Deformation Theory and Moduli Spaces IV series of exercises, for October 30

Exercise 1. Exercise 5 from series II. (The one about the flag variety, only whole exercise accepted.)

Exercise 2. Let *A* be a discrete valuation ring and let *t* be a local parameter. Let *M* be an *A*-module. Prove that the following are equivalent

- (a) the A-module M is flat,
- (b) the multiplication by t on M is injective.

Exercise 3. Let $A = \Bbbk[x, y]$ and $\mathfrak{m} = (x, y) \subseteq A$. Prove that \mathfrak{m} is not flat.

Exercise 4. Let $A = k[x]/(x^n)$ for $n \ge 2$ and let *B* be a local noetherian *A*-algebra. Let *M* be a finitely generated *B*-module. Prove that the following are equivalent

- (a) *M* is a flat *A*-module,
- (b) $\ker(\mu_x \colon M \to M) = x^{n-1}M$, where μ_x denotes the multiplication by x.

For every *n* give an example of *M* which is not flat over *A*, but $M/x^{n-1}M$ is flat over $k[x]/(x^{n-1})$.

Exercise 5 (On reduced schemes, locally free is easy to check). Let *X* be a scheme and \mathcal{F} be a finitely presented \mathcal{O}_X -module. The *rank of* \mathcal{F} *at a point* $x \in X$ is the number $\dim_{\kappa(x)} \mathcal{F}|_x$.

- (a) Show that if \mathcal{F} is locally free \mathcal{O}_X -module of rank d, then the rank of \mathcal{F} at every point $x \in X$ is indeed d.
- (b) Assume now (and below) that *X* is reduced and that the rank of \mathcal{F} is constant, equal to some number *d*.
- (c) Suppose that $X = \operatorname{Spec}(A)$ and $\mathcal{F} = \widetilde{M}$ for an *A*-module *M*. Let $x \in X$ be a closed point of *X*. Prove that there is an element $f \in A$, such that $x \in (f \neq 0) \subseteq |\operatorname{Spec}(A)|$ and a surjection $A_f^{\oplus d} \to M_f$. *Hint: mimic the proof of local freeness from the lecture.*
- (d) Let \mathfrak{p} be a minimal prime of A. Prove that $A_{\mathfrak{p}}$ is a field, actually $A_{\mathfrak{p}} \simeq \kappa(\mathfrak{p})$. Let $(\mathfrak{p}_i)_{i \in I}$ be all minimal primes of A. Prove that the natural map $A \hookrightarrow \prod_i \kappa(\mathfrak{p}_i)$ is injective.
- (e) (most important conclusion!) Localise $A_f^{\oplus d} \to M_f$ at minimal primes and conclude that it is injective, hence an isomorphism. Conclude that under the assumptions of (b) the sheaf \mathcal{F} is locally free of rank *d*.
- (f) Give an example of nonreduced *X* and a finitely presented \mathcal{O}_X -module \mathcal{F} of constant rank *d* which is not locally free.