
Modal Separability of Fixpoint Formulae

Jean Christoph Jung

&

J¦drzej Koªodziejski

19 VI 2024

Bergen

Powered by BeamerikZ

https://www.mimuw.edu.pl/~mskrzypczak/projects/beamerikz/

Separators

complicated

formulae φ |= ¬φ′
simple ψ s.t.

φ|=ψ|= ¬φ′?

in expressive logic L+ in tamed logic L⊆L+

A
ll
m
od

el
s

Colored

directed

graphs

with

chosen

point

(root)

φ

φ′

ψ

simple explanation of

contradiction

Separators

complicated

formulae φ |= ¬φ′

simple ψ s.t.

φ|=ψ|= ¬φ′?

in expressive logic L+ in tamed logic L⊆L+

A
ll
m
od

el
s

Colored

directed

graphs

with

chosen

point

(root)

φ

φ′

ψ

simple explanation of

contradiction

Separators

complicated

formulae φ |= ¬φ′
simple ψ s.t.

φ|=ψ|= ¬φ′?

in expressive logic L+ in tamed logic L⊆L+

A
ll
m
od

el
s

Colored

directed

graphs

with

chosen

point

(root)

φ

φ′

ψ

simple explanation of

contradiction

Separators

complicated

formulae φ |= ¬φ′
simple ψ s.t.

φ|=ψ|= ¬φ′?

in expressive logic L+

in tamed logic L⊆L+

A
ll
m
od

el
s

Colored

directed

graphs

with

chosen

point

(root)

φ

φ′

ψ

simple explanation of

contradiction

Separators

complicated

formulae φ |= ¬φ′
simple ψ s.t.

φ|=ψ|= ¬φ′?

in expressive logic L+ in tamed logic L⊆L+

A
ll
m
od

el
s

Colored

directed

graphs

with

chosen

point

(root)

φ

φ′

ψ

simple explanation of

contradiction

Separators

complicated

formulae φ |= ¬φ′
simple ψ s.t.

φ|=ψ|= ¬φ′?

in expressive logic L+ in tamed logic L⊆L+

A
ll
m
od

el
s

Colored

directed

graphs

with

chosen

point

(root)

φ

φ′

ψ

simple explanation of

contradiction

Separators

complicated

formulae φ |= ¬φ′
simple ψ s.t.

φ|=ψ|= ¬φ′?

in expressive logic L+ in tamed logic L⊆L+

A
ll
m
od

el
s

Colored

directed

graphs

with

chosen

point

(root)

φ

φ′

ψ

simple explanation of

contradiction

Separators

complicated

formulae φ |= ¬φ′
simple ψ s.t.

φ|=ψ|= ¬φ′?

in expressive logic L+ in tamed logic L⊆L+

A
ll
m
od

el
s

Colored

directed

graphs

with

chosen

point

(root)

φ

φ′

ψ

simple explanation of

contradiction

Separators

complicated

formulae φ |= ¬φ′
simple ψ s.t.

φ|=ψ|= ¬φ′?

in expressive logic L+ in tamed logic L⊆L+

A
ll
m
od

el
s

Colored

directed

graphs

with

chosen

point

(root)

φ

φ′

ψ

simple explanation of

contradiction

Separators

complicated

formulae φ |= ¬φ′
simple ψ s.t.

φ|=ψ|= ¬φ′?

in expressive logic L+ in tamed logic L⊆L+

A
ll
m
od

el
s

Colored

directed

graphs

with

chosen

point

(root)

φ

φ′

ψ

simple explanation of

contradiction

Separators

complicated

formulae φ |= ¬φ′
simple ψ s.t.

φ|=ψ|= ¬φ′?

in expressive logic L+ in tamed logic L⊆L+

A
ll
m
od

el
s

Colored

directed

graphs

with

chosen

point

(root)

φ

φ′

ψ

simple explanation of

contradiction

Example

some path

starting in root

has labels in:

a+b

every (�nte) path

starting in root

has labels in

c∗

root
labelled

a

Example

some path

starting in root

has labels in:

a+b

every (�nte) path

starting in root

has labels in

c∗

root
labelled

a

Example

some path

starting in root

has labels in:

a+b

every (�nte) path

starting in root

has labels in

c∗

root
labelled

a

Example

some path

starting in root

has labels in:

a+b

every (�nte) path

starting in root

has labels in

c∗

root
labelled

a

Example

some path

starting in root

has labels in:

a+b

every (�nte) path

starting in root

has labels in

c∗

root
labelled

a

The logics L and L+

L = modal logic ML

syntax:

a | ¬φ | φ ∨ ψ | 3φ

semantics

atomic
propositions a ∈ At

φ true in some child

L+ = µ-ML = ML + �xpoints

| x | µx .φ

The logics L and L+

L = modal logic ML

syntax:

a | ¬φ | φ ∨ ψ | 3φ

semantics

atomic
propositions a ∈ At

φ true in some child

L+ = µ-ML = ML + �xpoints

| x | µx .φ

The logics L and L+

L = modal logic ML

syntax:

