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The question: separability

• Given contradictory φ and φ′ in µ-ML...

• ... is there a separator ψ in ML? Can it be computed?

Example

φ = µx .a ∧3(b ∨ x)
�some path belongs to a+b�

φ′ = νy .c ∧2x
�all (�nite) paths belong to c∗�

ψ = a
�root satis�es a�

Non-example

φ = φWF = µx .2x
�no in�nite paths�

φ′ = ¬φWF

�there is an in�nite path�

φ entails no modal formulae!
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• For every formulae φ and ψ:

ψ separates φ from its negation ¬φ

⇐⇒
φ and ψ are equivalent.

• Hence, L-de�nability: �is given φ expressible in L?�

• reduces to L-separability.
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• Moreover, n exponential in k = |φ| + |φ′| su�ces.
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• Given separable φ and φ′, how to compute a separator ψ?

• Idea: �rst compute φ, φ′ 7→ bound n on modal depth...

• ...then compute ψ based on φ and n only.

• We actually compute ψn that entails all consequences of φ in MLn.

• (MLn = modal formulae of modal depth n)
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n-uniform consequences

For φ ∈ µ-ML and n ∈ N we call ψn ∈ MLn

an n-uniform consequence of φ if:

⇐⇒φ |= θ ψn|= θ

for all θ ∈ MLn.

• That is: ψn has a modal depth n, is a consequence of φ,

• and entails all other consequences θ of φ whose modal depth is n.

• All n-uniform consequences of φ are equivalent.

• If φ, φ′ have (any) separator of depth n then ψn is a separator.
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Constructing n-uniform consequences

• Given φ ∈ µ-ML, we construct its n-uniform consequence ψn.
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The word models

• Example: L = even number of a's and length n

1 n
w :

n
2

u v

• w ∈ L if both u and v or none of them has even number of a's:

φ2n
Even

= (φn
Even

∧3nφn
Even

) ∨ (¬φn
Even

∧3n¬φn
Even

)

• φn
Even

(single!) exponential in n.

• For arbitrary automaton: run on w = part on u and on v



The word models

• Example: L = even number of a's and length n

1 n
w :

n
2

u v

• w ∈ L if both u and v or none of them has even number of a's:

φ2n
Even

= (φn
Even

∧3nφn
Even

) ∨ (¬φn
Even

∧3n¬φn
Even

)

• φn
Even

(single!) exponential in n.

• For arbitrary automaton: run on w = part on u and on v



The word models

• Example: L = even number of a's and length n

1 n
w :

n
2

u v

• w ∈ L if both u and v or none of them has even number of a's:

φ2n
Even

= (φn
Even

∧3nφn
Even

) ∨ (¬φn
Even

∧3n¬φn
Even

)

• φn
Even

(single!) exponential in n.

• For arbitrary automaton: run on w = part on u and on v



The word models

• Example: L = even number of a's and length n

1 n
w :

n
2

u v

• w ∈ L if both u and v or none of them has even number of a's:

φ2n
Even

= (φn
Even

∧3nφn
Even

) ∨ (¬φn
Even

∧3n¬φn
Even

)

• φn
Even

(single!) exponential in n.

• For arbitrary automaton: run on w = part on u and on v



The word models

• Example: L = even number of a's and length n

1 n
w :

n
2

u v

• w ∈ L if both u and v or none of them has even number of a's:

φ2n
Even

= (φn
Even

∧3nφn
Even

) ∨ (¬φn
Even

∧3n¬φn
Even

)

• φn
Even

(single!) exponential in n.

• For arbitrary automaton: run on w = part on u and on v



The word models

• Example: L = even number of a's and length n

1 n
w :

n
2

u v

• w ∈ L if both u and v or none of them has even number of a's:

φ2n
Even

= (φn
Even

∧3nφn
Even

) ∨ (¬φn
Even

∧3n¬φn
Even

)

• φn
Even

(single!) exponential in n.

• For arbitrary automaton: run on w = part on u and on v



The word models

• Example: L = even number of a's and length n

1 n
w :

n
2

u v

• w ∈ L if both u and v or none of them has even number of a's:

φ2n
Even

= (φn
Even

∧3nφn
Even

) ∨ (¬φn
Even

∧3n¬φn
Even

)

• φn
Even

(single!) exponential in n.

• For arbitrary automaton: run on w = part on u and on v



The word models

• Example: L = even number of a's and length n

1 n
w :

n
2

u v

• w ∈ L if both u and v or none of them has even number of a's:

φ2n
Even

= (φn
Even

∧3nφn
Even

) ∨ (¬φn
Even

∧3n¬φn
Even

)

• φn
Even

(single!) exponential in n.

• For arbitrary automaton: run on w = part on u and on v



Relativization

• Assume classess of models C and D and formula θ such that

• θ de�nes D in C: M ∈ D i� M ∈ C and M |= φ.

C

D

Finitely

branching

models

θ = φWF

Finite

trees

• Then: ψ separates φ from φ′ over D i� it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over �nite words

• i� it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ
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• Separability over arbitrary models is ExpTime-complete.
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• We compute (optimal) exponential separators over words.

• This is optimal as well.

• Same for �nite words and in�nite words (im place of mixed ones).
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