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Romano, Occhetta, Solá Conde, and Śmiech
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LeBrun–Salamon conjecture

I The conjecture in Riemannian differential geometry:
positive quaternion-Kähler manifolds are symmetric
spaces (Wolf spaces).

I The conjecture in complex algebraic geometry:
every Fano complex contact manifold is homogeneous and
in fact the projectivisation of the minimal (co)adjoint orbit of
a simple group.

Algebraic geometry conjecture is stronger. A slightly weaker
version with assumption of existence of Kähler-Einstein metric
implies diff geom version too. In particular one may assume
that the group of automorphisms is reductive.



(co)adjoint orbits

Orbits of the co-adjoint representation of G admit Kostant-
-Kirillov G invariant symplectic form ω on an orbit O ⊂ g∗

ων(ad∗ξ (ν),ad∗η (ν)) = ν([ξ, η]) for ξ, η ∈ g, ν ∈ O

The symplectic form ω descends to a contact form θ on P(O);
for G simple co-adjoint can be identified with adjoint.

Dimension of the projective minimal adjoint orbits for simple
groups

Ar Br Cr Dr E6 E7 E8 F4 G2
2r−1 4r−5 2r−1 4r−7 21 33 57 15 5



Fano contact manifolds
I Let L be an ample line bundle on a complex manifold X ,

dim X = 2n + 1, a contact form θ ∈ H0(X ,ΩX ⊗ L) is such
that (dθ)∧n ∧ θ nowhere vanishes; this implies

−KX = (n + 1)L

I Let F be the kernel of θ : TX → L then dθ defines
nondegenerate skew-symmetric pairing:

dθ : F × F → L

I Partial results on contact and quaternion-Kähler manifolds:
small dim X , big torus, L has many sections

I We may assume Pic X = Z · L, otherwise

(X ,L) = (P2n+1,O(2)) or (P(TPn+1),O(1))

[Hitchin, Poon, LeBrun, Salamon, Herrera2, Bielawski, Fang, Druel, Beauville,
Kebekus, Peternell, Sommese, W, Demailly]



a diagram

We use Atiyah extension defined by c1(L) ∈ Ext(O,ΩX )

0 ΩX L O 0

to get the following commutative diagram
F

TX L∗ O

L L ⊗ L ΩX ⊗ L

F ∗ ⊗ L

θ ω̂∼= θ

d

where L ⊗ L are first jets and d is differentiation of sections
and the dotted arrow is dθ.



sections of L and g

Thus we have a map H0(X ,L)→ H0(X ,TX ) splitting θ with
image being the Lie algebra g of group G of automorphisms
preserving contact structure; in fact G = Aut(X ) unless
X = P2n+1 [Beauville, Kebekus].

We may assume that G is reductive hence (up to finite cover) a
product of simple groups and algebraic torus and the ajoint
representation of G on g = H0(X ,L). Let H be the maximal
torus in G; rkG = rkH.

Theorem
Suppose that X is a Fano contact manifold of dimension 2n + 1
with G = Aut(X ) reductive. If n ≤ 4 or

rk(G) ≥ max(2, (n − 3)/2)

then G is simple and X is the minimal adjoint orbit in P(g).



[BWW], [ORSW]: contact manifolds, torus action

r = rkG

n

Ar ,Cr

Br ,Dr

•G2

•F4

•E6
•E7

•E8

yellow region is where neither [BWW],[ORSW] works, dotted where rk(G) = 1



the main technical result and

Theorem (ORSW)
Suppose that X is a Fano contact manifold of dimension 2n + 1
with G = Aut(X ) reductive. If rkG ≥ 2 and all extremal fixed
point components of the action of H are isolated points then G
is simple and X is the minimal adjoint orbit in P(g).

Two elephant conjecture For every Fano manifold Y of
dimension ≥ 1 with an ample line bundle L such that
PicY = Z · L, it holds

dim H0(Y ,L) ≥ 2
Theorem (Ś)
Suppose the above conjecture holds for every Fano manifold
and X is a Fano contact manifold with G = Aut(X ) reductive.
Then either X is the minimal adjoint orbit in P(g) or G = SL(2).



idea: polytope of section

Let H be an algebraic torus with M = Hom(H,C∗) ' Zr .
Assume that H acts (effectively) on a polarized manifold (X ,L)
(with linearization µ : H × L→ L).
I We have decomposition of space of sections into

eigenspaces
H0(X ,L) =

⊕
u∈M

H0(X ,L)u

I By Γ(L) we denote convex hull in MR of eigenvalues
(weights) of the action of H on H0(X ,L).

