Bisimulational Categoricity

Jędrzej Kołodziejski

Highlights 2019 Warszawa

syntax:

syntax:

$$a \mid \neg \varphi \mid \varphi \lor \psi \mid \Diamond \varphi$$

syntax:

$$a \mid \neg \varphi \mid \varphi \lor \psi \mid \Diamond \varphi$$

semantics

syntax:

syntax:

Bisimulational Categoricity

a theory t is categorical if it has a unique model... \leftarrow

Bisimulational Categoricity

a theory t is categorical if it has a unique model...

maximal consistent set of modal formulae

maximal consistent set

Bisimulational Categoricity

a theory t is categorical if it has a unique model... ←

maximal consistent set
of modal formulae

Bisimulational Categoricity

a theory t is categorical if it has a unique model...

maximal consistent set of modal formulae

Bisimulational Categoricity

a theory t is categorical if it has a unique model...

maximal consistent set of modal formulae

Bisimulational Categoricity

a theory t is categorical if it has a unique model...

maximal consistent set of modal formulae

Bisimulational Categoricity

a theory *t* is *categorical* if it has a unique model...

maximal consistent set of modal formulae

Bisimulational Categoricity

Example

Example

$$\{\Box^n(\mathsf{blue} \land \diamondsuit \top) \mid n \in \{0, 1, ...\}\}$$

satisfy the same modal formulae, but are not bisimilar!

every model of t is bisimilar to a finitely branching one

t has at least one
finitely branching model

every model of t is bisimilar to a finitely branching one

every model of t is bisimilar to a finitely branching one

every model of t is bisimilar to a finitely branching one

every model of t is bisimilar to a finitely branching one

every model of t is bisimilar to a finitely branching one

every model of t is bisimilar to a finitely branching one

• one can extend this result to a metatheorem

- one can extend this result to a metatheorem
- in particular, a complete theory t expressed in:

- one can extend this result to a metatheorem
- in particular, a complete theory t expressed in:
 - two-way modal logic has a unique model up to two-way bisimulation iff
 t has a model with finite in- and outdegree

- one can extend this result to a metatheorem
- in particular, a complete theory t expressed in:
 - two-way modal logic has a unique model up to two-way bisimulation iff
 t has a model with finite in- and outdegree
 - logic EF has a unique model up to EF-bisimulation iff t has a finite model

- one can extend this result to a metatheorem
- in particular, a complete theory t expressed in:
 - two-way modal logic has a unique model up to two-way bisimulation iff
 t has a model with finite in- and outdegree
 - logic EF has a unique model up to EF-bisimulation iff t has a finite model

- one can extend this result to a metatheorem
- in particular, a complete theory t expressed in:
 - two-way modal logic has a unique model up to two-way bisimulation iff
 t has a model with finite in- and outdegree
 - \bullet logic EF has a unique model up to EF-bisimulation iff t has a finite model

A challenge – go beyond compact logics

- one can extend this result to a metatheorem
- in particular, a complete theory t expressed in:
 - two-way modal logic has a unique model up to two-way bisimulation iff
 t has a model with finite in- and outdegree
 - logic EF has a unique model up to EF-bisimulation iff t has a finite model

A challenge – go beyond compact logics

• the proof relies on compactness and uses good model-theoretic properties of first-order logic

- one can extend this result to a metatheorem.
- in particular, a complete theory t expressed in:
 - two-way modal logic has a unique model up to two-way bisimulation iff
 t has a model with finite in- and outdegree
 - logic EF has a unique model up to EF-bisimulation iff t has a finite model

A challenge – go beyond compact logics

- the proof relies on compactness and uses good model-theoretic properties of first-order logic
- \bullet modal μ -calculus seems challenging, as not much is known about (infinitary) model theory for MSO