Deformation Theory and Moduli Spaces VI series of exercises, for November 13

Exercise 1. Let \Bbbk be a field, let $p = (0, 0, \ldots, 0) \in \Bbbk^n$ be the origin and let $Z_n = V(\mathfrak{m}_p^2) \subseteq \mathbb{A}^n_{\Bbbk}$.

- (a) Find the degree of Z_n and the dimension of the tangent space $T_{[Z_n]}$ Hilb $(\mathbb{A}^n_{\mathbb{K}})$.
- (b) Prove that \mathcal{Z}_n given by the ideal

$$
\frac{\mathbb{k}[x_1,\ldots,x_n][t]}{(x_1(x_1-t),x_1x_2,\ldots,x_1x_n,x_2(x_2-t),x_2x_3,\ldots,x_3(x_3-t),\ldots,x_{n-1}x_n)}
$$

is finite and flat over $\mathbb{k}[t]$ and proves that that $[Z]$ is in the closure of the locus of tuples of points.

(c) Prove that the Hilbert scheme $\mathrm{Hilb}_4(\mathbb{A}^3)$ is singular. *Hint: You can use the fact that it has a component of dimension* 3 · 4*, see lecture.*

Exercise 2 (Harthsorne's *distraction method*). Let k have characteristic zero^{[1](#page-0-0)}. Let $I \subseteq S = \Bbbk[x_1,\ldots,x_n]$ be a monomial ideal. Suppose that $d=\dim_\Bbbk S/I$ is finite. For a monomial $x_1^{a_1}\ldots x_n^{a_n}\in S$ its *distration* is the product

$$
x_1(x_1-t)(x_1-2t)\ldots(x_1-(a_1-1)t)\cdot x_2(x_2-t)\ldots(x_2-(a_2-1)t)\cdot\ldots\cdot x_n(x_n-t)\ldots(x_n-(a_n-1)t)\in S[t].
$$

- (a) Let $I' \subseteq S[t]$ be the ideal generated by the distractions of monomials in I. Prove that for a nonzero $\lambda \in \mathbb{k}$, the fibre ${\rm Spec}(S[t]/I')|_{t=\lambda}$ has exactly d points. Prove that every fibre over a nonzero λ is isomorphic to the fibre over $\lambda = 1$.
- (b) Prove that $S[t]/I'$ is a finitely generated $\mathbb{k}[t]$ -module. Prove that it is locally free of rank d. *Hint: semicontinuity and the previous point give one way to prove flatness without any computations.* Conclude that S/I is in the closure of the locus of tuples of points.

Exercise 3 (Iarrobino-Emsalem's example). Let $Z \subseteq \mathbb{A}^4_\Bbbk$ be given by the ideal

$$
I_Z = (x_1^2, x_1x_2, x_2^2, x_3^2, x_3x_4, x_4^2, x_1x_3 - x_2x_4) \subseteq \mathbb{k}[x_1, x_2, x_3, x_4].
$$

One can compute that Z has degree 8 and that $\dim_\Bbbk T_{[Z]} \operatorname{Hilb}_8(\Bbb A^4)$ is equal to $25.$ Prove that $[Z]$ is not a limit of tuples of points. Conclude that $\mathrm{Hilb}_8(\mathbb{A}^4)$ is reducible.

Note: it is known that $\mathrm{Hilb}_d(\mathbb{A}^3)$ is reducible for $d\gg 0$, but the exact value is unknown, this is open since $'70$. In contrast, $\text{Hilb}_d(\mathbb{A}^n)$ is irreducible for every $d\leq 7$ and every $n.$

Exercise 4. Let $i_1: \mathbb{P}^1 \hookrightarrow \mathbb{P}^3$ be given by $[u: v] \mapsto [u^3: u^2v: uv^2: v^3]$ and $i_2: \mathbb{P}^1 \to \mathbb{P}^3$ be given by $[u\,:\,v]\,\mapsto\, [u^2\,:\,uv\,:\,v^2\,:\,0].$ Consider the \mathbb{G}_{m} action on \mathbb{P}^3 which rescales the last coordinate: $t\cdot [x_0:x_1:x_2:x_3]=[x_0:x_1:x_2:tx_3].$ It yields the orbit map $\mathbb{G}_{\mathrm{m}}\ni t\to t[i_1(\mathbb{P}^1)]\in\mathrm{Hilb}(\mathbb{P}^3)$ which extends to $f: \mathbb{P}^1 \to \text{Hilb}(\mathbb{P}^3)$ by Exercise V.3. The curves $C_0 = f(0)$, $C_\infty = f(\infty)$ are called the *limits* of $i_1(\mathbb{P}^1)$ as t goes to zero or ∞ , respectively.

¹ Actually it is enough to have an infinite field

- (a) Prove that $i_2(\mathbb{P}^1) = V(x_0x_2 x_1^2, x_3)$. Compute the Hilbert polynomials of C_0 and of $i_2(\mathbb{P}^3)$ and conclude that these two curves lie in different connected components of the Hilbert scheme. Hint: no need to compute $I_{C_0}.$
- (b) Prove that C_0 is \mathbb{G}_m -stable. Conclude that, topologically, it is contained in $\mathbb{P}^2 = [*: : : : : 0].$
- (c) Prove that the homogeneous ideal I_{C_0} contains $x_0x_2 x_1^2$. *Hint: no genuine calculations are necessary.* Conclude that $|C_0| = |V(x_0x_2 - x_1^2, x_3)|$ as sets.
- (d) Why (a) and (c) do not contradict each other?
- (e) \star Compute I_{C_0} .