a | ¬φ | φ ∨ ψ | 3φ

semantics

atomic
propositions a ∈ At

φ true in some child

L+ = µ-ML = ML + �xpoints

| x | µx .φ

The logics L and L+

L = modal logic ML

syntax:

a | ¬φ | φ ∨ ψ | 3φ

semantics

atomic
propositions a ∈ At

φ true in some child

L+ = µ-ML = ML + �xpoints

| x | µx .φ

The logics L and L+

L = modal logic ML

syntax:

a | ¬φ | φ ∨ ψ | 3φ

semantics

atomic
propositions a ∈ At

φ true in some child

L+ = µ-ML = ML + �xpoints

| x | µx .φ

The logics L and L+

L = modal logic ML

syntax:

a | ¬φ | φ ∨ ψ | 3φ

semantics

atomic
propositions a ∈ At

φ true in some child

L+ = µ-ML = ML + �xpoints

| x | µx .φ

The logics L and L+

L = modal logic ML

syntax:

a | ¬φ | φ ∨ ψ | 3φ

semantics

atomic
propositions a ∈ At

φ true in some child

L+ = µ-ML = ML + �xpoints

| x | µx .φ

The logics L and L+

L = modal logic ML

syntax:

a | ¬φ | φ ∨ ψ | 3φ

semantics

atomic
propositions a ∈ At

φ true in some child

L+ = µ-ML = ML + �xpoints

| x | µx .φ

The logics L and L+

L = modal logic ML

syntax:

a | ¬φ | φ ∨ ψ | 3φ

semantics

atomic
propositions a ∈ At

φ true in some child

L+ = µ-ML = ML + �xpoints

| x | µx .φ

The semantics of µ-ML = ML + �xpoints

µ-ML

=

Automata

=

MSO

The semantics of µ-ML = ML + �xpoints

µ-ML

=

Automata

=

MSO

Translations

µ-ML formulae parity automata

EXPONENTIAL

EXPONENTIAL

=

Translations

µ-ML formulae parity automata

EXPONENTIAL

EXPONENTIAL

=

Translations

µ-ML formulae parity automata

EXPONENTIAL

EXPONENTIAL

=

Translations

µ-ML formulae parity automata

EXPONENTIAL

EXPONENTIAL

=

Translations

µ-ML formulae parity automata

EXPONENTIAL

EXPONENTIAL

=

The question: separability

• Given contradictory φ and φ′ in µ-ML...

• ... is there a separator ψ in ML? Can it be computed?

Example

φ = µx .a ∧3(b ∨ x)
�some path belongs to a+b�

φ′ = νy .c ∧2x
�all (�nite) paths belong to c∗�

ψ = a
�root satis�es a�

Non-example

φ = φWF = µx .2x
�no in�nite paths�

φ′ = ¬φWF

�there is an in�nite path�

φ entails no modal formulae!

The question: separability

• Given contradictory φ and φ′ in µ-ML...

• ... is there a separator ψ in ML? Can it be computed?

Example

φ = µx .a ∧3(b ∨ x)
�some path belongs to a+b�

φ′ = νy .c ∧2x
�all (�nite) paths belong to c∗�

ψ = a
�root satis�es a�

Non-example

φ = φWF = µx .2x
�no in�nite paths�

φ′ = ¬φWF

�there is an in�nite path�

φ entails no modal formulae!

The question: separability

• Given contradictory φ and φ′ in µ-ML...

• ... is there a separator ψ in ML? Can it be computed?

Example

φ = µx .a ∧3(b ∨ x)
�some path belongs to a+b�

φ′ = νy .c ∧2x
�all (�nite) paths belong to c∗�

ψ = a
�root satis�es a�

Non-example

φ = φWF = µx .2x
�no in�nite paths�

φ′ = ¬φWF

�there is an in�nite path�

φ entails no modal formulae!

The question: separability

• Given contradictory φ and φ′ in µ-ML...

• ... is there a separator ψ in ML? Can it be computed?

Example

φ = µx .a ∧3(b ∨ x)
�some path belongs to a+b�

φ′ = νy .c ∧2x
�all (�nite) paths belong to c∗�

ψ = a
�root satis�es a�

Non-example

φ = φWF = µx .2x
�no in�nite paths�

φ′ = ¬φWF

�there is an in�nite path�

φ entails no modal formulae!

The question: separability

• Given contradictory φ and φ′ in µ-ML...

• ... is there a separator ψ in ML? Can it be computed?

Example

φ = µx .a ∧3(b ∨ x)
�some path belongs to a+b�

φ′ = νy .c ∧2x
�all (�nite) paths belong to c∗�

ψ = a
�root satis�es a�

Non-example

φ = φWF = µx .2x
�no in�nite paths�

φ′ = ¬φWF

�there is an in�nite path�

φ entails no modal formulae!

The question: separability

• Given contradictory φ and φ′ in µ-ML...

• ... is there a separator ψ in ML? Can it be computed?

