



# Białyńicki-Birula decompositions and applications

Joachim Jelisiejew, Łukasz Sienkiewicz

## What is the Białynicki-Birula decomposition?

For a number  $x \in \mathbb{RP}^1 = \mathbb{R} \cup \{\infty\}$  we have

$$\lim_{t \rightarrow 0} t \cdot x = \begin{cases} 0 & \text{if } x \neq \infty \\ \infty & \text{if } x = \infty \end{cases}$$

Grouping together the numbers with the same limit, we obtain a decomposition of  $\mathbb{RP}^1$  into affine spaces  $\mathbb{R}$  and  $\{\infty\}$ .

The classical *Białynicki-Birula decomposition* [BB73] is a far reaching generalization of this idea. Consider a smooth proper variety  $X/\mathbb{k}$  with an action of  $\mathbb{k}^*$ . Let  $F_1, \dots, F_r$  be the components of  $X^{\mathbb{k}^*}$ . Let  $X_i := \{x \in X \mid \lim_{t \rightarrow 0} t \cdot x \in F_i\}$ ; they are locally closed in  $X$ .

For each  $i$ , the limit map  $X_i \rightarrow F_i$  is regular and in fact it is an affine fiber bundle (=locally on  $F_i$  looks like a trivial vector bundle).

The *Białynicki-Birula decomposition* of  $X$  is  $X^+ = \sqcup_i X_i$ .

In the example above, we have  $F_0 = X_0 = \{\infty\}$  and  $F_1 = \{0\}$ ,  $X_1 = \mathbb{P}^1 \setminus \{\infty\}$ . More generally, when  $X$  has finitely many  $\mathbb{k}^*$ -fixed points, then it decomposes into a union of affine spaces. In particular, every such  $X$  is rational.

## Functorial interpretation [Dri13]

While incredibly useful, the decomposition above is restricted by the smoothness assumption on  $X$ . Drinfeld [Dri13] observed that “the limit map being regular” can be taken as its defining property:

*Białynicki-Birula decomposition parameterizes points of  $X$  together with their limits at  $t = 0$ .*

This can be rephrased rigorously, functorially but quite opaquely as follows. Let  $\mathbb{A}^1$  the affine line with its usual  $\mathbb{k}^*$ -action. A point of  $x$  together with its limit is just an equivariant map  $\mathbb{A}^1 \rightarrow X$ . Therefore, Drinfeld defines  $X^+$  as a functor

$$X^+(S) = \{\varphi: \mathbb{A}^1 \times S \rightarrow X \mid \varphi \text{ is } \mathbb{k}^*\text{-equivariant}\}.$$

This comes with the limit map  $\pi_X: X^+ \rightarrow X^{\mathbb{k}^*}$  and a forgetful map  $i_X: X^+ \rightarrow X$ , which are restrictions of  $\varphi$  to  $0 \times S$  and  $1 \times S$ , respectively. The main points here are:

- the map  $\pi_X$  is affine, but not necessarily a bundle,
- the construction is functorial and  $X^+$  is represented by a scheme for all  $X$  locally of finite type, see also [AHR15],
- For smooth and proper  $X$  we recover the classical BB decomposition above.

## Application [Je18]

In the setting very different from smooth varieties, Jelisiejew [Je18] applies the Białynicki-Birula decomposition to the Hilbert scheme of points (which, loosely speaking, parameterizes finite algebras) to prove that singularities exist:

The scheme  $\text{Hilb}_{\text{pt}}(\mathbb{A}^{16})$  has arbitrary singularities up to retraction. In particular, it is non-reduced and for all primes  $p$  there exist finite algebras over  $\mathbb{F}_p$  nonliftable to characteristic zero.

This solves several classical open problems. The main idea is to use the BB decomposition to reduce considerations from the Hilbert scheme to its  $\mathbb{k}^*$ -fixed locus.

