Deformation Theory and Moduli Spaces VIII series of exercises, for November 27

Exercise 1. Let *G* be an algebraic group over \Bbbk . Let $\pi \colon P \to S$ be a principal *G*-bundle over a \Bbbk -scheme *S* and $S \to BG$ be the corresponding morphism¹. Let $\star = \text{Spec}(\Bbbk)$.

(a) Prove that

is a pullback diagram in the category of fibered cats over \mathbf{Sch}_{\Bbbk} .

(b) Let *X* be a k-scheme with *G*-action and suppose that we have a *G*-equivariant map $\rho: P \to X$ of k-schemes. Let again $S \to [X/G]$ be the corresponding morphism. Prove that

is a pullback diagram in the category of fibered cats over \mathbf{Sch}_{\Bbbk} .

(c) Conclude that $X \to [X/G]$ is a smooth surjective map. If you want, you can take for granted that [X/G] has diagonal representable by schemes.

Exercise 2 (Some motivation for the name [X/G]). Let \Bbbk be an algebraically closed field. Let X be a \Bbbk -scheme with an action of an algebraic group $G \to \text{Spec}(\Bbbk)$.

- (a) Prove that any *G*-bundle over Spec(\Bbbk) is isomorphic to a trivial bundle. *Hint*: $P(\Bbbk) \neq \emptyset$.
- (b) Prove that the groupoid [X/G](Spec(k))² is equivalent (as a category) to the set of G(k)-orbits on X(k).

Exercise 3. Let \mathbb{P}^n be the projective space and $\pi \colon \mathbb{A}^{n+1} \setminus \{0\} \to \mathbb{P}^n$ the usual map. Let \mathbb{G}_m act on \mathbb{A}^{n+1} by scalar multiplication.

- (a) Prove that π is a \mathbb{G}_{m} -bundle, hence it yields a map $\mathbb{P}^n \to [\mathbb{A}^{n+1} \setminus \{0\}/\mathbb{G}_{\mathrm{m}}]$.
- (b) \star Prove that $[\mathbb{A}^{n+1} \setminus \{0\}/\mathbb{G}_m] \simeq \mathbb{P}^n$.
- (c) Prove that $[\mathbb{A}^{n+1} \setminus \{0\}/\mathbb{G}_m] \to [\mathbb{A}^{n+1}/\mathbb{G}_m]$ is an open immersion³. Hence \mathbb{P}^n is open(!) inside $[\mathbb{A}^{n+1}/\mathbb{G}_m]$.

Exercise 4 (weighted projective spaces and stacks). Let $T = \Bbbk[x_0, \ldots, x_n]$ be a polynomial ring graded by $\deg(x_i) = a_i \in \mathbb{Z}_+$. The scheme $X = \operatorname{Proj} T$ is called the *weighted projective space*.

- (a) Suppose that $a_0 = 1$. Prove that $(x_0 \neq 0) \subseteq X$ is isomorphic to \mathbb{A}^n .
- (b) Consider $(a_0, a_1, a_2) = (1, 1, 2)$. Prove that the point $[0:0:1] \in X$ is the unique singular point of *X*. Prove that the natural map $\mathbb{A}^3 \setminus \{0\} \to X$ is not a \mathbb{G}_m -bundle. *Hint: fibre over* [0:0:1].

¹We view the scheme S as the fibered category and/or use Yoneda lemma as in the lecture

²As defined on the lecture: it is called the fiber category.

³Which means that the pullback by any map $S \to [A^{n+1}/\mathbb{G}_m]$ from a scheme yields an open immersion of schemes.

(c) Let $\mathcal{X} = [\mathbb{A}^3 \setminus \{0\}/\mathbb{G}_m]$, where the action of \mathbb{G}_m is $t \cdot (x_0, x_1, x_2) = (tx_0, tx_1, t^2x_2)$. Let $\text{Spec}(\mathbb{k}) \to \mathcal{X}$ be given by the orbit map $\mathbb{G}_m \to \mathbb{A}^3 \setminus \{0\}$ that sends $1_{\mathbb{G}_m}$ to (0, 0, 1). Compute the scheme representing

$$\operatorname{Spec}(\Bbbk) \times_{\mathcal{X}} \operatorname{Spec}(\Bbbk).$$

(d) \star . For every $S \to [\mathbb{A}^3 \setminus \{0\}/\mathbb{G}_m]$, let $\pi: P \to S$ be the corresponding bundle with a \mathbb{G}_m -equivariant $\rho: P \to X$. Prove that there is a unique map $S \to X$ completing the diagram

Use it to construct a morphism $\mathcal{X} \to X$.

(e) \star . Prove that the map $\mathcal{X} \to X$ is an isomorphism over the open subset

 $X \setminus \{[0:0:1]\} = (x_0 \neq 0) \cup (x_1 \neq 0) \subseteq X.$

Hint: everything is local on X. Repeat the argument from Ex 3(b)