Example

φ = µx .a ∧3(b ∨ x)
�some path belongs to a+b�

φ′ = νy .c ∧2x
�all (�nite) paths belong to c∗�

ψ = a
�root satis�es a�

Non-example

φ = φWF = µx .2x
�no in�nite paths�

φ′ = ¬φWF

�there is an in�nite path�

φ entails no modal formulae!

The question: separability

• Given contradictory φ and φ′ in µ-ML...

• ... is there a separator ψ in ML? Can it be computed?

Example

φ = µx .a ∧3(b ∨ x)
�some path belongs to a+b�

φ′ = νy .c ∧2x
�all (�nite) paths belong to c∗�

ψ = a
�root satis�es a�

Non-example

φ = φWF = µx .2x
�no in�nite paths�

φ′ = ¬φWF

�there is an in�nite path�

φ entails no modal formulae!

The question: separability

• Given contradictory φ and φ′ in µ-ML...

• ... is there a separator ψ in ML? Can it be computed?

Example

φ = µx .a ∧3(b ∨ x)
�some path belongs to a+b�

φ′ = νy .c ∧2x
�all (�nite) paths belong to c∗�

ψ = a
�root satis�es a�

Non-example

φ = φWF = µx .2x
�no in�nite paths�

φ′ = ¬φWF

�there is an in�nite path�

φ entails no modal formulae!

The question: separability

• Given contradictory φ and φ′ in µ-ML...

• ... is there a separator ψ in ML? Can it be computed?

Example

φ = µx .a ∧3(b ∨ x)
�some path belongs to a+b�

φ′ = νy .c ∧2x
�all (�nite) paths belong to c∗�

ψ = a
�root satis�es a�

Non-example

φ = φWF = µx .2x
�no in�nite paths�

φ′ = ¬φWF

�there is an in�nite path�

φ entails no modal formulae!

The question: separability

• Given contradictory φ and φ′ in µ-ML...

• ... is there a separator ψ in ML? Can it be computed?

Example

φ = µx .a ∧3(b ∨ x)
�some path belongs to a+b�

φ′ = νy .c ∧2x
�all (�nite) paths belong to c∗�

ψ = a
�root satis�es a�

Non-example

φ = φWF = µx .2x
�no in�nite paths�

φ′ = ¬φWF

�there is an in�nite path�

φ entails no modal formulae!

The question: separability

• Given contradictory φ and φ′ in µ-ML...

• ... is there a separator ψ in ML? Can it be computed?

Example

φ = µx .a ∧3(b ∨ x)
�some path belongs to a+b�

φ′ = νy .c ∧2x
�all (�nite) paths belong to c∗�

ψ = a
�root satis�es a�

Non-example

φ = φWF = µx .2x
�no in�nite paths�

φ′ = ¬φWF

�there is an in�nite path�

φ entails no modal formulae!

Separability generalizes de�nability

• For every formulae φ and ψ:

ψ separates φ from its negation ¬φ

⇐⇒
φ and ψ are equivalent.

• Hence, L-de�nability: �is given φ expressible in L?�

• reduces to L-separability.

Separability generalizes de�nability

• For every formulae φ and ψ:

ψ separates φ from its negation ¬φ

⇐⇒
φ and ψ are equivalent.

• Hence, L-de�nability: �is given φ expressible in L?�

• reduces to L-separability.

Separability generalizes de�nability

• For every formulae φ and ψ:

ψ separates φ from its negation ¬φ

⇐⇒
φ and ψ are equivalent.

• Hence, L-de�nability: �is given φ expressible in L?�

• reduces to L-separability.

Separability generalizes de�nability

• For every formulae φ and ψ:

ψ separates φ from its negation ¬φ

⇐⇒
φ and ψ are equivalent.

• Hence, L-de�nability: �is given φ expressible in L?�

• reduces to L-separability.

Separability generalizes de�nability

• For every formulae φ and ψ:

ψ separates φ from its negation ¬φ

⇐⇒
φ and ψ are equivalent.

• Hence, L-de�nability: �is given φ expressible in L?�

• reduces to L-separability.

Separability generalizes de�nability

• For every formulae φ and ψ:

ψ separates φ from its negation ¬φ

⇐⇒
φ and ψ are equivalent.

• Hence, L-de�nability: �is given φ expressible in L?�

• reduces to L-separability.

Separability generalizes de�nability

• For every formulae φ and ψ:

ψ separates φ from its negation ¬φ

⇐⇒
φ and ψ are equivalent.

• Hence, L-de�nability: �is given φ expressible in L?�

• reduces to L-separability.

