Deformation Theory and Moduli Spaces III series of exercises, for October 23

Zadanie 1 (flag/nested Hilbert scheme of points). Let *S* be a k-algebra (throughout the course, the symbol k is reserved for a field) and X = Spec(S). Fix positive numbers $d_1 \ge d_2 \ge \ldots \ge d_s$. Consider the closed subscheme

$$\operatorname{Hilb}^{d_1, d_2, \dots, d_s}(X) := \operatorname{Flag}^{d_1, \dots, d_s}(S) \cap (\operatorname{Hilb}_{d_1}(X) \times \operatorname{Hilb}_{d_2}(X) \times \dots \times \operatorname{Hilb}_{d_s}(X))$$
$$\subseteq \operatorname{Gr}(d_1, S) \times \operatorname{Gr}(d_2, S) \times \dots \times \operatorname{Gr}(d_s, S).$$

Describe the k-points of this scheme.

Zadanie 2. (a) Let $f: X \to Y$ be a morphism of schemes over some base scheme *B*. Prove that the following is a pullback diagram

$$\begin{array}{ccc} X \xrightarrow{(\operatorname{id}_X, f)} X \times_B Y \\ & \downarrow^f & \downarrow^{f \times \operatorname{id}_Y} \\ Y \xrightarrow{\Delta} Y \times_B Y \end{array}$$

Conclude that if $Y \to B$ is separated, then graph $(f): X \hookrightarrow X \times Y$ is a closed embedding, so indeed we obtain that a graph gives a closed subscheme.

(b) Let *Y* be a line with doubled origin, [4.4.5, Vakil], let $i: \mathbb{A}^1 \hookrightarrow Y$ be one of the two canonical open embeddings. Consider graph(*i*): $\mathbb{A}^1 \to \mathbb{A}^1 \times Y$. Is it a closed embedding?

Zadanie 3 (The Hilbert scheme of a single point). The aim of this exercise is to check that if $X \rightarrow$ Spec(\Bbbk) is affine or quasi-projective, then Hilb₁(X) is isomorphic to X itself.

- (a) Verify the claim on k-points.
- (b) For $f: S \to X$, show that graph $(f) \subseteq S \times X$ is an element of $\operatorname{Hilb}_1(X)(S)$.
- (c) For an element of $\operatorname{Hilb}_1(X)(S)$ which corresponds to $\mathcal{Z} \subseteq X \times S$, show that $\mathcal{Z} \to S$ is an isomorphism. Conclude that \mathcal{Z} is a graph of a map $S \to X$.
- (d) Prove the claim.

Zadanie 4. Exercise 5 from series II. (The one about the flag variety, only whole exercise accepted.)

Zadanie 5 (\star , Plücker embedding). Let *V* be a vector space over a field k and fix $k \ge 1$.

- (a) Show that Gr(1, V) and $\mathbb{P}(V)$ are isomorphic.¹
- (b) Recall the definition of $\Lambda^k(-)$ for a locally free sheaf and prove that $\Lambda^k(\mathcal{O}_S \otimes_{\Bbbk} V) \simeq \mathcal{O}_S \otimes_{\Bbbk} \Lambda^k V$.
- (c) Consider the functor Plück: $Gr(k, V) \rightarrow \mathbb{P}(\Lambda^k V)$ defined on points by

$$\operatorname{Plück}(\mathcal{O}_S \otimes_{\Bbbk} V \twoheadrightarrow E) = (\mathcal{O}_S \otimes_{\Bbbk} \Lambda^k V \twoheadrightarrow \Lambda^k E).$$

Show that is gives a closed embedding of Gr(k, V) into $\mathbb{P}(\Lambda^k V)$. Conclude that if *V* is finitedimensional, then Gr(k, V) is projective.

¹Depending on your conventions, you might like to change V to V^* somewhere.