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Summary. The paper provides a complete proof of a part of classification of Fano
manifolds of coindex 3, announced by Mukai in 1982.

A smooth projective variety X of dimension n defined over the field
of complex numbers is called a Fano n-fold if and only if its anticanonical
divisor —K x is ample. The index of such a manifold is defined as the largest
integer dividing — K'x, i.e.:

index(X) = max{k € Z: —Kx ~ kH for some ample divisor H}

In [13] Wilson proved that if X is a Fano 4-fold of index 2 with by = 1
then the divisor H in the above definition can be assumed to be smooth. In
the present paper we make the following;:

AssuMPTION 0.1. X is a Fano 4-fold with second Betti number by(X) >
2 and on X there exists an ample smooth divisor H such that 2H is linearly
equivalent to — K x .

We define the degree of a Fano manifold of index 2 as the selfintersection
of H,i.e.:

d(X) = HImX = (—1f, )™

Let us recall that Iskovskich [1, 2] classified Fano 3-folds of index 2.

There are 8 types (up to deformation) of them. They are as follows:
(i) Va, d = 1,...,5 with b3(Vy) = 1,d(Vy) = d (see [1] for a thorough

description);

(i) V = blow-up of P3 at a point = P(Op2(—1) ® Opz), by(V) = 2,
a(v) =1,

-
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(iii) W = divisor of bidegree (1,1) on P? x P? = P(TP%(-2)), b (W) =
2, d(W) = 6;

(iv) P x P! x P!, d(P' x P! x P1)=6.

The purpose of this paper is to prove the following:

THEOREM 0.2: Assume that X and H be as in (0.1). Then the pair
(X, H) is one of the listed in Table 0.3.

TABLE 0.3. Pairs (X, H)

No. b d(X) X H

1 2 4 P'xw No. 1

2 2 8 Pl xV, No. 3

3 2 12 P'xVWs No. 5

4 2 12 a double cover of P2 x P? whose branchlocus  No. 6b
is a divisor of bidegree (2,2)

5 2 16 a divisor on P? X P? of bidegree (1,2) No. 9

6 2 16 P'xV, No. 10

72 20 an intersection of two divisors of bidegree  No. 12
(1,1) on P?> x P3

8 2 20 adivisor on P? x Q3 of bidegree (1,1) No. 13

9 2 20 P'xV No. 14

10 2 22 a blow-up of Q* along a conic which is not  No. 16
contained in any plane lying on Q*

11 2 24 P(NCB), where NCB is the null-correlation ~ No. 17
bundle on P?, (see (1.1.(iii)))

12 2 26 a blow-up of Q* with center a line No. 19
13 2 30 P(Ogs(-1)® Ogs3) No. 23
14 2 32 pPlxp3 No. 25
16 3 24 Pl xw No. 7
17 3 28 PlxV No. 11
18 4 24 P'xPl'x Pl x P! No. 1

The last column in Table 0.3 refers to entries in the table numbered as
by(X) in Mori-Mukai classification of Fano 3-folds (see [8]).

The proof of (0.2), suggested in the Mukai’s paper [14], should be based
on the classification of Fano 3-folds and Mori theory, which are also used
extensively in the present paper. Moreover this paper applies results on Fano
bundles [12] that were obtained without the assumption on smoothness of
H. As, to my knowledge, no proof of Mukai classification has been published
yet, therefore I have decided to come forward with the present paper as a
contribution towards this classification.



Fano 4-folds 175

1. Preliminaries; plan of the proof of (0.2). The proof of (0.2) will
depend on results concerning Mori theory and classification of Fano 3-folds.
We refer the reader to [6,7], for definitions concerning the cone of curves,
extremal rays, contractions, etc. Our language and notation are consistent
with these papers.

Using Mori theory and properties of vector bundles in [12], we classi-
fied all Fano 4-folds that are ruled, i.e., can be presented as P! bundles
(Thm. (0.1) in [12]).

