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a theory t is categorical if it has a unique model...

maximal consistent set
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satisfy the same modal formulae, but are not bisimilar!
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Other (inherently modal) logics

• one can extend this result to a metatheorem

• in particular, a complete theory t expressed in:

• two-way modal logic has a unique model up to two-way bisimulation iff
t has a model with finite in- and outdegree

• logic EF has a unique model up to EF-bisimulation iff t has a finite model

replace "son" with "descendant" in the
definitions of semantics and bisimulation

A challenge – go beyond compact logics

• the proof relies on compactness and uses good model-theoretic properties of
first-order logic

• modal µ-calculus seems challenging, as not much is known about (infinitary)
model theory for MSO
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