Deciding Separability

For all µ-ML-formulae φ and φ′ and n ∈ N:

φ and φ′ have a modal
separator ψ with modal depth n

⇐⇒
No M,M′ identical up to depth
n with M |= φ and M′ |= φ′

Deciding Separability

For all µ-ML-formulae φ and φ′ and n ∈ N:

φ and φ′ have a modal
separator ψ with modal depth n

⇐⇒
No M,M′ identical up to depth
n with M |= φ and M′ |= φ′

Deciding Separability

For all µ-ML-formulae φ and φ′ and n ∈ N:

φ and φ′ have a modal
separator ψ with modal depth n

⇐⇒
No M,M′ identical up to depth
n with M |= φ and M′ |= φ′

Deciding Separability

For all µ-ML-formulae φ and φ′ and n ∈ N:

φ and φ′ have a modal
separator ψ with modal depth n

⇐⇒
No M,M′ identical up to depth
n with M |= φ and M′ |= φ′

Deciding Separability

No M,M′ identical up to depth
n with M |= φ and M |= φ′

Is there n

such that: ?
• Existence of such n ∈ N easily reduces to MSO over in�nite trees.

• Thus: ML-separability of µ-ML formulae is decidable

• With a bit of care (and a bit of automata): ExpTime!

• Moreover, n exponential in k = |φ| + |φ′| su�ces.

• Hence, separators of modal depth n exponential in k su�ce.

Deciding Separability

No M,M′ identical up to depth
n with M |= φ and M |= φ′

Is there n

such that: ?
• Existence of such n ∈ N easily reduces to MSO over in�nite trees.

• Thus: ML-separability of µ-ML formulae is decidable

• With a bit of care (and a bit of automata): ExpTime!

• Moreover, n exponential in k = |φ| + |φ′| su�ces.

• Hence, separators of modal depth n exponential in k su�ce.

Deciding Separability

No M,M′ identical up to depth
n with M |= φ and M |= φ′

Is there n

such that: ?

• Existence of such n ∈ N easily reduces to MSO over in�nite trees.

• Thus: ML-separability of µ-ML formulae is decidable

• With a bit of care (and a bit of automata): ExpTime!

• Moreover, n exponential in k = |φ| + |φ′| su�ces.

• Hence, separators of modal depth n exponential in k su�ce.

Deciding Separability

No M,M′ identical up to depth
n with M |= φ and M |= φ′

Is there n

such that: ?
• Existence of such n ∈ N easily reduces to MSO over in�nite trees.

• Thus: ML-separability of µ-ML formulae is decidable

• With a bit of care (and a bit of automata): ExpTime!

• Moreover, n exponential in k = |φ| + |φ′| su�ces.

• Hence, separators of modal depth n exponential in k su�ce.

Deciding Separability

No M,M′ identical up to depth
n with M |= φ and M |= φ′

Is there n

such that: ?
• Existence of such n ∈ N easily reduces to MSO over in�nite trees.

• Thus: ML-separability of µ-ML formulae is decidable

• With a bit of care (and a bit of automata): ExpTime!

• Moreover, n exponential in k = |φ| + |φ′| su�ces.

• Hence, separators of modal depth n exponential in k su�ce.

Deciding Separability

No M,M′ identical up to depth
n with M |= φ and M |= φ′

Is there n

such that: ?
• Existence of such n ∈ N easily reduces to MSO over in�nite trees.

• Thus: ML-separability of µ-ML formulae is decidable

• With a bit of care (and a bit of automata): ExpTime!

• Moreover, n exponential in k = |φ| + |φ′| su�ces.

• Hence, separators of modal depth n exponential in k su�ce.

Deciding Separability

No M,M′ identical up to depth
n with M |= φ and M |= φ′

Is there n

such that: ?
• Existence of such n ∈ N easily reduces to MSO over in�nite trees.

• Thus: ML-separability of µ-ML formulae is decidable

• With a bit of care (and a bit of automata): ExpTime!

• Moreover, n exponential in k = |φ| + |φ′| su�ces.

• Hence, separators of modal depth n exponential in k su�ce.

Deciding Separability

No M,M′ identical up to depth
n with M |= φ and M |= φ′

Is there n

such that: ?
• Existence of such n ∈ N easily reduces to MSO over in�nite trees.

• Thus: ML-separability of µ-ML formulae is decidable

• With a bit of care (and a bit of automata): ExpTime!

• Moreover, n exponential in k = |φ| + |φ′| su�ces.

• Hence, separators of modal depth n exponential in k su�ce.

Computing Separators

• Given separable φ and φ′, how to compute a separator ψ?

• Idea: �rst compute φ, φ′ 7→ bound n on modal depth...

• ...then compute ψ based on φ and n only.

• We actually compute ψn that entails all consequences of φ in MLn.

• (MLn = modal formulae of modal depth n)

Computing Separators

• Given separable φ and φ′, how to compute a separator ψ?

• Idea: �rst compute φ, φ′ 7→ bound n on modal depth...

• ...then compute ψ based on φ and n only.

• We actually compute ψn that entails all consequences of φ in MLn.

• (MLn = modal formulae of modal depth n)

Computing Separators

• Given separable φ and φ′, how to compute a separator ψ?

• Idea: �rst compute φ, φ′ 7→ bound n on modal depth...

• ...then compute ψ based on φ and n only.

• We actually compute ψn that entails all consequences of φ in MLn.

• (MLn = modal formulae of modal depth n)

Computing Separators

• Given separable φ and φ′, how to compute a separator ψ?