THEOREM 1.1. Assume that X is a ruled Fano 4-fold of index 2. Then
one of the following holds:

(i) X = P! x M where M is a Fano 3-fold of indez 2 or P3;

(i) either X = P(Ops(—=1) @ Ops(1)) or X = P(Ogs(—1) ® Oga);

(iii) X has two P'-bundle structures and can be realized either as
P(NCB), where NCB is the null-correlation bundle on P®, that'is a sta-
ble bundle with ¢; = 0 and ¢; = 1, or P(E), where E is a stable rank-2
bundle on Q> with ¢;E = —1, ¢o F = 1.

We proved also the following facts on maps from Fano 4-folds of index
2.

LEMMA 1.2. Let contrr : X — Y be a contraction of an extremal ray R
of a Fano 4-fold X of indez 2. If every fiber of contrg is of dimension < 1,
then X is ruled.

LEMMA 1.3. Assume that by(X) > 2. If there exists an extremal ray R
of X whose contraction has a 3-dimensional fiber then X is ruled.

LEMMA 1.4. Let X be a Fano 4-fold of indez 2. If there exists a morphism
Jrom X onto a curve, then X = P! x M where M is either a Fano 3-fold
of index 2 or P3.

Our plan for the proof of Theorem 0.2 is as follows: In Sections 2-5, we
will assume that a pair (X, H) satisfies Assumption 0.1. In Section 2 we
will prove that the system |H| is almost always base point free and certain
maps of H extend to X. In Section 3 using an extension lemma and Mori
theory we will deal with the case of by(X) > 3. We will proof that such
X has to be ruled, so it has to be one listed in (1.1). In Section 4 we will
be interested in a case of by(X) = 2 and one of extremal rays of X being
not effective. We will prove then that, X is a blow-up of Q* with center
a smooth curve, and such a curve is either a line or a conic not contained
in a plane on Q*. In Section 5 we will assume that by(X) = 2 and both
extremal rays are numerically effective, but X has no morphism onto P!
(cf. Lemma 1.4). Using the classification of Fano 3-folds, [8], we will find all
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possible candidates for the divisor H, and then examine the structure X.
The following fact will be used in Section 5.

LEMMA 1.5. Let X be a Fano 4-folds of index 2 and H an ample divisor
on X such that —Kx = 2H (H does not have to be smooth). Then, for
m2=0

RY(X,0x(mH)) = (1/24)((m + 1)*H* + (m + 1)*(24 — H*))

Proof. Since, for m > 0, ¢ > 0, H(X,Ox(mH)) = 0 then we are to
prove that the Euler-Poincare characteristic of Ox(mH) can be expressed
by the above polynomial. If we take x(m) = x(X,Ox(mH)), then the
following hold:

(a) x(m) is a polynomial of degree 4 in m with the leading coefficient
(1/24)H*;

(b) x(0) = 1; |

(c) x(—=1) = 0, since by Kodaira vanishing theorem h*(X,Ox(—H)) = 0,
> 0;

(d) x(m) = x(—=m — 2) (by Serre duality), which means that the poly-
nomial x(m + 1) is even.

Now from (a) and (d) it follows that x(m) = (1/24)H*(m+1)* + B(m +
1)? 4 C where B and C are rationals. Using property (b) and (c) we get
that C =0 and B =1 — (1/24)H*.

2. Extension lemmas. Let X and H be as in Assumption 0.1. By
"Ni(X) (N1(H)) and NE(X) (NE(H)) let us denote the space of 1-cycles
and the cone of effective 1-cycles on X (on H respectively), cf. [7]. In view of
the Lefschetz hyperplane section theorem we see that the embedding H C X
gives us isomorphism Ny(H) ~ N;(X) under which NE(H) C NE(X).

LEMMA 2.1. NE(H) = NE(X).

Proof. Since NE(X) is spanned on its extremal rays, it follows that
the lemma is proved if we show that any contraction contrp : X — M of
an extremal ray R of X contracts a curve lying on H. This is obvious if
contrg has a 2-dimensional fiber, since then H has a positive-dimensional
intersection with this fiber. On the other hand if contrg has no fiber of
dimension > 2, then M is smooth and contrg : X — M is a P! bundle
(cf. Lemma 1.2.). In this case we see that H (fiber of contrg) = 1, hence
the map contrgr)y : H — M is birational. If contrgiy had no positive-
dimensional fiber then H would be a section of 7 which is an absurd since
bQ(X) = bg(H) > bz(M)
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COROLLARY 2.2. Any ample (nef) line bundle on H extends to ample
(respectively nef) line bundle on X.