I For (X ,L) contact with H0(X ,L) = g this decomposition is
the same as for the adjoint action of H ⊂ G = Aut(X ) on g
and the polytope Γ(L) is the same as root polytope ∆(G).



idea: polytope of fixed points

I We have decomposition of the set of fixed points

X H = Y1 t · · · t Ys

I By ∆̃(X ,H,L, µ) ⊂ M we denote the set of
weights µ(Yi) of the action of H on fibers of L over Yi ’s
and by ∆(L) their convex hull in MR.

I A connected component Y ⊂ X H is called extremal if µ(Y )
is a vertex of ∆.

Comparing polytopes:
I ∆(L⊗m) = m ·∆(L) and Γ(L⊗m) ⊇ m · Γ(L)

I ∆(L) = Γ(L) if L is base point free hence Γ(L) ⊆ ∆(L)



local action information, the compass

Let Y ⊂ X H be a connected component.
Take y ∈ Y and consider the action of H on T ∗y X : it splits into
eigenspaces associated to some characters (weights) in M; the
trivial eigenspace is T ∗y Y

The set non-zero (multiple) weights of this action is called the
compass of the action of H on the component Y and we denote
it C(Y ,X ,H)



example: 4-dimensional quadric
Three-dimensional torus acting on the 4-dimensional quadric
x1x2 + x3x4 + x5x6 = 0 with weights1 −1 0 0 0 0

0 0 1 −1 0 0
0 0 0 0 1 −1



•

•

•

•

••

Six fixed points, six sections, four elements in the compass



example 5-dimensional quadric
Three-dimensional torus acting on the 5-dimensional quadric
x2

0 + x1x2 + x3x4 + x5x6 = 0

•

•

•

•

•• ◦

Six fixed points, seven sections, five elements in the compass.

a grid is a generalization of torus moment polytope and a GKM graph



downgrading and reduction, 1

Consider a sequence of tori

0 // H1
π // H ι // H2 // 0

and the associated sequence of lattices of characters

0 // M2
ι // M π // M1 // 0

We have the action of H2 on components of X H1 and for every
connected component Y1 ⊂ X H1 we get

Y H2
1 = X H ∩ Y1

Note: for a general choice H1 ↪→ H we have X H1 = X H



downgrading and reduction, 2

The restriction of the action to H1 ↪→ H implies

π(∆(X ,L,H, µ)) = ∆(X ,L,H1, µH1)

For every pair of connected components Y1 ⊂ X H1 and
Y ⊂ Y H2

1 we have
I the elements of C(Y1,X ,H1) are π-projections of elements

from C(Y ,X ,H)

I the elements of C(Y ,Y1,H2) are those in C(Y ,X ,H) which
are in the kernel of π



example: downgrading P2

Downgrading (C∗)2 acting on P2 with O(2):

•

�� ��
◦ ◦

•

??

// ◦ •oo

__

↓
• // //◦ •oo // ◦ •oooo

to C∗ acting with weights (0,1,2).



example: downgrading P2

Downgrading (C∗)2 acting on P2 with O(2):

•

�� ��
◦ ◦

•

OO

// ◦ •oo

__

↓
P1 // ◦ •

×2
oo

to C∗ acting with weights (0,0,1).
Note that quotient torus acts on P1 of fixed points.



4-dimensional quadric: downgrading the action
Downgrading to one dimensional torus acting on the
4-dimensional quadric with two fixed point components ' P2.

•

•

•

•

••

Note the quotient torus acting.



BB decomposition

For H = C∗ with coordinate t and X projective manifold we
have Białynicki-Birula decomposition:
I Take decomposition X H = Y1 t · · · t Ys and for every Yi by
ν±(Yi) denote the positive and negative number of
characters in the compass.

I Define
X+

i = {x ∈ X : limt→0 t · x ∈ Yi}
X−i = {x ∈ X : limt→∞ t · x ∈ Yi}

I Then
I X = X+

1 t · · · t X+
s = X−

1 t · · · t X−
s ,

I partial order Yi ≺ Yj ⇔ X+
i ⊃ Yj agrees with µ(Yi ) < µ(Yj )

I the unique dense ±-component is called source/sink,
I X±

i → Yi is a Cν±(Yi ) fibration,
I Hm(X ,Z) =

⊕
i Hm−2ν+(Yi )(Yi ,Z) =

⊕
i Hm−2ν−(Yi )(Yi ,Z)



BB decomposition, case Pic ' Z

Assume in addition that Pic X = Z · L and Y0 ⊂ X H is the
source. Then X Fano and one of the following holds:

1. dim Y0 > 0 and
I Y0 is Fano with Pic Y0 = Z · L,
I the complement of X+

0 is of codimension ≥ 2,
I H0(X ,L)→ H0(Y0,L) is surjective.