• Idea: �rst compute φ, φ′ 7→ bound n on modal depth...

• ...then compute ψ based on φ and n only.

• We actually compute ψn that entails all consequences of φ in MLn.

• (MLn = modal formulae of modal depth n)

Computing Separators

• Given separable φ and φ′, how to compute a separator ψ?

• Idea: �rst compute φ, φ′ 7→ bound n on modal depth...

• ...then compute ψ based on φ and n only.

• We actually compute ψn that entails all consequences of φ in MLn.

• (MLn = modal formulae of modal depth n)

Computing Separators

• Given separable φ and φ′, how to compute a separator ψ?

• Idea: �rst compute φ, φ′ 7→ bound n on modal depth...

• ...then compute ψ based on φ and n only.

• We actually compute ψn that entails all consequences of φ in MLn.

• (MLn = modal formulae of modal depth n)

n-uniform consequences

For φ ∈ µ-ML and n ∈ N we call ψn ∈ MLn

an n-uniform consequence of φ if:

⇐⇒φ |= θ ψn|= θ

for all θ ∈ MLn.

• That is: ψn has a modal depth n, is a consequence of φ,

• and entails all other consequences θ of φ whose modal depth is n.

• All n-uniform consequences of φ are equivalent.

• If φ, φ′ have (any) separator of depth n then ψn is a separator.

n-uniform consequences

For φ ∈ µ-ML and n ∈ N we call ψn ∈ MLn

an n-uniform consequence of φ if:

⇐⇒φ |= θ ψn|= θ

for all θ ∈ MLn.

• That is: ψn has a modal depth n, is a consequence of φ,

• and entails all other consequences θ of φ whose modal depth is n.

• All n-uniform consequences of φ are equivalent.

• If φ, φ′ have (any) separator of depth n then ψn is a separator.

n-uniform consequences

For φ ∈ µ-ML and n ∈ N we call ψn ∈ MLn

an n-uniform consequence of φ if:

⇐⇒φ |= θ ψn|= θ

for all θ ∈ MLn.

• That is: ψn has a modal depth n, is a consequence of φ,

• and entails all other consequences θ of φ whose modal depth is n.

• All n-uniform consequences of φ are equivalent.

• If φ, φ′ have (any) separator of depth n then ψn is a separator.

n-uniform consequences

For φ ∈ µ-ML and n ∈ N we call ψn ∈ MLn

an n-uniform consequence of φ if:

⇐⇒φ |= θ ψn|= θ

for all θ ∈ MLn.

• That is: ψn has a modal depth n, is a consequence of φ,

• and entails all other consequences θ of φ whose modal depth is n.

• All n-uniform consequences of φ are equivalent.

• If φ, φ′ have (any) separator of depth n then ψn is a separator.

n-uniform consequences

For φ ∈ µ-ML and n ∈ N we call ψn ∈ MLn

an n-uniform consequence of φ if:

⇐⇒φ |= θ ψn|= θ

for all θ ∈ MLn.

• That is: ψn has a modal depth n, is a consequence of φ,

• and entails all other consequences θ of φ whose modal depth is n.

• All n-uniform consequences of φ are equivalent.

• If φ, φ′ have (any) separator of depth n then ψn is a separator.

n-uniform consequences

For φ ∈ µ-ML and n ∈ N we call ψn ∈ MLn

an n-uniform consequence of φ if:

⇐⇒φ |= θ ψn|= θ

for all θ ∈ MLn.

• That is: ψn has a modal depth n, is a consequence of φ,

• and entails all other consequences θ of φ whose modal depth is n.

• All n-uniform consequences of φ are equivalent.

• If φ, φ′ have (any) separator of depth n then ψn is a separator.

n-uniform consequences

For φ ∈ µ-ML and n ∈ N we call ψn ∈ MLn

an n-uniform consequence of φ if:

⇐⇒φ |= θ ψn|= θ

for all θ ∈ MLn.

• That is: ψn has a modal depth n, is a consequence of φ,

• and entails all other consequences θ of φ whose modal depth is n.

• All n-uniform consequences of φ are equivalent.

• If φ, φ′ have (any) separator of depth n then ψn is a separator.

n-uniform consequences

For φ ∈ µ-ML and n ∈ N we call ψn ∈ MLn

an n-uniform consequence of φ if:

⇐⇒φ |= θ ψn|= θ

for all θ ∈ MLn.

• That is: ψn has a modal depth n, is a consequence of φ,

• and entails all other consequences θ of φ whose modal depth is n.

• All n-uniform consequences of φ are equivalent.

• If φ, φ′ have (any) separator of depth n then ψn is a separator.

Constructing n-uniform consequences

• Given φ ∈ µ-ML, we construct its n-uniform consequence ψn.

• First, transform φ to an equivalent automaton A.

• By induction on n, for each state q de�ne ψn
q s.t. for every M:

⇐⇒M |= ψn
q

M identical up to depth n

to some N accepted by A
from state q

• This way we get separators of doubly exponential size!

