Deformation Theory and Moduli Spaces V series of exercises, for November 6

Exercise 1 (The Hilbert scheme of two points). Let $X = \mathbb{A}^n_{\mathbb{k}}$, where \mathbb{k} is an algebraically closed field.

- (a) Let $Z \subseteq X$ correspond to a k-point $[Z] \in Hilb_2(X)$. Prove that exactly one of the following situations holds:
 - *Z* is reduced and corresponds to an (unordered) pair of k-points of *Z*,
 - *Z* is nonreduced and it corresponds to a tangent vector at a \Bbbk -point $p \in \Bbbk^n$.

Hint: lecture and/or Exercise I.2 (which is written in Polish, sorry).

- (b) For every *Z* as above, prove that the dimension of the tangent space at $[Z] \in Hilb_2(X)$ is 2n.
- (c) Prove that for every nonreduced $Z \subseteq X$ as above, there is a morphism $f \colon \mathbb{A}^1 \to \operatorname{Hilb}_2(X)$ such that $f(\lambda)$ is reduced for $0 \neq \lambda \in \mathbb{k}$ and f(0) = [Z].

Exercise 2 (The Hilbert scheme of two points, continued). Let $X = \mathbb{A}^n_{\mathbb{k}}$, where \mathbb{k} is an algebraically closed field.

(a) Let $X \simeq \Delta \hookrightarrow X^2$ be the diagonal. Prove that Δ is closed. Let $U = X^2 \setminus \Delta$ be the complement. Construct a closed subscheme $Z \subseteq U \times X$ such that

 $Z(\Bbbk) = \{(x, y, x) \mid x, y \in \Bbbk^n, \ x \neq y\} \cup \{(x, y, y) \mid x, y \in \Bbbk^n, \ x \neq y\} \subseteq U(\Bbbk) \times \Bbbk^n.$

- (b) Prove that the canonical map $f: Z \to U$ is affine and $f_*\mathcal{O}_Z$ is a locally free \mathcal{O}_U -module of rank two, so that f is finite. This yields a morphism $U \to \text{Hilb}_2(X)$.
- (c) Prove that the closure of the (topological) image of U is equal to whole $Hilb_2(X)$. *Hint: this is a purely formal (yet nontrivial to deduce!) consequence of previous exercise and base change to avoid non-closed fields.*
- (d) Conclude that $Hilb_2(X)$ is irreducible and it has dimension 2n.
- (e) Deduce that $Hilb_2(X)$ is smooth.
- (f) Prove that the morphism $U \to \text{Hilb}_2(X)$ cannot be extended to a continuous mapping defined on an open $V \subseteq X^2$ which strictly contains U.

Exercise 3 (Flat limits). Let *X* be a projective scheme. Let *C* be a smooth curve, $Z \subseteq C$ be a proper closed subset and $f: C \setminus Z \to \text{Hilb}^p(X)$. Let $Z \subseteq (C \setminus Z) \times X$ be the corresponding flat family.

- (a) Let $\overline{Z} \subseteq C \times X$ be the closure of Z in $C \times X$. Prove that $\overline{Z} \to C$ is flat and that the corresponding morphism $C \to \text{Hilb}^p(X)$ extends f.
- (b) Find an example of a *singular* curve *C* and of *Z*, *X*, and *Z*, such that the extension as in (a) does not exist.