Countdown p-calculus

(with Automata and Games)

Jedrzej Kotodziejski (+ Bartek Klin)

MFCS 2022
Vienna

Powered by BeamerikZ

https://www.mimuw.edu.pl/~mskrzypczak/projects/beamerikz/

u-calculus = modal logic + fixpoints

boolean operations + O): Ox, x A Oy, ...

u-calculus = modal logic + fixpoints

boolean operations + O): Ox, x A Oy, ...

(x,y, ... € Var)

u-calculus = modal logic + fixpoints

boolean operations + O): Ox, x A Oy, ...

(x,y, ... € Var)

u-calculus = modal logic + fixpoints

» interpreted in vertices of a directed graph M = (M, —)
(labelled with interpretation S C M for each x € Var)

boolean operations + O): Ox, x A Oy, ...

(x,y, ... € Var)

u-calculus = modal logic + fixpoints

» interpreted in vertices of a directed graph M = (M, —)
(labelled with interpretation S C M for each x € Var)

» Ox’ means “there exists a child satisfying x”

boolean operations + O): Ox, x A Oy, ...

(x,y, ... € Var)

u-calculus = modal logic + fixpoints

vx.Ox, uy.xNA<y... «J

» interpreted in vertices of a directed graph M = (M, —)
(labelled with interpretation S C M for each x € Var)

» Ox’ means “there exists a child satisfying x”

» Ox induces an operation F : P(M) — P(M):

S {m | Inonn € S} = [Ox]=

» Ox induces an operation F : P(M) — P(M):

S {m | Inonn € S} = [Ox]=

» since x appears only positively in $x, F is monotone. ..

» Ox induces an operation F : P(M) — P(M):

S {m | Inonn € S} = [Ox]=

» since x appears only positively in $x, F is monotone. ..

SCS — F(S)CF(S J

» Ox induces an operation F : P(M) — P(M):

S {m | Inonn € S} = [Ox]=

» since x appears only positively in $x, F is monotone. ..

SCS — F(S)CF(S J

» ...and so F has the greatest and the least fixpoint!

» Ox induces an operation F : P(M) — P(M):

S {m | Inonn € S} = [Ox]=

» since x appears only positively in $x, F is monotone. ..

SCS — F(S)CF(S J

» ...and so F has the greatest and the least fixpoint!

[vx.Ox] = GFP.F /

» Ox induces an operation F : P(M) — P(M):

S {m | Inonn € S} = [Ox]=

» since x appears only positively in $x, F is monotone. ..

SCS — F(S)CF(S J

» ...and so F has the greatest and the least fixpoint!

[vx.Ox] = GFP.F / [ux.Ox] = LFP.F\

» we compute fixpoints by (transfinite) iteration of F:

» we compute fixpoints by (transfinite) iteration of F:

» we compute fixpoints by (transfinite) iteration of F:

» we compute fixpoints by (transfinite) iteration of F:

So=M S =F(S)="3a child"

» we compute fixpoints by (transfinite) iteration of F:

S=M Sy = F(So) ="F achild” S, = "arbitrarily long paths”

» we compute fixpoints by (transfinite) iteration of F:

S=M Sy = F(So) ="F achild” S, = "arbitrarily long paths” So41 = S.,42=GFP.F

» we compute fixpoints by (transfinite) iteration of F:

S=M Sy = F(So) ="F achild” S, = "arbitrarily long paths” So41 = S.,42=GFP.F

I
[vx.<x]

» we compute fixpoints by (transfinite) iteration of F:

add countdown operator Vx.OX to the syntax!

S=M Sy = F(So) ="F achild” S, = "arbitrarily long paths” So41 = S.,42=GFP.F

I
[vx.<x]

» we compute fixpoints by (transfinite) iteration of F:

add countdown operator Vx.OX to the syntax!