• This is optimal: µ-ML is 2EXP succinct compared to ML

Constructing n-uniform consequences

• Given φ ∈ µ-ML, we construct its n-uniform consequence ψn.

• First, transform φ to an equivalent automaton A.

• By induction on n, for each state q de�ne ψn
q s.t. for every M:

⇐⇒M |= ψn
q

M identical up to depth n

to some N accepted by A
from state q

• This way we get separators of doubly exponential size!

• This is optimal: µ-ML is 2EXP succinct compared to ML

Constructing n-uniform consequences

• Given φ ∈ µ-ML, we construct its n-uniform consequence ψn.

• First, transform φ to an equivalent automaton A.

• By induction on n, for each state q de�ne ψn
q s.t. for every M:

⇐⇒M |= ψn
q

M identical up to depth n

to some N accepted by A
from state q

• This way we get separators of doubly exponential size!

• This is optimal: µ-ML is 2EXP succinct compared to ML

Constructing n-uniform consequences

• Given φ ∈ µ-ML, we construct its n-uniform consequence ψn.

• First, transform φ to an equivalent automaton A.

• By induction on n, for each state q de�ne ψn
q s.t. for every M:

⇐⇒M |= ψn
q

M identical up to depth n

to some N accepted by A
from state q

• This way we get separators of doubly exponential size!

• This is optimal: µ-ML is 2EXP succinct compared to ML

Constructing n-uniform consequences

• Given φ ∈ µ-ML, we construct its n-uniform consequence ψn.

• First, transform φ to an equivalent automaton A.

• By induction on n, for each state q de�ne ψn
q s.t. for every M:

⇐⇒M |= ψn
q

M identical up to depth n

to some N accepted by A
from state q

• This way we get separators of doubly exponential size!

• This is optimal: µ-ML is 2EXP succinct compared to ML

Constructing n-uniform consequences

• Given φ ∈ µ-ML, we construct its n-uniform consequence ψn.

• First, transform φ to an equivalent automaton A.

• By induction on n, for each state q de�ne ψn
q s.t. for every M:

⇐⇒M |= ψn
q

M identical up to depth n

to some N accepted by A
from state q

• This way we get separators of doubly exponential size!

• This is optimal: µ-ML is 2EXP succinct compared to ML

Constructing n-uniform consequences

• Given φ ∈ µ-ML, we construct its n-uniform consequence ψn.

• First, transform φ to an equivalent automaton A.

• By induction on n, for each state q de�ne ψn
q s.t. for every M:

⇐⇒M |= ψn
q

M identical up to depth n

to some N accepted by A
from state q

• This way we get separators of doubly exponential size!

• This is optimal: µ-ML is 2EXP succinct compared to ML

The word models

• Word models: every point has at most one child

• Automata are simpler, hence separability is PSpace complete.

• As before: exponential bound on needed modal depth of separators

• More e�cient n-uniform consequences!

The word models

• Word models: every point has at most one child

• Automata are simpler, hence separability is PSpace complete.

• As before: exponential bound on needed modal depth of separators

• More e�cient n-uniform consequences!

The word models

• Word models: every point has at most one child

• Automata are simpler, hence separability is PSpace complete.

• As before: exponential bound on needed modal depth of separators

• More e�cient n-uniform consequences!

The word models

• Word models: every point has at most one child

• Automata are simpler, hence separability is PSpace complete.

• As before: exponential bound on needed modal depth of separators

• More e�cient n-uniform consequences!

The word models

• Word models: every point has at most one child

• Automata are simpler, hence separability is PSpace complete.

• As before: exponential bound on needed modal depth of separators

• More e�cient n-uniform consequences!

The word models

• Example: L = even number of a's and length n

1 n
w :

n
2

u v

• w ∈ L if both u and v or none of them has even number of a's:

φ2n
Even

= (φn
Even

∧3nφn
Even

) ∨ (¬φn
Even

∧3n¬φn
Even

)

• φn
Even

(single!) exponential in n.

• For arbitrary automaton: run on w = part on u and on v

The word models

• Example: L = even number of a's and length n

1 n
w :

n
2

u v

• w ∈ L if both u and v or none of them has even number of a's:

φ2n
Even

= (φn
Even

∧3nφn
Even

) ∨ (¬φn
Even

∧3n¬φn
Even

)

• φn
Even

(single!) exponential in n.

• For arbitrary automaton: run on w = part on u and on v

The word models

• Example: L = even number of a's and length n

1 n
w :

n
2

u v

• w ∈ L if both u and v or none of them has even number of a's:

φ2n
Even

= (φn
Even

∧3nφn
Even

) ∨ (¬φn
Even

∧3n¬φn
Even

)

• φn
Even

(single!) exponential in n.

• For arbitrary automaton: run on w = part on u and on v

The word models

• Example: L = even number of a's and length n

1 n
w :

n
2

u v

• w ∈ L if both u and v or none of them has even number of a's:

φ2n
Even

= (φn
Even

∧3nφn
Even

) ∨ (¬φn
Even

∧3n¬φn
Even

)

• φn
Even

(single!) exponential in n.