## Decomposition for reductive groups [JS19]

Jelisiejew and Sienkiewicz [JS19] generalized the BB decomposition to groups other than  $\mathbb{k}^*$ . Fix a connected linearly reductive affine group  $\mathbf{G}$  and an affine monoid  $\overline{\mathbf{G}}$  with zero that has  $\mathbf{G}$  as group of units. For a  $\mathbf{G}$ -scheme  $X$  define  $X^+$  by

$$X^+(S) = \{\varphi: \overline{\mathbf{G}} \times S \rightarrow X \mid \varphi \text{ is } \mathbf{G}\text{-equivariant}\}.$$

For the pair  $(\mathbf{G}, \overline{\mathbf{G}}) = (\mathbb{k}^*, \mathbb{A}^1)$  we recover Drinfeld’s construction above. For all  $\overline{\mathbf{G}}$  and for smooth  $X$ , the classical result of Białynicki-Birula generalizes verbatim:

The variety  $X^+$  is smooth and the morphism

$$\pi_X: X^+ \rightarrow X^{\mathbf{G}}$$

is an affine space fiber bundle with a  $\overline{\mathbf{G}}$ -action fiber-wise. Moreover, each component of  $X^+$  is a locally closed subvariety of  $X$  via  $i_X$ .

We can easily check whether a given point lies in a dominant cell:

If  $x \in X^{\mathbf{G}}$  is such that the  $\mathbf{G}$ -action on  $T_{X,x}$  extends to a  $\overline{\mathbf{G}}$ -action, then  $i_X: X^+ \rightarrow X$  is an open immersion near  $x \in X^+$ .

Note that for particular choices of  $\overline{\mathbf{G}}$ , there might be no dominant cell: the orbit of a general point might not compactify to  $\overline{\mathbf{G}}$ .

## Decomposition for the additive group [JS20]

Assume  $\text{char } \mathbb{k} = 0$ . The unique connected one-dimensional group other than  $\mathbb{k}^*$  is  $\mathbb{G}_a := (\mathbb{k}, +)$ . It has a unique smooth equivariant compactification  $\mathbb{P}^1$ , so for a  $\mathbb{G}_a$ -scheme  $X$  we define the additive Białynicki-Birula decomposition by

$$X^+(S) = \{\varphi: \mathbb{P}^1 \times S \rightarrow X \mid \varphi \text{ is } \mathbb{G}_a\text{-equivariant}\}.$$

We have analogues of  $\pi_X$  and  $i_X$ , where  $\pi_X$  takes the limit at  $\infty$ . Assume  $X$  is projective. Then the following properties hold:

- ①  $X^+$  is quasi projective and  $\pi_X: X^+ \rightarrow X^{\mathbb{G}_a}$  is affine,
- ② the map  $i_X: X^+ \rightarrow X$  is bijective on points,
- ③ if  $X \subset \mathbb{P}(V)$  is smooth, where  $V$  is an indecomposable  $\mathbb{G}_a$ -representation, then  $X^{\mathbb{G}_a}$  is a point and  $X^+$  is a disjoint union of affine spaces.

We conjecture that the following analogue of BB holds for all smooth projective  $X$ :

For every connected component  $X_i$  of  $X^+$  the map  $\pi_X: (X_i)_{\text{red}} \rightarrow X^{\mathbb{G}_a}$  is an affine space fibration onto its image. In particular, if such an  $X$  has finitely many  $\mathbb{G}_a$ -fixed points, then it decomposes into a union of affine spaces.

[AHR15] Jarod Alper, Jack Hall, and David Rydh.  
A Luna étale Slice Theorem for Algebraic Stacks.  
arxiv:1504.06467, 2015.

[BB73] A. Białynicki-Birula. Some theorems on actions of algebraic groups.  
*Ann. of Math.* (2), 98:480–497, 1973.

[Dri13] Vladimir Drinfeld. On algebraic spaces with an action of  $\mathbb{G}_m$ .

[Je18] Joachim Jelisiejew. Pathologies on the Hilbert scheme of points.

[JS19] Joachim Jelisiejew and Łukasz Sienkiewicz. Białynicki-Birula decomposition for reductive groups. *Journal de Mathématiques Pures et Appliquées*.

[JS20] Joachim Jelisiejew and Łukasz Sienkiewicz. Additive Białynicki-Birula decomposition. Work in progress.