LEMMA 2.3. Let oy : H — Y be a morphism onto a projective variety
Y. Assume that one of the following holds:

(i) dimY < 2;

(ii) @ is a contraction of an eztremal ray Ry in NE(H) and this ray
treated as ray Rx in NE(X) is numerically effective.
Then @g extends to ¢ : X — Y.

Proof. We follow Sommese’s ideas from [10]. Let Ly = ¢3(Ly), where
Ly is a very ample line bundle on Y. The line bundle Ly extends to a nef
line bundle Lx on X. First we prove that every section of Ly extends to a
section of L x. To see this let us consider a short exact sequence on X:

0->Lx®O(-H)— Lx - Lyg—0.

Any section of Ly extends to a section of Lx if H'(X,Lx®O(~H)) = 0.
However, L x is nef and therefore Ly @ O(H) = Lx @ O(-H)®@ O(—Kx) is
an ample line bundle on X. Now the desired vanishing follows from Kodaira
vanishing theorem.

Let Bs(Lx) denote the base point set of |Lx]|. Since |Lx| has no base
points on H, it follows that dim Bs(Lx) < 0. We claim that actually the
set Bs(Lx) is empty. To see this note that Ly is semi-ample because of
Kawamata-Shokurow base point free theorem, 3—1-1 [6], therefore for some
m > 0 the system |mL x| is base point free and defines a map |,,r,,| : X —
pdim|mLx] Now either of the assumptions, (i) or (ii), implies that all fibres
of @1, | are of positive dimension. Therefore either Bs(Lx) is empty or
of positive dimension, and the latter case we excluded above.

Finally we see that ¢ = @1, |, the map associated to |L x|, is the desired
extension of ¢g.

In view of Lemma 1.4. we have:

COROLLARY 2.4. If H has a morphism onto a curve then X = P x M
where M is either a Fano 3-fold of index 2 or P3.

COROLLARY 2.5. The divisor H can not be represented as a nontrivial
product.

We conclude this section with:

LEMMA 2.6. The linear system |H| is base point free unless the pair
(X, H) is the one listed as No. 1 in Table 0.3.

Proof. We see that the line bundle Ox(H) is not spanned only if
Og(H) is not spanned. Thus we are looking for a Fano 3-fold H index 1
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such that | — K'g| is not base point free. This happens only if H = P! x §;
(where Sy is a del-Pezzo surface, such that K% =1)or H is the manifold
listed as n° 1 in table 2, [8]. The first case is ruled out by Corollary 2.5.
In the other case H has a morphism onto P!, hence X has to be a product
Lemma 2.4.), and by inspection we conclude that the pair (X,H) is No. 1
in table 0.3.

3. Case of by(X) > 3. Assume that the pair (X, H) is as in 0.1. and
b2(X) = by(H) > 3. We will prove that X is ruled. For that purpose, in
view of Corollary 2.4., we may assume that H has no morphism onto P!.

From table 6 in [8] we infer that in this case b,(H) = 3 and there exists a
morphism ¢y : H — P? which makes H a conic bundle. In virtue of Lemma
2.3. the morphism ¢p extends to ¢ : X — P2, We see that all fibers of ¢ are
connected, of dimension 2. Let'L = ¢*(Op2(1)). Then, in terminology of [6]
¢ is a contraction of an extremal face ' = {Z € Ny(X): L-Z = 0}nNE(X)
of the cone NE(X). The face X' is of dimension 2 and contains 2 extremal
rays. For any of these extremal rays there exist a projective normal variety
Y, morphism of contraction # : X — Y and a morphism ¢ : Y — P? which
make the following diagram commute (cf. Thm. 3.2.1 [ibid]):

¢
X — ™y
c;\ /,-
p?
Fig. 1.
Now the task of this section is achieved in the following:

LEMMA 3.1. 9 : X - Y is a P -bundle.