• For arbitrary automaton: run on w = part on u and on v

The word models

• Example: L = even number of a's and length n

1 n
w :

n
2

u v

• w ∈ L if both u and v or none of them has even number of a's:

φ2n
Even

= (φn
Even

∧3nφn
Even

) ∨ (¬φn
Even

∧3n¬φn
Even

)

• φn
Even

(single!) exponential in n.

• For arbitrary automaton: run on w = part on u and on v

The word models

• Example: L = even number of a's and length n

1 n
w :

n
2

u v

• w ∈ L if both u and v or none of them has even number of a's:

φ2n
Even

= (φn
Even

∧3nφn
Even

) ∨ (¬φn
Even

∧3n¬φn
Even

)

• φn
Even

(single!) exponential in n.

• For arbitrary automaton: run on w = part on u and on v

The word models

• Example: L = even number of a's and length n

1 n
w :

n
2

u v

• w ∈ L if both u and v or none of them has even number of a's:

φ2n
Even

= (φn
Even

∧3nφn
Even

) ∨ (¬φn
Even

∧3n¬φn
Even

)

• φn
Even

(single!) exponential in n.

• For arbitrary automaton: run on w = part on u and on v

The word models

• Example: L = even number of a's and length n

1 n
w :

n
2

u v

• w ∈ L if both u and v or none of them has even number of a's:

φ2n
Even

= (φn
Even

∧3nφn
Even

) ∨ (¬φn
Even

∧3n¬φn
Even

)

• φn
Even

(single!) exponential in n.

• For arbitrary automaton: run on w = part on u and on v

Relativization

• Assume classess of models C and D and formula θ such that

• θ de�nes D in C: M ∈ D i� M ∈ C and M |= φ.

C

D

Finitely

branching

models

θ = φWF

Finite

trees

• Then: ψ separates φ from φ′ over D i� it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over �nite words

• i� it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization

• Assume classess of models C and D and formula θ such that

• θ de�nes D in C: M ∈ D i� M ∈ C and M |= φ.

C

D

Finitely

branching

models

θ = φWF

Finite

trees

• Then: ψ separates φ from φ′ over D i� it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over �nite words

• i� it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization

• Assume classess of models C and D and formula θ such that

• θ de�nes D in C: M ∈ D i� M ∈ C and M |= φ.

C

D

Finitely

branching

models

θ = φWF

Finite

trees

• Then: ψ separates φ from φ′ over D i� it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over �nite words

• i� it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization

• Assume classess of models C and D and formula θ such that

• θ de�nes D in C: M ∈ D i� M ∈ C and M |= φ.

C

D

Finitely

branching

models

θ = φWF

Finite

trees

• Then: ψ separates φ from φ′ over D i� it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over �nite words

• i� it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization

• Assume classess of models C and D and formula θ such that

• θ de�nes D in C: M ∈ D i� M ∈ C and M |= φ.

C

D

Finitely

branching

models

θ = φWF

Finite

trees

• Then: ψ separates φ from φ′ over D i� it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over �nite words

• i� it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization

• Assume classess of models C and D and formula θ such that

• θ de�nes D in C: M ∈ D i� M ∈ C and M |= φ.

C

D

Finitely

branching

models

θ = φWF

Finite

trees

• Then: ψ separates φ from φ′ over D i� it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over �nite words

• i� it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization

• Assume classess of models C and D and formula θ such that

• θ de�nes D in C: M ∈ D i� M ∈ C and M |= φ.

C

D

Finitely

branching

models

θ = φWF

Finite

trees

• Then: ψ separates φ from φ′ over D i� it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over �nite words

• i� it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization

• Assume classess of models C and D and formula θ such that

• θ de�nes D in C: M ∈ D i� M ∈ C and M |= φ.

C

D

Finitely

branching

models

θ = φWF

Finite

trees

• Then: ψ separates φ from φ′ over D i� it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over �nite words

• i� it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization

• Assume classess of models C and D and formula θ such that

• θ de�nes D in C: M ∈ D i� M ∈ C and M |= φ.

C

D

Finitely

branching

models

θ = φWF

Finite

trees

• Then: ψ separates φ from φ′ over D i� it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over �nite words

• i� it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization

• Assume classess of models C and D and formula θ such that

• θ de�nes D in C: M ∈ D i� M ∈ C and M |= φ.

C

D

Finitely

branching

models

θ = φWF

Finite

trees

• Then: ψ separates φ from φ′ over D i� it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over �nite words

• i� it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization

• Assume classess of models C and D and formula θ such that

• θ de�nes D in C: M ∈ D i� M ∈ C and M |= φ.

C

D

Finitely

branching

models

θ = φWF

Finite

trees

• Then: ψ separates φ from φ′ over D i� it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over �nite words

• i� it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization

• Assume classess of models C and D and formula θ such that

• θ de�nes D in C: M ∈ D i� M ∈ C and M |= φ.