S=M Sy = F(So) ="F achild” S, = "arbitrarily long paths” So41 = S.,42=GFP.F

Il [l
[[VWX.OX]] [[VX.OX]]

» we compute fixpoints by (transfinite) iteration of F:

add countdown operator Vx.OX to the syntax!

countdown calculus = p-calculus + %

S=M Sy = F(So) ="F achild” S, = "arbitrarily long paths” So41 = S.,42=GFP.F

Il I
[1¥x.Ox] [vx.Ox]

p-calculus ~~ parity games

equivalent to alternating parity automata

p-calculus ~~ parity games

equivalent to alternating parity automata

p-calculus ~~ parity games

wining regions definable in logic

equivalent to alternating parity automata

countdown p-calculus ™~ parity games

wining regions definable in logic

equivalent to alternating parity automata
countdown!

countdown p-calculus ™~ parity games

countdown!

wining regions definable in logic

G=(V,E,rank: V —{0,...,d}, D)

countdown game = parity game + subset D C{0

.....

G=(V,E,rank: V —{0,...,d}, D)

countdown game = parity game + subset D C{0,....d}

3

nonstandard ranks

G=(V,E,rank: V —{0,...,d}, D)

countdown game = parity game + subset D C{0,....d}

» counter C, € {0,1,...w} for each r € D \

nonstandard ranks

G=(V,E,rank: V —{0,...,d}, D)

countdown game = parity game + subset D C{0,....d}

» counter C, € {0,1,...w} for each r € D \

» initially all C, equal w
nonstandard ranks

G=(V,E,rank: V —{0,...,d}, D)

countdown game = parity game + subset D C{0,....d}

» counter C, € {0,1,...w} for each r € D \

» initially all C, equal w

_ nonstandard ranks
» from (v, C,):

G=(V,E,rank: V —{0,...,d}, D)

countdown game = parity game + subset D C{0,....d}

» counter C, € {0,1,...w} for each r € D \

» initially all C, equal w

_ nonstandard ranks
» from (v, C,):

» first, owner of v chooses vEw,

G=(V,E,rank: V —{0,...,d}, D)

countdown game = parity game + subset D C{0,....d}

» counter C, € {0,1,...w} for each r € D \

» initially all C, equal w

_ nonstandard ranks
» from (v, C,):

» first, owner of v chooses vEw,

» then, counters are updated depending on rank(w):

G=(V,E,rank: V —{0,...,d}, D)

countdown game = parity game + subset D C{0,....d}
» counter C, € {0,1,...w} for each r € D \

» initially all C, equal w

_ nonstandard ranks
» from (v, C,):

» first, owner of v chooses vEw,

» then, counters are updated depending on rank(w):

» C' = C, for r > rank(w), [unchanged]

G=(V,E,rank: V —{0,...,d}, D)

countdown game = parity game + subset D C{0,....d}
» counter C, € {0,1,...w} for each r € D \

» initially all C, equal w

_ nonstandard ranks
» from (v, C,):

» first, owner of v chooses vEw,
» then, counters are updated depending on rank(w):

» C' = C, for r > rank(w), [unchanged]
» C' = w for r < rank(w), [reset]

G=(V,E,rank: V —{0,...,d}, D)

countdown game = parity game + subset D C{0,....d}
» counter C, € {0,1,...w} for each r € D \

» initially all C, equal w

_ nonstandard ranks
» from (v, C,):

» first, owner of v chooses vEw,

» then, counters are updated depending on rank(w):
» C' = C, for r > rank(w), [unchanged]
» C' = w for r < rank(w), [reset]
» if rank(w) € D, the owner of rank(w) chooses:

G=(V,E,rank: V —{0,...,d}, D)

countdown game = parity game + subset D C{0,....d}
» counter C, € {0,1,...w} for each r € D \

» initially all C, equal w

_ nonstandard ranks
» from (v, C,):

» first, owner of v chooses vEw,

» then, counters are updated depending on rank(w):
» C' = C, for r > rank(w), [unchanged]
» C' = w for r < rank(w), [reset]

» if rank(w) € D, the owner of rank(w) chooses:
Ciank(w) < Crank(w) [decremented|

G=(V,E,rank: V —{0,...,d}, D)

countdown game = parity game + subset D C{0,....d}
» counter C, € {0,1,...w} for each r € D \

» initially all C, equal w

_ nonstandard ranks
» from (v, C,):

» first, owner of v chooses vEw,

» then, counters are updated depending on rank(w):
» C' = C, for r > rank(w), [unchanged]
» C' = w for r < rank(w), [reset]

» if rank(w) € D, the owner of rank(w) chooses:
Ciank(w) < Crank(w) [decremented|

» and the game moves to (w, C’).