2. Y0 is a point and
I X+

0 is an affine space
I D = X \ X+

0 is an irreducible divisor in the system |L|,
I there exists the unique fixed point component Y1 ⊂ X H

such that µ(Y1) is minimal in ∆̃(X ,L,H, µ) \ µ(Y0),
I X+

1 associated to Y1 is dense in D.

Corollary: =⇒ isolated extremal points

First note + BB =⇒ Γ(L) = ∆(L) = ∆(Aut(X )).



reduction to SL(2) action

I G = Aut(X ) is reductive =⇒
⇒ G is a product of a semisimple and a torus
⇒ G has no torus factor: the action on g = H0(X ,L) is adjoint
⇒ G is simple: analyze the compass.

I G is simple and Cartan torus action H < G acts with
isolated extremal fixed points =⇒ there exists SL(3) ⊂ G
with H2 < SL(3) acting with isolated extremal points.



example: minimal nilpotent orbit of B3

B3 root system

◦
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◦

◦
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•



example: minimal nilpotent orbit of B3

Root polytope of B3 and the compass.

◦

◦

◦

◦

◦◦

•

•

••

•

•

••

•

•

•

•

note the symmetry in the compass induced by dθ



example: minimal nilpotent orbit of B3

Downgrading the action.

◦
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example: minimal nilpotent orbit of B3

Downgrading and restricting the action

◦

◦

◦

◦
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finding fixed point components

Position of the fixed points components in terms of µ:

••

•

• •

•

◦

◦

◦

◦

◦

◦

•

Starting point: understand varieties with C∗ action associated
to blue line segments and next to red segments.



bandwidth 3 varieties
Let (X ,L) be a variety with C∗ action. The bandwidth of the
action is µ(Y0)− µ(Y∞), where Y0, Y∞ are source and sink of
the action and µ is any linearization of L.

Theorem (∗)
Let (X ,L) be a variety of dim ≥ 3 with C∗ action of bandwidth 3
with sink and source isolated points and no non-trivial isotropy
group. The (X ,L) is one of the following:
I (X ,L) is a scroll over P1

I (X ,L) = (Qn−1 × P1,O(1,1))

I X is rational homogeneous of type C3(3), A5(3), D6(6),
E7(7), and L is the generator of Pic X.

The varieties in the last case are VMRT’s for adjoint orbits for
simple groups F4, E6, E7 and E8.

∗ ORSW based on Cremona transformation results by Zak and Ein,
Shepherd-Barron



comparig the fixed point data
Understanding varieties with bandwidth 3 (blue segments) and
of bandwidth 2 (red segments) we recover fixed point
components and their compases

••

•

• •

•
◦

◦
◦

◦
◦
◦

•

Corollary
For every contact variety (X ,L) such that the action of
H ⊂ Aut(X ) = G has isolated extremal fixed points the action of
a chosen two dimensional torus H2 ⊂ H has the same fixed
point components (as polarized varieties) and compasses (as
normal bundles with H2 action) as in case of the action of H2 on
the minimal adjoint orbit XG ⊂ P(g).



a tool: equivariant cohomology
Grothendieck-Atiyah-Bott-Berline-Vergne localization in
cohomology and Riemann-Roch theorem (simplest version):

Assume that X H consists of isolated points y1, y2, . . . yk . Take
µi = µ(yi) and νi,j are elements of C(yi ,X ,H).
Then the character of the representation of H on H0(X ,L⊗m) is
equal

k∑
i=1

tmµi∏
j(1− tνi,j )

Corollary
Suppose that a simple group G with a maximal torus H acts on
X, Pic X = ZL, so that the data µi , νi,j is the same as for a
G-homogeneous manifold X̂ , Pic X̂ = ZL̂. Then

(X ,L) = (X̂ , L̂)



conclusion: reverse engineering

As above, (X ,L) contact with torus H ⊂ Aut(X ) = G, where G
is a simple group with (XG,O(1)) ⊂ (P(g),O(1)) adjoint variety.
By torus action data (a grid) we understand the set of all fixed
components (Yi ,L|Yi

) and isomorphism classes of their normal
bundles with torus action.

The scheme of the proof, conclusion:
I The torus action data for (X ,L) and (XG,O(1)) is the same.
I H0(X ,mL) ∼= H0(XG,O(m)) as representations of H.
I H0(X ,mL) ∼= H0(XG,O(m)) as representations of G.
I (X ,L) ∼= (XG,O(1)) as G-varieties.


