Deformation Theory and Moduli Spaces XI series of exercises, for January 8

Throughout, the term *an Artinian local* \Bbbk -algebra (R, \mathfrak{m}, \Bbbk) means an Artinian \Bbbk -algebra R which is local with maximal ideal \mathfrak{m} such that $\Bbbk \hookrightarrow R/\mathfrak{m}$ is bijective; in other words, the notation (R, \mathfrak{m}, \Bbbk) in particular implies that the unique point of $\operatorname{Spec}(R)$ is a \Bbbk -point. For a \Bbbk -algebra S we write S_R to denote $S \otimes_{\Bbbk} R$.

Exercise 1. Let (R, \mathfrak{m}, \Bbbk) be an Artinian local \Bbbk -algebra. Let $S = \Bbbk[x_1, \ldots, x_n]$. Let X = Spec(A) be an \Bbbk -algebra and let $\mathcal{X} \to \text{Spec}(R)$ be such that there is a cartesian diagram

where $\operatorname{Spec}(\mathbb{k}) \to \operatorname{Spec}(R)$ is the canonical map. We say that \mathcal{X} is a *deformation* of X over $\operatorname{Spec}(R)$.

- (a) Suppose that $X \subseteq \text{Spec}(S)$ is a closed embedding. Suppose that \mathcal{X} is affine. Prove that there is a closed embedding $\mathcal{X} \subseteq \text{Spec}(S_R)$. *Hint: pass to rings and choose any* $S_R \to H^0(\mathcal{O}_{\mathcal{X}})$ *that yields the given* $S \twoheadrightarrow H^0(\mathcal{O}_{\mathcal{X}})$.
- (b) ★★. Prove that if X is affine, then X is also affine. Hence, in the setting of (a), the assumption that X is affine was unnecessary. *Hint: this is general algebraic geometry fact. It is key that* Spec(R) *is Artinian.*
- (c) Suppose that \mathcal{X} is a closed subscheme of $\operatorname{Spec}(S_R)$, so that $\mathcal{X} \simeq \operatorname{Spec}(S_R/I)$ and $X \simeq \operatorname{Spec}(S/\overline{I})$, where $\overline{I} \subseteq S$ is the image of I. Suppose that the ideal \overline{I} is generated by r elements $\overline{f}_1, \ldots, \overline{f}_r$ and let $f_1, \ldots, f_r \in I$ be any preimages. Prove that $I = (f_1, \ldots, f_r)$.
- (d) Let $X = \operatorname{Spec}(\Bbbk[x, y]/(xy))$ and let $\mathcal{X} \to \operatorname{Spec}(R)$ be affine. Prove that

$$\mathcal{X} \simeq \operatorname{Spec}(R[x, y]/(xy - f)) \tag{1.1}$$

for some polynomial $f \in R[x, y]$. Thus there are no unexpected deformations.

- (e) Conversely, prove that for every f, the scheme (1.1) is flat over Spec(R), so it is indeed a deformation of $\text{Spec}(\Bbbk[x, y]/(xy))$. *Hint: for example, local criterion for flatness. It is key that there is only one equation.*
- (f) Consider a deformation $\mathcal{X} = \operatorname{Spec}(R[x, y]/(xy f))$. Let $f_0 \in R$ be the constant term of f. Let $\mathcal{X}' = \operatorname{Spec}(R[x, y]/(xy f_0))$. Prove that $\mathcal{X}, \mathcal{X}'$ are isomorphic deformations. (That is, they are isomorphic as R-schemes and in such a way that the isomorphism restricts to the identity map from $X \subseteq \mathcal{X}$ to $X \subseteq \mathcal{X}'$.) *Hint: the isomorphism is very much NOT* R[x, y]*-linear. Use derivations as in Exercise X.1. You will need to get your hards dirty. You might like to do* $R = \Bbbk[\varepsilon]/\varepsilon^2$ first.
- (g) Let $\mathcal{V} := \operatorname{Spec}(\Bbbk[x, y][t]/(xy-t)) \to \operatorname{Spec}(\Bbbk[t])$ be the morphism from last series; it is flat. Prove that every \mathcal{X} in (d) is a pullback of \mathcal{V} , that is, there is a cartesian diagram

and the map $\mathcal{X} \to \mathcal{V}$ restricts to the identity from $X \subseteq \mathcal{X}$ to $X \subseteq \mathcal{V}$. We say that \mathcal{V} is *versal*.

Exercise 2. Let $S = \Bbbk[x_1, \ldots, x_n]$ and let $I \subseteq S$ be an ideal such that X = Spec(S/I) is a smooth \Bbbk -scheme. The aim of this exercise is to prove that $T^1_{S/I}$, as defined in Exercise X.1, is zero.

Let $\varphi \in \operatorname{Hom}_{S}(I, S/I)$ be a tangent vector and $\mathcal{X} := \operatorname{Spec}\left(S_{\Bbbk[\varepsilon]/\varepsilon^{2}}/\mathcal{I}\right)$ be the corresponding scheme, which is flat over $\operatorname{Spec}(\Bbbk[\varepsilon]/\varepsilon^{2})$. By the lecture, we have an isomorphism of $\Bbbk[\varepsilon]/\varepsilon^{2}$ -algebras $S_{\Bbbk[\varepsilon]/\varepsilon^{2}}/\mathcal{I} \simeq S[\varepsilon]/\varepsilon^{2}$. Use it to deduce that there is a derivation $d: S \to S/I$ such that $\varphi = d|_{I}$. Conclude that $T_{S/I}^{1}$ is zero.

Exercise 3. Let $\mathbb{P}^1 \hookrightarrow \mathbb{P}^3$ be given by $[u:v] \mapsto [u^3, u^2v: uv^2: v^3]$. On the one hand, during the last lecture we observed that every deformation of \mathbb{P}^1 over $\mathbb{k}[\varepsilon]/\varepsilon^2$ is trivial. On the other hand, long ago we observed that the tangent space to $[\mathbb{P}^1 \hookrightarrow \mathbb{P}^3]$ in the Hilbert scheme is nontrivial. Explain why there is no contradiction.

Exercise 4. \star . Let *p* be a prime number.

- (a) Let $X \to \operatorname{Spec}(\mathbb{F}_p)$ be a smooth affine scheme. Prove that it has a deformation $\mathcal{X} \to \operatorname{Spec}(\mathbb{Z}_p)$, where \mathbb{Z}_p are the *p*-adic numbers. *Hint: infinitesimal lifting*.
- (b) Let C → Spec(𝔽_p) be a smooth projective curve. Prove that it has a deformation C → Spec(ℤ_p), were ℤ_p are the *p*-adic numbers. *Hint: take two affine pieces and lift each of them.*

For smooth surfaces and in higher dimensions, the lifting in general does not exist.