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For a complete modal theory t, the following are equivalent:

t has at least one
finitely branching model

A limit type!

every model of t is bisimilar t has a unique model
to a finitely branching one up to bisimulation

simple topological techniques

new!
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e logic EF has a unique model up to EF-bisimulation iff t has a finite model

replace "son" with "descendant" in the
definitions of semantics and bisimulation

A challenge — go beyond compact logics

e the proof relies on compactness and uses good model-theoretic properties of
first-order logic

e modal p-calculus seems challenging, as not much is known about (infinitary)
model theory for MSO