Proof. As in Lemma 1.2. it is enough to prove that & has no 2-
dimensional fibers. Note that fibers of & are contained in fibers of ¢ that
are of dimension 2. Let f denote a fiber of ¢. We claim that if f contains
a 2-dimensional fiber of & then & must actually contract f to a point. It
is clear when f is irreducible. If f is reducible then, since H N f is a conic
and Oy(H) is ample and spanned, it follows (Thm. 2.1 b’ [4]) that f must
consist of two copies of P? intersecting along 1-dimensional set. Therefore
if @ contracts one component of f it must contract whole f. This implies
that there exists a fiber of ¢ that is a point hence Y is of dimension 2.
Furtheremore, the map o is finite-to-one and since fibers of both ¢ and &
are connected, o has to be an isomorphism. It would imply that ¢ and &
are the same (modulo o) which is an absurd since ¢ contracts 2-dimensional
face and @ is a contracti(\m of an extremal ray.
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4. Case of b3(X) = 2 and an extremal ray which is not numeri-
cally effective. Assume that the pair (X, H) is as in Assumption 0.1 and
moreover by(X) = by(H) = 2 and one of (two) extremal rays of X is not
numerically effective. We will prove that (X, H) is one of No. 10, 12, 13, 15
from Table 0.3. _

Let R denote an extremal ray of X which is not numerically effective.
Let £ C X be the prime divisor from lemma 1.1. [12], such that F- R < 0.
The contraction ¢ : X — Y of R is a birational morphism onto a normal
projective variety Y, and F is the exceptional set of . By virtue of Lemma
1.1 [12], it follows that dim ¢(E) < 1. If dim ¢(FE) = 0 then from Lemma
1.3. it follows that X is ruled and we see that actually (X, H) is either
No. 13 or 15 from Table 0.3. Therefore, for the rest of this section, we may
assume that dim (E) = 1. If we take C = ¢(E) (with reduced structure),
then C is an irreducible curve on Y. Moreover we have:

LEMMA 4.1. Both' Y and C are smooth and ¢ : X — Y is a blow-up of
Y along C.

Proof. In view of [9] it is enough to prove that every fiber of ¢ :
E — C is isomorphic to P? and Ox(E) restricted to any fiber of Y|E is
isomorphic to Op2(—1). '

We start by restricting the map ¢ to H. If Hy denotes the image ¢(H)
then the map ¢y : H — Hy is birational. We claim that H is a blow-up
of Hy along C. To see it let us take v : Z — Hy as a normalization of Hy,
and « : H — Z as a morphism making the following diagram commutative:

V4
N\
Lol
@

Fig. 2. _

The morphism o : H — Z is the contraction of the extremal ray R on H
and from (3.3.1, [7]) we see that Z is smooth and H is a blow-up of Z along
a smooth curve C'z such that (C'z) = C. From ([8], Table 6) we see that Z -
is actually one of the following;: P3,' Q3 or Vg, for 3 < d < 5. Now we are
to prove that v is an isomorphism. Let Ly be a very ample line bundle on
Y and L = ¢*(Ly). As in the proof of Lemma 2.3 we see that any section
of Ly := Ly extends to X. Therefore the morphism ®|H is given by the
linear system |Ly|. But at the same time Ly is a pullback of a very ample
line bundle from Z (because every ample line bundle on Z = P3, @3 or Vj,
d=3,...,5,is very ample) hence v is an isomorphism. Thus ¢ : H — Hy
is a blow-up along smooth C.

HycY




180 J. Wisniewski

The exceptional set of ¢y equals to g = H N E which is Pl-bundle
over C. If f is a fiber of ¢, : Hg — C then from adjunction it follows that
H-f=1and E-f = —1. The map ¢|g : E — C is flat and if F'is a fiber of
©|E, then the selfintersection of Op(H) is 1. Now from (Thm. 2.1.b', [4]) it
follows that any fiber F of ¢ is isomorphic to P? and Or(E) ~ Op2(—1)
which concludes the proof of Lemma 4.1.

