by formulas is ω.1

I Theorem 12. For every k < ω, formulas with countdown nesting k + 1 have strictly more
expressive power than those with nesting at most k.

In order to prove strictness, it suffices to prove it on a restricted class of models. We
will show that the hierarchy is strict already on the class of transitive, linear, well-founded
models – i.e. (up to isomorphism) ordinals.

More specifically, an ordinal κ ∈ Ord can be seen as a model with α→ β iff α > β. Since
κ is an induced submodel of κ′ whenever κ ≤ κ′, we can consider a single ordinal model with
κ big enough. For our purposes, the first uncountable ordinal ω1 is be sufficient.

We call a subset S ⊆ ω1 stable above α if either [α, ω1) ⊆ S or [α, ω1) ∩ S = ∅. A
stabilization point of a valuation val : Var→ P(ω1) is the least α ≤ ω1 such that interpretations
of all the variables are stable above α.

Observe that the set [ωk, ω1) ⊆ [0, ω1) can be defined by the following sentence with
countdown nesting k:

[ωk, ω1) = Jνωx1...ν
ωxk.3(

∧
i≤k xi)K. (6)

Indeed, the semantic game can be decomposed into two alternating phases: (i) ∀dam
chooses a tuple of finite ordinals (α1, ..., αk) ∈ ωk and (ii) ∃ve responds with a successor in
the model. Since at each step ∀dam has to pick a lexicographically smaller tuple (and he
starts by picking any tuple) it is easy to see that he wins iff the initial point is at least ωk.
We will show that for all k > 0, countdown nesting k is necessary to define this language.
The proof relies on the following lemma.

I Lemma 13. For every k < ω and a formula ϕ with countdown nesting k, there exists an
ordinal αϕ < ωk+1 such that ϕ stabilizes αϕ above the valuation, i.e. for every valuation val
stabilizing at β, JϕKval is stable above β + αϕ.

Proof (sketch). By induction on the complexity of the formula ϕ. The base case is immediate,
as for every x ∈ Var it suffices to take αx = 0. For propositional connectives and modal
operators we take αψ1∨ψ2 = αψ1∧ψ2 = max(αψ1 , αψ2) and α3ψ = α2ψ = αψ + 1. The most
interesting case are countdown and fixpoint operators. There the lemma follows from the
fact that for every formula ϕ there is a finite constant tϕ < ω such that for every valuation
val stable above κ, in the part [κ, ω1) of the model above κ, ϕ changes its truth value at
most tϕ times. J

1 This assumption could be replaced with a weaker requirement: there exists a maximal ordinal α that
we are allowed to use, and α is additively indecomposable.
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From this the theorem follows immediately, as the sentence ϕ has no free variables and
thus it stabilizes at αϕ < ωk+1 regardless of the valuation.

8 Decidability issues

We briefly discuss decidability issues in the countdown µ-calculus. Note that in a finite
model every monotone map reaches its fixpoints in finitely many steps. Hence, if we replace
every ηα in ϕ with η∞ and denote the resulting formula by ϕ̂, then in every finite model
JϕK = Jϕ̂K. It immediately follows that:

I Proposition 14. The model checking problem for the µα-ML, i.e. the problem: “Given
ϕ ∈ µα-ML and a point m in a (finite) modelM, does m |= ϕ?” is decidable.

Note that as a corollary we get that deciding the winner of a given (finite) countdown
game G is also decidable, as set of positions where ∃ve wins can be easily defined in µα-ML.

A more interesting problem is satisfiability: “Given ϕ ∈ µα-ML, is there a modelM and
a point m s.t. m |= ϕ?”.

I Proposition 15. A formula ϕ ∈ µα-ML has positive countdown if it does not use να with
α 6=∞. The satisfiability problem is decidable for such formulas.

Proof. Observe that for ϕ with positive countdown, in every model we have JϕK ⊆ Jϕ̂K.
Hence, if ϕ is satisfiable, then so is ϕ̂ – but since µ-ML has a finite model property, this
means that ϕ̂ has a finite model, where ϕ̂ and ϕ are equivalent. Thus, ϕ is satisfiable iff ϕ̂ is,
and the problem reduces to µ-ML satisfiability. J

Dualizing the above we get that the validity problem is decidable for formulas with negative
countdown, i.e. with α =∞ for every µα.
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