Deformation Theory and Moduli Spaces II series of exercises, for October 16

- **Zadanie 1.** (a) Let $F: \operatorname{\mathbf{Ring}} \to \operatorname{\mathbf{Set}}$ be given by F(A) = A. In the previous series, we showed that F is represented by \mathbb{A}^1 . Note that A is a ring. Thus, we can promote F to the functor $F: \operatorname{\mathbf{Ring}} \to \operatorname{\mathbf{Ring}}$ given by F(A) = A. Show that this implies that \mathbb{A}^1 is a ring object in the category of affine schemes. Describe addition and multiplication in \mathbb{A}^1 as morphisms of schemes.
 - (b) Let *F*: Ring → Set be given by *F*(*A*) = *A*[×], as in the previous series. The set *A*[×] is an abelian group, so *F* can be promoted to *F*: Ring → Ab. Show that this gives an abelian group structure on Spec(ℤ[t^{±1}]) and describe it. We denote the resulting group by 𝔅_m or 𝔅_{m,ℤ} and call it a one-dimensional torus over ℤ.

Zadanie 2. Let *V* be a finite-dimensional vector space over \Bbbk .

(a) Consider the functor GL(V): $\mathbf{Sch}_{\Bbbk}^{\mathrm{op}} \to \mathbf{Gr}$ given by

 $\mathrm{GL}(V)(S) := \{ f : \mathcal{O}_S \otimes_{\Bbbk} V \to \mathcal{O}_S \otimes_{\Bbbk} V \mid \text{isomorphism of } \mathcal{O}_S \text{-modules} \}.$

Show that it is represented by a group object GL(V) which is an affine scheme.

(b) For each positive integer k, construct an action of GL(V) on Gr(k, V) such that the action on the k-points is transitive. *Hint: it's not worth writing out the morphism of schemes, that's tedious. Functors are nicer. First, check what should happen on* k-points. *Then generalize to all S*.

Zadanie 3. Let k be a positive integer. We define $\operatorname{Gr}^{\operatorname{naive}}(k, V)$: $\operatorname{Sch}_{\Bbbk}^{\operatorname{op}} \to \operatorname{Set}$ on objects as

 $\operatorname{Gr}^{\operatorname{naive}}(k, V)(S) = \{K \subseteq \mathcal{O}_S \otimes_{\Bbbk} V \mid K \text{ locally free } \mathcal{O}_S \text{-module of rank } k\}.$

Show that $\operatorname{Gr}^{\operatorname{naive}}(k, V)$ with the pullback *is not* a well-defined functor. *Hint: it's enough to look at* $S = \mathbb{A}^1$ and $S = \operatorname{pt.}$

Zadanie 4. Let *X* be a scheme and let $\varphi \colon E_1 \to E_2$ be a homomorphism of locally free \mathcal{O}_X -modules. We define the functor of *zeros of* φ , denoted $Z(\varphi) \colon \mathbf{Sch}^{\mathrm{op}} \to \mathbf{Set}$, by

$$Z(\varphi)(S) = \{f \colon S \to X \mid f^*\varphi \colon f^*E_1 \to f^*E_2 \text{ is the zero map}\}.$$

- (a) Show that if E_1 , E_2 are *free* \mathcal{O}_X -modules, then $Z(\varphi)$ is represented by some closed subscheme of *X*. *Hint: in this case* φ *is a matrix, possibly infinite.*
- (b) Let U_i be an open cover of the scheme *X*. Show that every $Z_i := Z(\varphi) \times_X U_i$ is an open subfunctor of $Z(\varphi)$. Show that Z_i cover *Z*.
- (c) Consider an open cover of X that trivializes E_1 , E_2 and use the theorem from the lecture to conclude that $Z(\varphi)$ is represented by a closed subscheme of X.

(d) Let X = Spec(A), $\mathfrak{m} \in |X|$ be a closed point. Assume that |X| is connected and not a singleton¹. Let $E_1 = \widetilde{A}$, $E_2 = \widetilde{A/\mathfrak{m}}$, thus E_2 is not locally free. Show that $Z(E_1 \twoheadrightarrow E_2)$ is not represented by a closed subscheme of X.

An important special case: if $E_1 = \mathcal{O}_X$, then φ corresponds to a section of E_2 . One can reduce to this special case by considering φ as an element of $\operatorname{Hom}_{\mathcal{O}_X}(E_1, E_2)$.

Zadanie 5 (flag varieties, \star). Let *V* be a k-linear space. Fix positive integers *s* and $k_1 \ge k_2 \ge \ldots \ge k_s$. The (partial) flag variety $\operatorname{Flag}^{k_1,\ldots,k_s}(V)$ is defined by the functor

 $\operatorname{Flag}^{k_1,\ldots,k_s}(V)(S) = \{\mathcal{O}_S \otimes_{\Bbbk} V \twoheadrightarrow E_1 \twoheadrightarrow E_2 \twoheadrightarrow E_3 \twoheadrightarrow \ldots \twoheadrightarrow E_s \mid E_i \text{ locally free of rank } k_i\}.$

- (a) Find a monomorphism $\operatorname{Flag}^{k_1,\ldots,k_s} \to \operatorname{Gr}(k_1,V) \times \operatorname{Gr}(k_2,V) \times \ldots \times \operatorname{Gr}(k_s,V)$.
- (b) Use Exercise 4 to deduce that this morphism correspond to a closed embedding, so $\operatorname{Flag}^{k_1,\ldots,k_s}(V)$ is representable.

¹Throughout the lecture, for a scheme X the symbol |X| means the underlying topological space.