Now we see that Y is isomorphic to Q*. Indeed, PicY = Z hence Hy
is an ample divisor and, as we noted above, a Fano 3-fold of index > 2.
Therefore Y is Fano of index > 3, and since —Kx = —¢*Ky — 2F has to
be divisible by 2, it has to be actually of index 4, hence a quadric.

Finally, we see that Hy is isomorphic to V4 and since H is a blow-up of
Hy along C it has to be isomorphic to one of 3-folds numbered as 10, 16 or
19 in (Table 2 [8]). We eliminate No. 10 since it has a morphism onto P?.
The description of C follows from the description of H in (Table 2 [8]).

5. by(X) = 2 and both extremal rays are nef. In this section we are
working in the following set-up: the pair (X, H) is, as in (0.1), ba(X) = 2
and both extremal rays of X are numerically effective. This means that
any contraction ¢ : X — Y is onto a normal variety Y of dimension < 3.
Moreover, in view of Lemmas 1.3 and 1.4 we assume that no contraction
of X onto a curve (i.e. dimY > 2) and no contraction of X has a fiber of
dimension 3.

We start by examining the structure of H. For this purpose we will
frequently refer to (Table 2 in [8]) and, unless otherwise specified, we will use
ordinals from this table to describe isomorphism classes of //. For example,
H is not isomorphic to any of 3-folds numbered as 1, 2, 3, 4, 5, 7, 10, 14,
18, 25, 29, 33, 34, since these have morphisms onto P!, (cf. Corollary 2.4).
On the other hand, by virtue of (Thm. 2.0, [3]), # can not be a P!-bundle
over P?, therefore it is not isomorphic to any of 3-folds numbered as 24, 27,
31, 32, 34, 35, 36 (cf. [11]).

Let oY : H — Y1, 9% + H — Y, be the two contractions of H, 2 <
dimY; € 3for 1 < i € 2. From Lemma 2.3 it follows that any of c,oﬁq
extends to ¢; : X — V;, and we see that these are the two contractions of
X. We have:

LEMMA 5.1. If dimY; = 3 then thcre exists at most a finite number of
fibers of ; of dimension 2, every of them isomorphic to P,

Proof. Let D; = ¢f(Dy,) where Dy, is a very ample divisor on Y;.
If there is more than a finite number of ¢; fibers of dimension 2 then ¢;
contracts a divisor, say F, to a curve. Since E does not meet other fibers
of ¢; and by(X) = 2, it follows that E has to be numerically equivalent to
some multiple of D;. However, this cannot be true since D? - £ = 0 and on
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the other hand D? is an effective 1-cycle. This concludes the first part of
the lemma. _

Now take S to be a 2-dimensional fiber of ¢;. We claim that for a general
H the intersection f = H N S is isomorphic to P! and Of(H) =~ Op1(1).
Indeed, since the number of 2-dimensional fibers of ¢; is finite, it follows that,
for a general H, the map ;5 : H — Y; has no 2-dimensional fiber, therefore
by (3.3.1, [7]), it is a blow-down map. Now f, being a 1-dimensional fiber
of ¢;u, is isomorphic to P' and Of(H) ~ Op:(1) . Now, we see that the
pair (5,0s(H)) satisfies the assumption b’) of (Thm. 2.1, [4]), therefore
S~ P2, O

Note that from the proof of Lemma 5.1 it follows that we can assume that
no contraction of H has a 2-dimensional fiber, therefore H is not isomorphic
to any of 3-folds listed as numbers 8, 15, 23, 28, 30. Moreover by virtue of
(Thms 3.3 and 3.5 from [7]) it follows that both Y; are smooth.

LeMMA 5.2. If dim Y, = 3 and X is not ruled then Y] is isomorphic
either to P? or P3.

