Deformation Theory and Moduli Spaces VII series of exercises, for November 20

Exercise 1. Let $p: F \to C$ be a category fibered in groupoids. Prove that every morphism $\phi: u \to v$ can be factored as $\phi = \psi \circ \tau$, where τ is cartesian with $p(\tau) = p(\phi)$ and ψ is an isomorphism in F(p(u)). Conclude that every morphism is cartesian.

Exercise 2. Let X be a scheme. Consider the category h_X^1 whose objects are morphisms $S \to X$ and

$$Mor(f': S' \to X, f: S \to X) = \{g: S' \to S \mid f' = f \circ g\}.$$

Let $p: h_X \to \mathbf{Sch}$ be the functor that sends $S \to X$ to S.

- (a) Prove that $p: h_X \to \mathbf{Sch}$ is fibered in setoids.
- (b) Prove that $\operatorname{Mor}_{\mathbf{FibCats}}(h_X, h_Y) \simeq \operatorname{Mor}_{\mathbf{Sch}}(X, Y)$.

Exercise 3 (Some non-bundles). Let *G* be an algebraic group over \Bbbk .

- (a) Let $S = \text{Spec}(\Bbbk[t]), S' = \text{Spec}(\Bbbk[t^{\pm 1}]) \hookrightarrow S$ and $P = G \times_{\Bbbk} S'$. Prove that $G \times_{\Bbbk} P \simeq P \times_{S} P$ and $P \to S$ is flat. Yet P is not a principal G-bundle.
- (b) Let $S = \mathbb{A}^1$ and $S' = (\mathbb{A}^1 \setminus \{0\}) \sqcup \operatorname{Spec}(\mathbb{k})$. Consider $S' \to S$ that sends $\operatorname{Spec}(\mathbb{k})$ isomorphically to zero and $\mathbb{A}^1 \setminus \{0\} \to \mathbb{A}^1$ is the natural inclusion. Let $P = G \times_{\mathbb{k}} S'$. Prove that $G \times_{\mathbb{k}} P \simeq P \times_S P$ and $P \to S$ is surjective. Yet *P* is not a principal *G*-bundle.
- **Exercise 4** (Examples of non-Zariski trivializable bundles). (a) Let n > 0 be a number. Let \Bbbk be algebraically closed and of characteristic not dividing *n*. Consider the pullback

$$\begin{array}{cccc}
\mu_n & \longrightarrow & \mathbb{G}_m \\
\downarrow & & & \downarrow_{z \mapsto z'} \\
\operatorname{Spec}(\Bbbk) & \xrightarrow{1_{\mathbb{G}_m}} & \mathbb{G}_m
\end{array}$$

Prove that μ_n is a reduced group scheme such that the map $\mu_n \to \mathbb{G}_m$ is an inclusion of group schemes. Prove that the map $\mathbb{G}_m \to \mathbb{G}_m$ is a μ_n -bundle which is not Zariski-trivializable.

(b) Let $q = x_1^2 + x_2^2$ and $q' = x_1^2 - x_2^2$. Consider the affine \mathbb{R} -schemes given by the functors $P: \operatorname{Alg}_{\mathbb{R}} \to \operatorname{Set}, \operatorname{O}_q: \operatorname{Alg}_{\mathbb{R}} \to \operatorname{Set}$ defined by

$$O_q(A) = \{ M \in GL_2(A) \mid M \cdot q = q \},$$
$$P(A) = \{ M \in GL_2(A) \mid M \cdot q' = q \},$$

Prove that O_q is a group scheme, that we have an action $O_q \times_{\mathbb{R}} P \to P$ and that $P(\mathbb{R}) = \emptyset$. Conclude that *P* is not a Zariski-trivializable O_q -bundle.

(c) In the notation of (b), prove that *P* is an O_q bundle. *Hint*: $P_{\mathbb{C}} \simeq (O_q)_{\mathbb{C}}$.

¹Note that h_X was defined differently (wrongly) on the last lecture. Apologies for this!

Exercise 5. Let $i_1: \mathbb{P}^1 \hookrightarrow \mathbb{P}^3$ be given by $[u:v] \mapsto [u^3: u^2v: uv^2: v^3]$. Consider the \mathbb{G}_m action on \mathbb{P}^3 which rescales the third coordinate: $t \cdot [x_0: x_1: x_2: x_3] = [x_0: x_1: tx_2: x_3]$. It yields the orbit map $\mathbb{G}_m \ni t \to t[i_1(\mathbb{P}^1)] \in \operatorname{Hilb}(\mathbb{P}^3)$ which extends to $f: \mathbb{P}^1 \to \operatorname{Hilb}(\mathbb{P}^3)$ by Exercise V.3. Let $C_0 = f(0)$ be the limit of $i_1(\mathbb{P}^1)$ as t goes to zero.

- (a) Prove that x_2^2 , $x_0^2x_3 x_1^3 \in I_{C_0}$. Conclude that $|C_0| = V(x_0^2x_3 x_1^3, x_2)$. *Hint: you can and should use the method of computing* C_0 *shown by Prajwal last time.*
- (b) Compute the Hilbert polynomial of $V(x_0^2x_3 x_1^3, x_2)$ and conclude that $C_0 \neq V(x_0^2x_3 x_1^3, x_2)$.
- (c) Why (a) and (b) do not contradict each other?
- (d) \star Compute I_{C_0} .