C

D

Finitely

branching

models

θ = φWF

Finite

trees

• Then: ψ separates φ from φ′ over D i� it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over �nite words

• i� it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization

• Assume classess of models C and D and formula θ such that

• θ de�nes D in C: M ∈ D i� M ∈ C and M |= φ.

C

D

Finitely

branching

models

θ = φWF

Finite

trees

• Then: ψ separates φ from φ′ over D i� it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ

φ′ ∧ θ

• Example: ψ separates φ from φ′ over �nite words

• i� it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization

• Assume classess of models C and D and formula θ such that

• θ de�nes D in C: M ∈ D i� M ∈ C and M |= φ.

C

D

Finitely

branching

models

θ = φWF

Finite

trees

• Then: ψ separates φ from φ′ over D i� it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over �nite words

• i� it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization

• Assume classess of models C and D and formula θ such that

• θ de�nes D in C: M ∈ D i� M ∈ C and M |= φ.

C

D

Finitely

branching

models

θ = φWF

Finite

trees

• Then: ψ separates φ from φ′ over D i� it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over �nite words

• i� it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization

• Assume classess of models C and D and formula θ such that

• θ de�nes D in C: M ∈ D i� M ∈ C and M |= φ.

C

D

Finitely

branching

models

θ = φWF

Finite

trees

• Then: ψ separates φ from φ′ over D i� it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over �nite words

• i� it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Summary of results

• Separability over arbitrary models is ExpTime-complete.

• We compute separators of doubly exponential size. This is optimal.

• We give examples showing that this is optimal.

• The same for �nite trees and models with ontologies expressed in µ-ML

• Separability over words is PSpace-complete.

• We compute (optimal) exponential separators over words.

• This is optimal as well.

• Same for �nite words and in�nite words (im place of mixed ones).

Summary of results

• Separability over arbitrary models is ExpTime-complete.

• We compute separators of doubly exponential size. This is optimal.

• We give examples showing that this is optimal.

• The same for �nite trees and models with ontologies expressed in µ-ML

• Separability over words is PSpace-complete.

• We compute (optimal) exponential separators over words.

• This is optimal as well.

• Same for �nite words and in�nite words (im place of mixed ones).

Summary of results

• Separability over arbitrary models is ExpTime-complete.

• We compute separators of doubly exponential size. This is optimal.

• We give examples showing that this is optimal.

• The same for �nite trees and models with ontologies expressed in µ-ML

• Separability over words is PSpace-complete.

• We compute (optimal) exponential separators over words.

• This is optimal as well.

• Same for �nite words and in�nite words (im place of mixed ones).

Summary of results

• Separability over arbitrary models is ExpTime-complete.

• We compute separators of doubly exponential size. This is optimal.

• We give examples showing that this is optimal.

• The same for �nite trees and models with ontologies expressed in µ-ML

• Separability over words is PSpace-complete.

• We compute (optimal) exponential separators over words.

• This is optimal as well.

• Same for �nite words and in�nite words (im place of mixed ones).

Summary of results

• Separability over arbitrary models is ExpTime-complete.

• We compute separators of doubly exponential size. This is optimal.

• We give examples showing that this is optimal.

• The same for �nite trees and models with ontologies expressed in µ-ML

• Separability over words is PSpace-complete.

• We compute (optimal) exponential separators over words.

• This is optimal as well.

• Same for �nite words and in�nite words (im place of mixed ones).

Summary of results

• Separability over arbitrary models is ExpTime-complete.

• We compute separators of doubly exponential size. This is optimal.

• We give examples showing that this is optimal.

• The same for �nite trees and models with ontologies expressed in µ-ML

• Separability over words is PSpace-complete.

• We compute (optimal) exponential separators over words.

• This is optimal as well.

• Same for �nite words and in�nite words (im place of mixed ones).

Summary of results

• Separability over arbitrary models is ExpTime-complete.

• We compute separators of doubly exponential size. This is optimal.

• We give examples showing that this is optimal.

• The same for �nite trees and models with ontologies expressed in µ-ML

• Separability over words is PSpace-complete.

• We compute (optimal) exponential separators over words.

• This is optimal as well.

• Same for �nite words and in�nite words (im place of mixed ones).

Summary of results

• Separability over arbitrary models is ExpTime-complete.

• We compute separators of doubly exponential size. This is optimal.

• We give examples showing that this is optimal.

• The same for �nite trees and models with ontologies expressed in µ-ML

• Separability over words is PSpace-complete.

• We compute (optimal) exponential separators over words.

• This is optimal as well.

• Same for �nite words and in�nite words (im place of mixed ones).

Summary of results

• Separability over arbitrary models is ExpTime-complete.

• We compute separators of doubly exponential size. This is optimal.

• We give examples showing that this is optimal.

• The same for �nite trees and models with ontologies expressed in µ-ML

• Separability over words is PSpace-complete.

• We compute (optimal) exponential separators over words.

• This is optimal as well.

• Same for �nite words and in�nite words (im place of mixed ones).

Thank you!