Proof. In view of Lemmas 1.2 and 5.1 it follows that there exists a fiber
S of ¢y isomorphic to P?. We claim that ®1|s is an embedding defined by
the system |Op2(1)|. Indeed, Og(H) ~ Opz2(1), therefore, by classification
of Fano 3-folds and their contractions (cf. Corollary 11.2 and Table 2 in [8]),
it foliows that the map s is given by the linear system |Op2(1)|. This
can be the case only if 7 is either P2 or P3.

Slmllarly we prove:

LEMMA 5.3. IfdimY) = 2 and dimY; = 3 then Vs is either P° or Q3.

Proof. Note that a general fiber of ¢; is a smooth 2-dimensional
quadratic P! x P'. Moreover Ox (H), restricted to this fiber, is isomorphic
to Opi1yp1(1,1). Now one concludes Lemma 5.3. as the proof of Lemma
5.2.

Let us consider a map @ := 3 X @3 : X — Y :=Y; xY,. We see that
the map @ is finite-to-one and if dimY > 5 ®g is an embedding (cf Table
2 [8]). Therefore for dim ¥ > 5 the map & is birational onto its image.

Now we are ready to describe the pair (X,H). From Table 2 [8] we
see that dimY = 4 only if Y7 ~ Y; ~ P? and H is in the class No. 6b.
Therefore, the pair (X, H) is then the one listed as No. 4 in Table 0.3. If
dimY = 5 then from Lemma 5.3. it follows that Y is isomorphic either to
P? x P3 or P? x Q3. Moreover, we see that the map & is birational onto a
divisor of bidegree (1,2) or (1,1), respectively. We claim that & is actually
an embedding.
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To see this set Z = $(X). Then Z is a divisor on Y and from the exact
sequence

0 — Oy(m,m) ® Oy(-Z) = Oy(m,m) — Oz(m,m) — 0
one finds out that for m > 0
hO(Z, Oz(m,m)) = hO(X, Ox(mH))

(cf. Lemma 1.5). Now our claim follows by:

LeEMMA 5.4. Let H be an ample divisor on a manifold X. Assume that
|H| is base point free and the map & : X — PI™IH| s onto a variety
Z c PYmIHI By Oz(m) let us denote the restriction of Opaimiu(m) to Z.
If, for any m > 0

hY(X,0x(mH)) = h°(Z,0z(m))
then @ is an embedding.

Proof. For somem > 0 the map &,, : X — PV associated to a complete
linear system |mH]| is an embedding. But we see that |mH| = &*|0z(m)|,
therefore, if #Z : X — PN is the map associated to |Oz(m)|, then the
following diagram commutes:

X -—,-i-—>chdfm|h'|

N
pN
Fig. 3.
Thus & is an isomorphism onto Z.

Now let us deal with the case of dimY = 6. In view of Lemma 5.2. it
follows that either X is ruled, which is the case of No. 11 in Table 0.3, or
Y ~ Y; ~ P3. In the latter case H is in class No. 12 (Table 2, [8]) or,
in other words, it is a graph of a cubo-cubic Cremona transformation [5].
Therefore d(X) = 20 and by Lemma 1.5 we see that h%(X,Ox(H)) = 14.
Consider Z C P3 x P3 being the image of #. We claim that Z is a complete
intersection of two divisors of bidegree (1.1).

To see this note that:

hO(P3 X P3,OP3XP3(1,1)) =16

therefore, there exists a linear pencil in |Ops« p3(1,1)| of divisors containing
Z. Note that no divisor in this pencil is reducible, since if it was &(X),
contained in its component, it would have a morphism onto P2. Let Z be
the common zero set of this pencil. Then Z is an algebraic variety of pure
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dimension 4 and Z is its irreducible component. But note that:
Z-(1,1)= (1,18 =20=d(X) = &(X)-(1,1)* = Z - (1,1)*

therefore Z = Z.
Now, using similar argument as before, we find out that for any m > 0

RO(X,Ox(mH)) = h°(Z,0z(m,m))

therefore from Lemma 5.4 it follows that X ~ Z, hence the pair (X, M) is
as No. 7 in Table 0.3. '
This concludes the proof of Theorem 0.2.

The paper was prepared while the author was visiting The Johns Hopkins
University, Baltimore, USA.
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