Game for x.$OXx:

Game for x.$OXx:

» dve picks a path vy — v» — ... vertex by vertex

Game for x.$OXx:

» dve picks a path vy — v» — ... vertex by vertex

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

Game for x.$OXx:

» dve picks a path vy — v» — ... vertex by vertex

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

Game for x.$OXx:

» dve picks a path vy — v» — ... vertex by vertex

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

Game for x.$OXx:

» dve picks a path vy — v» — ... vertex by vertex

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

Game for x.$OXx:

» dve picks a path vy — v» — ... vertex by vertex

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

Game for x.$OXx:

» dve picks a path vy — v» — ... vertex by vertex

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

Game for x.$OXx:

» dve picks a path vy — v» — ... vertex by vertex

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

X

Game for x.$OXx:

» dve picks a path vy — v» — ... vertex by vertex

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

dve wins G(vx.$Ox)
<~
3 infinite path

Game for x.$OXx:

» dve picks a path vy — v» — ... vertex by vertex

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

dve wins G(vx.$Ox)
<~
3 infinite path

Game for ¥ x.Ox:

Game for x.$OXx:

» dve picks a path vy — v» — ... vertex by vertex

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

dve wins G(vx.$Ox)
<~
3 infinite path

Game for ¥ x.Ox:

» same as for vx.Ox except that rank r is nonstandard

Game for x.$OXx:

» dve picks a path vy — v» — ... vertex by vertex

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

dve wins G(vx.$Ox)
<~
3 infinite path

Game for ¥ x.Ox:

» same as for vx.Ox except that rank r is nonstandard
» first, Vdam picks counter value C, = o« < w. Then, after each

Jve’'s move he decrements C,.

Game for x.$OXx:

» dve picks a path vy — v» — ... vertex by vertex

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

dve wins G(vx.$Ox)
<~ W
3 infinite path *

Game for ¥ x.Ox:

» same as for vx.Ox except that rank r is nonstandard
» first, Vdam picks counter value C, = o« < w. Then, after each

Jve’'s move he decrements C,.

Game for x.$OXx:

» dve picks a path vy — v» — ... vertex by vertex

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

dve wins G(vx.$Ox)
<~

3
3 infinite path -

Game for ¥ x.Ox:

» same as for vx.Ox except that rank r is nonstandard
» first, Vdam picks counter value C, = o« < w. Then, after each

Jve’'s move he decrements C,.

Game for x.$OXx:

» dve picks a path vy — v» — ... vertex by vertex

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

dve wins G(vx.$Ox)
<~
3 infinite path

3

Game for ¥ x.Ox:

» same as for vx.Ox except that rank r is nonstandard
» first, Vdam picks counter value C, = o« < w. Then, after each

Jve’'s move he decrements C,.

Game for x.$OXx:

» dve picks a path vy — v» — ... vertex by vertex

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

dve wins G(vx.$Ox)
<~
3 infinite path

Game for ¥ x.Ox:

» same as for vx.Ox except that rank r is nonstandard
» first, Vdam picks counter value C, = o« < w. Then, after each

Jve’'s move he decrements C,.

Game for x.$OXx:

» dve picks a path vy — v» — ... vertex by vertex

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

dve wins G(vx.$Ox)
<~
3 infinite path

Game for ¥ x.Ox:

» same as for vx.Ox except that rank r is nonstandard
» first, Vdam picks counter value C, = o« < w. Then, after each

Jve’'s move he decrements C,.

Game for x.$OXx:

» dve picks a path vy — v» — ... vertex by vertex

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

dve wins G(vx.Ox) , _1 ,
<
3 infinite path

Game for ¥ x.Ox:

» same as for vx.Ox except that rank r is nonstandard
» first, Vdam picks counter value C, = o« < w. Then, after each

Jve’'s move he decrements C,.

Game for x.$OXx:

» dve picks a path vy — v» — ... vertex by vertex

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

< |

dve wins G(vx.$Ox)
<~
3 infinite path

Game for ¥ x.Ox:

» same as for vx.Ox except that rank r is nonstandard
» first, Vdam picks counter value C, = o« < w. Then, after each

Jve’'s move he decrements C,.

