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» Ox induces an operation F : P(M) — P(M):

S {m | Inonn € S} = [Ox]=

» since x appears only positively in $x, F is monotone. ..

SCS — F(S)CF(S J

» ...and so F has the greatest and the least fixpoint!

[vx.Ox] = GFP.F / [ux.Ox] = LFP.F\
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» we compute fixpoints by (transfinite) iteration of F:

add countdown operator Vx.OX to the syntax!

countdown calculus = p-calculus + %

S=M Sy = F(So) ="F achild” S, = "arbitrarily long paths” So41 = S.,42=GFP.F

Il I
[1¥x.Ox] [vx.Ox]
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G=(V,E,rank: V —{0,...,d}, D)

countdown game = parity game + subset D C{0,....d}
» counter C, € {0,1,...w} for each r € D \

» initially all C, equal w

_ nonstandard ranks
» from (v, C,):

» first, owner of v chooses vEw,

» then, counters are updated depending on rank(w):
» C' = C, for r > rank(w), [unchanged]
» C' = w for r < rank(w), [reset]

» if rank(w) € D, the owner of rank(w) chooses:
Ciank(w) < Crank(w) [decremented|

» and the game moves to (w, C’).
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Game for x.$OXx:

» dve picks a path vy — v» — ... vertex by vertex

» one rank r, belonging to Ydam (meaning: he looses all infinite plays)

dve wins G(vx.$Ox) ~ dve wins G(1*x.Ox)
< <~
3 infinite path 3 arbitrarily long paths

Game for ¥ x.Ox:

» same as for vx.Ox except that rank r is nonstandard
» first, Vdam picks counter value C, = o« < w. Then, after each

Jve’'s move he decrements C,.



equivalent to alternating parity automata
countdown!

countdown p-calculus ™~ parity games
countdown!

wining regions definable in logic



equivalent to alternating parity automata
countdown!

countdown p-calculus ™~ parity games
countdown!

vectorial, i.e. multiple

variables bound simultaneously

wining regions definable in logic



equivalent to alternating parity automata
countdown!

countdown p-calculus ™~ parity games
countdown!

L _ A/;Dnt for pu-ML
vectorial, i.e. multiple

variables bound simultaneously

wining regions definable in logic



equivalent to alternating parity automata
countdown!

countdown p-calculus ™~ parity games
countdown!

L _ A/;Dnt for pu-ML
vectorial, i.e. multiple

variables bound simultaneously

\bwor (-MLIH!
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Some facts and results

(finite) model checking is decidable
satisfiability decidable for fragments (conjecture: full logic decidable)
low topological complexity, so provably not closed under projections

fragment without nesting of countdown operators = certain multi-valued p-ML

more nesting of countdown operators = more power

nothing special about w, take your favourite ordinal instead!

p-ML, but with logical values from [0, 1] instead of just {0,1}

and the function t — %t as an extra unary connective
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