Game for x.$OXx:

» dve picks a path vy — v» — ... vertex by vertex

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

dve wins G(vx.$Ox)
<~
3 infinite path

Game for ¥ x.Ox:

» same as for vx.Ox except that rank r is nonstandard
» first, Vdam picks counter value C, = o« < w. Then, after each

Jve’'s move he decrements C,.

Game for x.$OXx:

» dve picks a path vy — v» — ... vertex by vertex

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

*

dve wins G(vx.$Ox)
<~
3 infinite path

Game for ¥ x.Ox:

» same as for vx.Ox except that rank r is nonstandard
» first, Vdam picks counter value C, = o« < w. Then, after each

Jve’'s move he decrements C,.

Game for x.$OXx:

» dve picks a path vy — v» — ... vertex by vertex

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

*

dve wins G(vx.$Ox)
<~
3 infinite path

Game for ¥ x.Ox:

» same as for vx.Ox except that rank r is nonstandard
» first, Vdam picks counter value C, = o« < w. Then, after each

Jve’'s move he decrements C,.

Game for x.$OXx:

» dve picks a path vy — v» — ... vertex by vertex

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

dve wins G(vx.$Ox) ~ dve wins G(1*x.Ox)
< <~
3 infinite path 3 arbitrarily long paths

Game for ¥ x.Ox:

» same as for vx.Ox except that rank r is nonstandard
» first, Vdam picks counter value C, = o« < w. Then, after each

Jve’'s move he decrements C,.

equivalent to alternating parity automata
countdown!

countdown p-calculus ™~ parity games
countdown!

wining regions definable in logic

equivalent to alternating parity automata
countdown!

countdown p-calculus ™~ parity games
countdown!

vectorial, i.e. multiple

variables bound simultaneously

wining regions definable in logic

equivalent to alternating parity automata
countdown!

countdown p-calculus ™~ parity games
countdown!

L _ A/;Dnt for pu-ML
vectorial, i.e. multiple

variables bound simultaneously

wining regions definable in logic

equivalent to alternating parity automata
countdown!

countdown p-calculus ™~ parity games
countdown!

L _ A/;Dnt for pu-ML
vectorial, i.e. multiple

variables bound simultaneously

\bwor (-MLIH!

wining regions definable in logic

Some facts and results

Some facts and results

e (finite) model checking is decidable

Some facts and results

e (finite) model checking is decidable

e satisfiability decidable for fragments (conjecture: full logic decidable)

Some facts and results

e (finite) model checking is decidable
e satisfiability decidable for fragments (conjecture: full logic decidable)

e low topological complexity, so provably not closed under projections

Some facts and results

e (finite) model checking is decidable
e satisfiability decidable for fragments (conjecture: full logic decidable)
e low topological complexity, so provably not closed under projections

e fragment without nesting of countdown operators = certain multi-valued pu-ML

Some facts and results

(finite) model checking is decidable
satisfiability decidable for fragments (conjecture: full logic decidable)
low topological complexity, so provably not closed under projections

fragment without nesting of countdown operators = certain multi-valued p-ML

p-ML, but with logical values from [0, 1] instead of just {0,1}

and the function t — %t as an extra unary connective

Some facts and results

(finite) model checking is decidable

satisfiability decidable for fragments (conjecture: full logic decidable)

low topological complexity, so provably not closed under projections

fragment without nesting of countdown operators = certain multi-valued p-ML

more nesting of countdown operators = more power

p-ML, but with logical values from [0, 1] instead of just {0,1}

and the function t — %t as an extra unary connective

Some facts and results

(finite) model checking is decidable
satisfiability decidable for fragments (conjecture: full logic decidable)
low topological complexity, so provably not closed under projections

fragment without nesting of countdown operators = certain multi-valued p-ML

more nesting of countdown operators = more power

nothing special about w, take your favourite ordinal instead!

p-ML, but with logical values from [0, 1] instead of just {0,1}

and the function t — %t as an extra unary connective

Thank you!)

& craiyon

Al model drawing images from any prompt!

Countdown Logic automata and
games

